Course Business

* Homework 4 Due Thursday in Class

e Bonus Problem (10 Points)
e Second bonus problem (5 pts) is easiest to solve with Mathematica
e https://sandbox.open.wolframcloud.com



https://sandbox.open.wolframcloud.com/

Cryptography
CS 555

Week 13:

e El Gamal

e RSA Attacks and Fixes

e Digital Signatures

Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

Fall 2017



Week 13 Topic 1: El-Gamal
Encryption



A Quick Remark about Groups

* Let G be a group with order m = |G| with a binary operation o (over
G) and let g,h € G be given and consider sampling k € G uniformly at
random then we have

1
Pricglk = g] — E
Question: What is Pry_¢clk o h = g| = %?

Answer:

1
Pricglkoh=g] =Prr.glk =goh™1] = —



El-Gamal Encryption

e Key Generation (Gen(1")):

1. Run G(1™) to obtain a cyclic group G of order q (with ||g|| = n) and a
generator g such that < g >= G.

2. Choosearandomx € Z, and set h = g*
3. PublicKey: pk = (G, q, g, h)
4. Private Key: sk = (G, q, g, x)
* Enc, (m) = (g”,m - hY) forarandomy € Z,

* Decy(c = (c1,¢3)) = cpc”



El-Gamal Encryption

* Enc, (m) = (g”,m - h”) forarandomy € Z,

° Decsk(c — (Cl' CZ)) — C2C1—x

Dec,(g¥,m-hY)=m-hY(gY)™*
=m-hY(g¥)™*
=m-(g*)’(g7)™"
=m- g g~y
=m



El-Gamal Encryption

* Enc, (m) = (g”,m - hY) forarandomy € Z,

* Decy(c = (c1,¢2)) = cpe1”

Theorem 11.18: Let I1 = (Gen, Enc, Dec) be the EI-Gamal Encryption
scheme (above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: Recall that CPA-security and eavesdropping security are
equivalent for public key crypto. Therefore, it suffices to show that for
all PPT A there is a negligible function negl such that

Pr[PubKeaV(n) = 1] + negl(n)



Favesdropping Security (PubK 7 (n))

Public Key: pk
mop , My

¢ = Ency(my, ) ;

b)

[ ]
Random bitb 7+ o
k.sk) = G . B
(pk,sk) =Gen(.) - &
- Ju;/ 5N

VPPT A Ju (negligiblle) S. t
Pr[PubK§ (n) = 1| < >+ 1)
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El-Gamal Encryption

Theorem 11.18: Let 1 = (Gen, Enc, Dec) be the EI-Gamal Encryption
scheme (above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: First introduce an “encryption scheme’ I1 in which Enc k(m) =
(g”,m - g?) forrandomy, z € Z, (there is actually no way to do
decryption, but the experiment PubKeaV(n) is still well defined).

Claim: Pr[PubKeaV(n) = 1| =



El-Gamal Encryption

Theorem 11.18: Let II = (Gen, Enc, Dec) be the EI-Gamal Encryption scheme (above) then if DDH
is hard relative to G then [T is CPA-Secure.

Proof: First introduce an “encryption scheme’ IT in which Enc_, (m) = I({gy‘,,m - g%) forrandomy, z €
Zq (there is actually no way to do decryption, but the experingent Pub Aaﬁ (n) is still well defined).

Al
Proof: (using Lemma 11.15)

Claim: Pr[PubKeal’(n) = 1] :%

1 1
Pr[PubKH(n) = 1| = EPr[PubKZ’%’ (n) =1lb=1| + 5(1 — Pr[PubK{{ (n) = 1]|b = 0])
1 1
=5+3 (Pry,ZeZq [Ag?,m - g7)) = 1] = Pry; 4, [A(g”, 9%)) = 1])
1
2



El-Gamal Encryption

Theorem 11.18: Let 1 = (Gen, Enc, Dec) be the EI-Gamal Encryption
scheme (above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: We just showed that
Pr[PubKF(n) = 1] =

Therefore, it suffices to show that
\Pr[PubKeaV(n) = 1] — Pr[PubK{{ (n) = 1]| < negl(n)

This, will follow from DDH assumption.



El-Gamal Encryption

Theorem 11.18: Let II = (Gen, Enc, Dec) be the El-Gamal Encryption scheme
(above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: We can build B(g*, g”, Z) to break DDH assumption if IT is not CPA-Secure.
Simulate eavesdropping attacker A

1. Send attacker public key pk = (G, g, g, h = g*)
2. Receive my,,m, from A.
3. Send A the ciphertext (g¥,my, - Z).
4. Output 1 if and only if attacker outputs b’=b.
|Pr|B(g*, g7,2) = 1|Z = g*| - Pr[B(g%, 97, 2) = 1|Z = g7]|
= |Pr[PubK3%{ (n) = 1] — Pr[PubK{y(n) = 1||
= |Pr[PubK§2¥(n) = 1] — 1/,



El-Gamