
Course Business

• Homework 4 Due Thursday in Class
• Bonus Problem (10 Points)

• Second bonus problem (5 pts) is easiest to solve with Mathematica
• https://sandbox.open.wolframcloud.com
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Cryptography
CS 555

Week 13: 
• El Gamal
• RSA Attacks and Fixes
• Digital Signatures
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

2Fall 2017



Week 13 Topic 1: El-Gamal 
Encryption
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A Quick Remark about Groups

• Let 𝔾𝔾 be a group with order m = 𝔾𝔾 with a binary operation ∘ (over 
G) and let g, h ∈ 𝔾𝔾 be given and consider sampling k ∈ 𝔾𝔾 uniformly at 
random then we have

Prk←𝔾𝔾 𝑘𝑘 = 𝑔𝑔 =
1
𝑚𝑚

Question: What is Prk←𝔾𝔾 𝑘𝑘 ∘ ℎ = 𝑔𝑔 = 1
𝑚𝑚

?
Answer:

Prk←𝔾𝔾 𝑘𝑘 ∘ ℎ = 𝑔𝑔 = Prk←𝔾𝔾 𝑘𝑘 = 𝑔𝑔 ∘ ℎ−1 =
1
𝑚𝑚
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El-Gamal Encryption

• Key Generation (Gen(1𝑛𝑛)): 
1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and a 

generator g such that < g >= 𝔾𝔾.
2. Choose a random x ∈ ℤ𝑞𝑞 and set ℎ = 𝑔𝑔𝑥𝑥

3. Public Key: pk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔,ℎ
4. Private Key: sk = 𝔾𝔾,𝑞𝑞,𝑔𝑔, 𝑥𝑥

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞
• Decsk(𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2 ) = 𝑐𝑐2𝑐𝑐1−𝑥𝑥
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El-Gamal Encryption

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞
• Decsk(𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2 ) = 𝑐𝑐2𝑐𝑐1−𝑥𝑥

Decsk(𝑔𝑔𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦) = 𝑚𝑚 � ℎ𝑦𝑦 𝑔𝑔𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � ℎ𝑦𝑦 𝑔𝑔𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � 𝑔𝑔𝑥𝑥 𝑦𝑦 𝑔𝑔𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � 𝑔𝑔𝑥𝑥𝑥𝑥𝑔𝑔−𝑥𝑥𝑥𝑥
= 𝑚𝑚
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El-Gamal Encryption

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞
• Decsk(𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2 ) = 𝑐𝑐2𝑐𝑐1−𝑥𝑥

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption 
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is  CPA-Secure.
Proof: Recall that CPA-security and eavesdropping security are 
equivalent for public key crypto. Therefore, it suffices to show that for 
all PPT A there is a negligible function negl such that

Pr PubKA,Π
eav n = 1 ≤

1
2

+ negl(n)
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Eavesdropping Security (PubKA,Π
eav n )

10

𝑚𝑚0 ,𝑚𝑚1

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄𝟏𝟏 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃

b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

eav n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Public Key: pk



El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption 
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is  CPA-Secure.
Proof: First introduce an `encryption scheme’ �Π in which �Encpk 𝑚𝑚 =
𝑔𝑔𝑦𝑦 ,𝑚𝑚 � 𝑔𝑔𝑧𝑧 for random y, z ∈ ℤ𝑞𝑞 (there is actually no way to do 

decryption, but the experiment PubKA,�Π
eav n is still well defined). 

Claim: Pr PubKA,�Π
eav n = 1 = 1

2
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El-Gamal Encryption
Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption scheme (above) then if DDH 
is hard relative to 𝒢𝒢 then Π is  CPA-Secure.
Proof: First introduce an `encryption scheme’ �Π in which �Encpk 𝑚𝑚 = 𝑔𝑔𝑦𝑦,𝑚𝑚 � 𝑔𝑔𝑧𝑧 for random y, z ∈
ℤ𝑞𝑞 (there is actually no way to do decryption, but the experiment PubKA,�Π

eav n is still well defined). 

Claim: Pr PubKA,�Π
eav n = 1 = 1

2
Proof: (using Lemma 11.15)

Pr PubKA,�Π
eav n = 1 =

1
2

Pr PubKA,�Π
eav n = 1|𝑏𝑏 = 1 +

1
2

1 − Pr PubKA,�Π
eav n = 1|𝑏𝑏 = 0

=
1
2

+
1
2

Pry,z←ℤ𝑞𝑞 𝐴𝐴 𝑔𝑔𝑦𝑦,𝑚𝑚 � 𝑔𝑔𝑧𝑧 = 1 − Pry,z←ℤ𝑞𝑞 𝐴𝐴 𝑔𝑔𝑦𝑦,𝑔𝑔𝑧𝑧 = 1

=
1
2
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El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption 
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is  CPA-Secure.
Proof: We just showed that  

Pr PubKA,�Π
eav n = 1 =

1
2

Therefore, it suffices to show that 
Pr PubKA,Π

eav n = 1 − Pr PubKA,�Π
eav n = 1 ≤ 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧(𝑛𝑛)

This, will follow from DDH assumption.
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El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption scheme 
(above) then if DDH is hard relative to 𝒢𝒢 then Π is  CPA-Secure.
Proof: We can build 𝐵𝐵 𝑔𝑔𝑥𝑥,𝑔𝑔𝑦𝑦,𝑍𝑍 to break DDH assumption if Π is not CPA-Secure. 
Simulate eavesdropping attacker A 
1. Send attacker public key pk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, ℎ = 𝑔𝑔𝑥𝑥
2. Receive m0,m1 from A. 
3. Send A the ciphertext 𝑔𝑔𝑦𝑦,𝑚𝑚𝑏𝑏 � 𝑍𝑍 . 
4. Output 1 if and only if attacker outputs b’=b.

Pr 𝐵𝐵 𝑔𝑔𝑥𝑥,𝑔𝑔𝑦𝑦,𝑍𝑍 = 1�𝑍𝑍 = 𝑔𝑔𝑥𝑥𝑥𝑥 − Pr 𝐵𝐵 𝑔𝑔𝑥𝑥,𝑔𝑔𝑦𝑦,𝑍𝑍 = 1�𝑍𝑍 = 𝑔𝑔𝑧𝑧
= Pr PubKA,Π

eav n = 1 − Pr PubKA,�Π
eav n = 1

= Pr PubKA,Π
eav n = 1 − �1

2
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El-Gamal Encryption

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞 and ℎ = 𝑔𝑔𝑥𝑥 ,
• Decsk(𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2 ) = 𝑐𝑐2𝑐𝑐1−𝑥𝑥

Fact: El-Gamal Encryption is malleable.
c = Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦

c′ = Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦 , 2 � 𝑚𝑚 � ℎ𝑦𝑦
Decsk(𝑐𝑐′) = 2 � 𝑚𝑚 � ℎ𝑦𝑦 � 𝑔𝑔−𝑥𝑥𝑥𝑥 = 2𝑚𝑚

Hint: This observation may be relevant for homework 4.
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Key Encapsulation Mechanism (KEM)

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Input: security parameter, random bits R
• Output: Symmetric key k ∈ 0,1 ℓ 𝑛𝑛 and a ciphertext c

• Decapssk(𝑐𝑐) (Deterministic algorithm)
• Input: Secret key sk ∈ 𝒦𝒦 and a ciphertex c
• Output: a symmetric key 0,1 ℓ 𝑛𝑛 or ⊥ (fail)

• Invariant: Decapssk(c)=k whenever (c,k) = Encapspk(1𝑛𝑛,𝑅𝑅)
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KEM CCA-Security (KEMA,Π
cca n )
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𝒄𝒄𝟏𝟏 ≠ 𝒄𝒄

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄,𝒌𝒌𝟎𝟎 = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 .
𝒌𝒌𝟏𝟏 ⟵ 𝟎𝟎,𝟏𝟏 𝒏𝒏

b’

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝒄𝒄𝟏𝟏

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr KEMA,Π

cca = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

…

𝒄𝒄𝟐𝟐 ≠ 𝒄𝒄
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄𝟐𝟐

𝒑𝒑𝒑𝒑, 𝒄𝒄,𝒌𝒌𝒌𝒌



KEM from RSA and El-Gamal

• CCA-Secure KEM from RSA in Random Oracle Model

• El-Gamal also yields CCA-Secure KEM in Random Oracle Model

• El-Gamal also yields a CPA-Secure KEM in standard model
• Disadvantage: weaker security notion for KEM

18



CCA-Secure Variant in Random Oracle Model

• Key Generation (Gen(1𝑛𝑛)): 
1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and a generator g such 

that < g >= 𝔾𝔾.
2. Choose a random x ∈ ℤ𝑞𝑞 and set ℎ = 𝑔𝑔𝑥𝑥
3. Public Key: pk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, ℎ
4. Private Key: sk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, 𝑥𝑥

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦, 𝑐𝑐′,𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 where

𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 ℎ𝑦𝑦 (KEM)
and 

𝑐𝑐′ = EncKE
′ 𝑚𝑚
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CCA-Secure Variant in Random Oracle Model

Public Key: pk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, ℎ
Private Key: sk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, 𝑥𝑥

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦 , 𝑐𝑐′,𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝑐𝑐′ = EncKE

′ 𝑚𝑚
• Decsk( 𝑐𝑐, 𝑐𝑐′, 𝑡𝑡 )
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝑐𝑐𝑥𝑥

2. If VrfyKM 𝑐𝑐′, 𝑡𝑡 ≠ 1 or 𝑐𝑐 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
′ 𝑐𝑐′, 𝑡𝑡
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CCA-Secure Variant in Random Oracle Model

Theorem: If EncKE
′ is CPA-secure, MacKM is a strong MAC and a problem 

called gap-CDH is hard then this a CCA-secure public key encryption 
scheme in the random oracle model.

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦 , 𝑐𝑐′, MacKM 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝑐𝑐′ = EncKE

′ 𝑚𝑚
• Decsk( 𝑐𝑐, 𝑐𝑐′, 𝑡𝑡 )
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝑐𝑐𝑥𝑥

2. If VrfyKM 𝑐𝑐′, 𝑡𝑡 ≠ 1 or 𝑐𝑐 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
′ 𝑐𝑐′, 𝑡𝑡

27



CCA-Secure Variant in Random Oracle Model

Remark: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2 
standard for public-key encryption.
• Diffie-Hellman Integrated Encryption Scheme (DHIES)
• Elliptic Curve Integrated Encryption Scheme (ECIES)
• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦 , 𝑐𝑐′, MacKM 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝑐𝑐′ = EncKE

′ 𝑚𝑚
• Decsk( 𝑐𝑐, 𝑐𝑐′, 𝑡𝑡 )
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝑐𝑐𝑥𝑥

2. If VrfyKM 𝑐𝑐′, 𝑡𝑡 ≠ 1 or 𝑐𝑐 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
′ 𝑐𝑐′, 𝑡𝑡
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Week 13: Topic 2: More RSA 
Attacks + Fixes
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Recap

• CPA/CCA Security for Public Key Crypto
• Key Encapsulation Mechanism
• El-Gamal
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Recap

• Plain RSA
• Public Key (pk): N = pq, e  such that GCD e,𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for  distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁

𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎 = 𝒎𝒎𝒆𝒆 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵
𝐃𝐃𝐃𝐃𝐜𝐜𝒔𝒔𝒌𝒌 𝒄𝒄 = 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵

• Decryption Works because
𝑐𝑐𝑑𝑑mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ]mod N = 𝑚𝑚 mod N
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Recap RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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(Review) Attacks on Plain RSA

• We have not introduced security models like CPA-Security or CCA-security 
for Public Key Cryptosystems

• However, notice that (Plain) RSA Encryption is stateless and deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• Plain RSA is also highly vulnerable to chosen-ciphertext attacks
• Attacker intercepts ciphertext c of secret message m
• Attacker generates ciphertext c’ for secret message 2m
• Attacker asks for decryption of c’ to obtain 2m
• Divide by 2 to recover original message m
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(Review) More Plain RSA Attacks 

• Encrypted messages with low entropy are vulnerable to a brute-force 
attack. 

• If m < B then attacker can recover m after at most B queries to encryption 
oracle (using public key)

• In fact, we saw an attack that runs in time 𝐵𝐵
1
2+𝜀𝜀

• Coppersmith Attacks
• Recover partially known message m from ciphertext (when e is small)
• Factor N=pq when we have good estimate �𝑝𝑝 ≈ 𝑝𝑝
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More Attacks: Encrypting Related Messages

• Sender encrypts m and 𝑚𝑚 + 𝛿𝛿, where offset 𝛿𝛿 is known to attacker

• Attacker intercepts 
𝑐𝑐1 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 = 𝑚𝑚𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

and 
𝑐𝑐2 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 + 𝛿𝛿 = 𝑚𝑚 + 𝛿𝛿 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Attacker defines polynomials 
𝑓𝑓1 𝑥𝑥 = 𝑥𝑥𝑒𝑒 − 𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

and 
𝑓𝑓2 𝑥𝑥 = 𝑥𝑥 + 𝛿𝛿 𝑒𝑒 − 𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

35



More Attacks: Encrypting Related Messages

𝑐𝑐1 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 = 𝑚𝑚𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
𝑐𝑐2 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 + 𝛿𝛿 = 𝑚𝑚 + 𝛿𝛿 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Attacker defines polynomials 
𝑓𝑓1 𝑥𝑥 = 𝑥𝑥𝑒𝑒 − 𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

and 
𝑓𝑓2 𝑥𝑥 = 𝑥𝑥 + 𝛿𝛿 𝑒𝑒 − 𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Both polynomials have a root at x=m, thus (x-m) is a factor of both 
polynomials

• The GCD operation can be extended to operate over polynomials 
• GCD(𝑓𝑓1 𝑥𝑥 , 𝑓𝑓2 𝑥𝑥 ) reveals the factor (x-m), and hence the message m
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Sending the Same Message to Multiple 
Receivers
• Homework 4 Bonus Question

• e=3
• c1= [𝑚𝑚3 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁1]
• c2= [𝑚𝑚3 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2]
• c2= [𝑚𝑚3 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁3]

• Attacker receives all (e=3) ciphexts (sent to Alice, Bob and Jane) and can recover 
m.

• Homework 4 Hint: The solution involves the Chinese Remainder Theorem
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Apply GCD to Pairs of RSA Moduli?

• Fact: If we pick two random RSA moduli 𝑁𝑁1 and 𝑁𝑁2 then except with 
negligible probability gcd(𝑁𝑁1,𝑁𝑁2)= 1

• In theory the attack shouldn’t work, but…

• In practice, many people generated RSA moduli using weak 
pseudorandom number generators.

• .5% of TLS hosts
• .03% of SSH hosts

• See https://factorable.net
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Dependent Keys Part 1

39

• Suppose an organization generates N=pq and a pair (ei,di) for each 
employee I subject to the constraints eidi=1 mod 𝜙𝜙 𝑁𝑁 .

• Question: Is this secure?

• Answer: No, given eidi employee i can factor N (and then recover 
everyone else's secret key).

• See Theorem 8.50 in the textbook  



Dependent Keys Part 2
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• Suppose an organization generates N=pq and a pair (ei,di) for each 
employee i subject to the constraints eidi=1 mod 𝜙𝜙 𝑁𝑁 .

• Suppose that each employee is trusted (so it is ok if employee i factors 
N)

• Suppose that a message m is encrypted and sent to employee 1 and 2.
• Attacker intercepts c1= [𝑚𝑚𝑒𝑒1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁] and c2= [𝑚𝑚𝑒𝑒2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2]



Dependent Keys Part 2
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• Suppose an organization generates N=pq and a pair (ei,di) for each 
employee i subject to the constraints eidi=1 mod 𝜙𝜙 𝑁𝑁 .

• Suppose that a message m is encrypted and sent to employee 1 and 2.
• Attacker intercepts c1= [𝑚𝑚𝑒𝑒1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁] and c2= [𝑚𝑚𝑒𝑒2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2]
• If gcd(e1,e2)=1 (which is reasonably likely) then attacker can run 

extended GCD algorithm to find X,Y such that Xe1+Ye2=1.
[c1

𝑋𝑋𝑐𝑐2
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2] = [𝑚𝑚𝑋𝑋𝑒𝑒1𝑚𝑚𝑌𝑌𝑒𝑒2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2] = [𝑚𝑚𝑋𝑋𝑋𝑋1+𝑌𝑌𝑒𝑒2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁2] = 𝑚𝑚



RSA-OAEP 
(Optimal Asymmetric Encryption Padding)
• 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 (𝑚𝑚; 𝑟𝑟) = [ 𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑘𝑘1 ∥ 𝑟𝑟)
• 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝑐𝑐 =
• �𝑚𝑚 ← [ 𝑐𝑐 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• If �𝑚𝑚 > 𝑛𝑛 return fail
• 𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1( �𝑚𝑚)
• If 𝑧𝑧 ≠ 0𝑘𝑘1 then output fail
• Otherwise output m
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RSA-OAEP 
(Optimal Asymmetric Encryption Padding)
Theorem: If we model G and H as 
Random oracles then RSA-OAEP is
a CCA-Secure public key encryption scheme.

Bonus: One of the fastest in practice! 
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PKCS #1 v2.0

• Implementation of RSA-OAEP

• James Manger found a chosen-ciphertext attack.

• What gives?
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PKCS #1 v2.0 (Bad Implementation)

• 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 (𝑚𝑚; 𝑟𝑟) = [ 𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑘𝑘1 ∥ 𝑟𝑟)
• 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝑐𝑐 =
• �𝑚𝑚 ← [ 𝑐𝑐 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• If �𝒎𝒎 > 𝒏𝒏 return Error Message 1
• 𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1( �𝑚𝑚)
• If 𝒛𝒛 ≠ 𝟎𝟎𝒌𝒌𝟏𝟏 then output Error Message 2
• Otherwise output 
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PKCS #1 v2.0 (Attack)

• Manger’s CCA-Attack recovers secret key

• Requires 𝑵𝑵 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.

• Attack also works as a side channel attack
• Even if error messages are the same the time to respond could be different in 

each case.

• Fix: Implementation should return same error message and should 
make sure that the time to return each error is the same.
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Week 13: Topic 3: Digital 
Signatures (Part 1)
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Recap

• CPA/CCA Security for Public Key Crypto
• Key Encapsulation Mechanism
• El-Gamal/RSA-OAEP
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What Does It Mean to “Secure Information” 

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

• Integrity (Authenticity)
• The message was actually sent by the alleged sender

Bob
Alice

I love you 
Alice… - Bob

We need to 
break up -Bob
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Encryption/MACs/Signatures

• (Public/Private Key) Encryption: Focus on Secrecy 
• But does not promise integrity

• MACs/Digital Signatures: Focus on Integrity
• But does not promise secrecy

• Digital Signatures
• Public key analogue of MAC
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Digital Signature: Application

• Verify updates to software package

• Vendor generates (sk,pk) for Digital Signature scheme and packages 
pk in the original software bundle

• An update m should be signed by vendor using secret key sk

• Security: Malicious party should not be able to generate signature for 
new update m’
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Digital Signature vs MACs

• Application: Validate updates to software

• Problem can be addressed by MACs, but there are several problems

• Key Explosion: Vendor must sign update using every individual key
• Thought Question: Why not use a shared Private key?

• Non-Transferable: If Alice validates an update from vendor she can 
not convince Bob that the update is valid 

• Bob needs to receive MAC directly from vendor
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Digital Signatures vs MACs

• Publicly Verifiable

• Transferable
• Alice can forward digital signature to Bob, who is convinced (both Alice and Bob have 

the public key of the vendor)

• Non-repudiation
• Can “certify” a particular message came from sender

• MACs do not satisfy non-repudiation
• Suppose Alice reveals a shared key KAB along with a valid tag for a message m to a 

judge. 
• The judge should not be convinced the message was MACed by Bob. Why not?
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Digital Signature Scheme

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• σ ← Signsk(𝑚𝑚,𝑅𝑅) (Signing algorithm)
• Input: Secret key sk message m, random bits R
• Output: signature σ

• b ≔ Vrfypk(𝑚𝑚,σ) (Verification algorithm --- Deterministic)
• Input: Public key pk, message m and a signature σ
• Output: 1 (Valid) or 0 (Invalid)

• Correctness: Vrfypk(m, Signsk(𝑚𝑚,𝑅𝑅) )=1   (except with negligible probability)

Alice must run key generation 
algorithm in advance an publishes the 

public key: pk

Assumption: Adversary only gets to 
see pk (not sk)
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Signature Experiment (Sig − forgeA,Π n )

56

(pk,sk) = Gen(.)

σ ,𝑚𝑚 ∉ 𝔔𝔔 = 𝑚𝑚1,𝑚𝑚2 …

m1

σ𝟐𝟐 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟐𝟐

m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Sig − forgeA,Π n = 1 ≤ 𝜇𝜇(𝑛𝑛)

Public Key: pk

σ𝟏𝟏 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟏𝟏

Sig − forgeA,Π n = Vrfypk(𝑚𝑚,σ)



Signature Experiment (Sig − forgeA,Π n )
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Random bit b
(pk,sk) = Gen(.)

σ ,𝑚𝑚 ∉ 𝑚𝑚1,𝑚𝑚2 …

m1

σ𝟐𝟐 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟐𝟐

m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Sig − forgeA,Π n = 1 ≤ 𝜇𝜇(𝑛𝑛)

Public Key: pk

σ𝟏𝟏 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝒔𝒔𝒌𝒌 𝒎𝒎𝟏𝟏

Sig − forgeA,Π n = Vrfypk(𝑚𝑚,σ)

Formally, let Π = Gen, Sign, Vrfy denote the signature scheme,
call the experiment Sig − forgeA,Π n

We say that Π 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
or just 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 if for all PPT adversaries A, there 𝑖𝑖𝑖𝑖 𝑎𝑎 negligible function 𝜇𝜇 such that 

Pr[Sig − forgeA,Π 𝑛𝑛 = 1] ≤ 𝜇𝜇(𝑛𝑛)



Existential Unforgeability

• Limitation: Does not prevent replay attacks
• σ ← Signsk("𝑃𝑃𝑃𝑃𝑃𝑃 𝐵𝐵𝐵𝐵𝐵𝐵 $50",𝑅𝑅)
• If this is a problem then you can include timestamp in signature

• Does rule out the possibility of modifying a signature as in Homework 3
• Homework 3: Plain RSA signatures are malleable
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Hash and Sign Paradigm

• Public-Key vs Private Key Encryption
• Private Key Encryption is much more efficient (computationally)

• Similarly, natural signature schemes (e.g., RSA signatures) are much 
less efficient than MACs

• For long messages we can achieve same (amortized) efficiency
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Hash and Sign Paradigm

• Suppose we have a Digital Signature Scheme for messages of length 
ℓ 𝑛𝑛 and we want to sign a longer message 𝑚𝑚 ∈ 0,1 ∗.

• Attempt 1: 
Signsk∗ 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘,𝑅𝑅1, … ,𝑅𝑅𝑅𝑅 =
Signsk∗ 𝑚𝑚1,𝑅𝑅1 , … , Signsk∗ 𝑚𝑚𝑘𝑘,𝑅𝑅𝑘𝑘

• Problem?
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Hash and Sign Paradigm

• Suppose we have a Digital Signature Scheme for messages of length 
ℓ 𝑛𝑛 and we want to sign a longer message 𝑚𝑚 ∈ 0,1 ∗.

Sign 𝑠𝑠𝑠𝑠,𝑠𝑠
∗ 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘,𝑅𝑅 = Signsk∗ 𝐻𝐻 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑚𝑚 ,𝑅𝑅

Vrfy 𝑠𝑠𝑠𝑠,𝑠𝑠
∗ 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑚𝑚,𝜎𝜎 = Vrfysk 𝐻𝐻𝑠𝑠 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑚𝑚 ,𝜎𝜎

• Secure?
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Hash and Sign Paradigm

• Suppose we have a Digital Signature Scheme for messages of length 
ℓ 𝑛𝑛 and we want to sign a longer message 𝑚𝑚 ∈ 0,1 ∗.

Sign 𝑠𝑠𝑠𝑠,𝑠𝑠
∗ 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘,𝑅𝑅 = Signsk∗ 𝐻𝐻𝑠𝑠 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑚𝑚 ,𝑅𝑅

Vrfy 𝑠𝑠𝑠𝑠,𝑠𝑠
∗ 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑚𝑚,𝜎𝜎 = Vrfysk 𝐻𝐻𝑠𝑠 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑚𝑚 ,𝜎𝜎

• Secure?

Theorem 12.4. If Π = Gen, Sign, Vrfy is a secure signature scheme 
for messages of length ℓ 𝑛𝑛 and Π𝐻𝐻 is collision resistant then the 
above construction is a  secure signature scheme for arbitrary length 
messages.
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Hash and Sign Paradigm

• Suppose we have a Digital Signature Scheme for messages of length 
ℓ 𝑛𝑛 and we want to sign a longer message 𝑚𝑚 ∈ 0,1 ∗.

Sign 𝑠𝑠𝑠𝑠,𝑠𝑠
∗ 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘,𝑅𝑅 = Signsk 𝐻𝐻𝑠𝑠 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘 ,𝑅𝑅

Vrfy 𝑠𝑠𝑠𝑠,𝑠𝑠
∗ 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘,𝜎𝜎 = Vrfysk 𝐻𝐻𝑠𝑠 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘 ,𝜎𝜎

Theorem 12.4. If Π = Gen, Sign, Vrfy is a secure signature scheme 
for messages of length ℓ 𝑛𝑛 and Π𝐻𝐻 is collision resistant then the 
above construction is a  secure signature scheme for arbitrary length 
messages.
Proof Sketch: If attacker wins security game with Sign 𝑠𝑠𝑠𝑠,𝑠𝑠

∗ then he 
outputs message 𝑚𝑚 ∉ 𝔔𝔔 such that Vrfy 𝑝𝑝𝑘𝑘,𝑠𝑠

∗ (𝑚𝑚,σ)
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Hash and Sign Paradigm

• Suppose we have a Digital Signature Scheme for messages of length ℓ 𝑛𝑛 and we want to 
sign a longer message 𝑚𝑚 ∈ 0,1 ∗.

Sign 𝑠𝑠𝑠𝑠,𝑠𝑠
∗ 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑘𝑘,𝑅𝑅 = Signsk 𝐻𝐻𝑠𝑠 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑚𝑚 ,𝑅𝑅

Vrfy 𝑠𝑠𝑠𝑠,𝑠𝑠
∗ 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑚𝑚,𝜎𝜎 = Vrfysk 𝐻𝐻𝑠𝑠 𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑚𝑚 ,𝜎𝜎

Theorem 12.4. If Π = Gen, Sign, Vrfy is a secure signature scheme for messages of 
length ℓ 𝑛𝑛 and Π𝐻𝐻 is collision resistant then the above construction is a  secure signature 
scheme for arbitrary length messages.
Proof Sketch: If attacker wins security game with Sign 𝑠𝑠𝑠𝑠,𝑠𝑠

∗ then he outputs message 𝑚𝑚 ∉
𝔔𝔔 such that Vrfy 𝑝𝑝𝑘𝑘,𝑠𝑠

∗ (𝑚𝑚,σ)
• Case 1: H(m)=H(m’) for some 𝑚𝑚′ ∉ 𝔔𝔔
break collision-resistance
• Case 2: H(m)≠ H(m’) for all 𝑚𝑚𝑚 ∉ 𝔔𝔔
(break security of underlying signature scheme Π)
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One-Time Signature Scheme

• Weak notion of one-time secure signature schemes
• Attacker makes one query to oracle Signsk(.) and then attempts to output 

forged signature for m’
• If attacker sees two different signatures then guarantees break down

• Achievable from Hash Functions 
• No number theory!
• No Random Oracles!
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Lamport’s Signature Scheme 

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑝𝑝𝑘𝑘 =
𝑦𝑦1,0 𝑦𝑦2,0 𝑦𝑦3,0
𝑦𝑦1,1 𝑦𝑦2,1 𝑦𝑦3,1

𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ 0,1 𝑛𝑛 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖,𝑗𝑗
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Lamport’s Signature Scheme 

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑝𝑝𝑘𝑘 =
𝑦𝑦1,0 𝑦𝑦2,0 𝑦𝑦3,0
𝑦𝑦1,1 𝑦𝑦2,1 𝑦𝑦3,1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 011 = 𝑥𝑥1,0, 𝑥𝑥2,1, 𝑥𝑥3,1
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Lamport’s Signature Scheme 

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑝𝑝𝑘𝑘 =
𝑦𝑦1,0 𝑦𝑦2,0 𝑦𝑦3,0
𝑦𝑦1,1 𝑦𝑦2,1 𝑦𝑦3,1

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 011 = 𝑥𝑥1,0, 𝑥𝑥2,1, 𝑥𝑥3,1

Vrfy𝑝𝑝𝑝𝑝 011, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = �1 if 𝐻𝐻𝑆𝑆 𝑥𝑥1 = 𝑦𝑦1,0 ∧ 𝐻𝐻𝑆𝑆 𝑥𝑥2 = 𝑦𝑦2,1 ∧ 𝐻𝐻𝑆𝑆 𝑥𝑥3 = 𝑦𝑦3,1
0 otherwise
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Lamport’s Signature Scheme 

Theorem 12.16: Lamport’s Signature Scheme is a secure one-time signature scheme 
(assuming H is a one-way function).

Proof Sketch: Signing a fresh message requires inverting 𝐻𝐻 𝑥𝑥𝑖𝑖,𝑗𝑗 for some fresh i,j.

Remark: Attacker can break scheme if he can request two signatures.

How?
Request signatures of both 0n and 1n.
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Lamport’s Signature Scheme 

Remark: Attacker can break scheme if he can request two signatures.

How?
Request signatures of both 0n and 1n.

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 000 = 𝑥𝑥1,0, 𝑥𝑥2,0, 𝑥𝑥3,0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 111 = 𝑥𝑥1,1, 𝑥𝑥2,1, 𝑥𝑥3,1
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Secure Signature Scheme from OWFs

Theorem 12.22: secure/stateless signature scheme from collision-resistant 
hash functions.
• Collision Resistant Hash Functions do imply OWFs exist

Remark: Possible to construct signature scheme Π which is existentially 
unforgeable under an adaptive chosen message attacks using the minimal 
assumption that one-way functions exist.
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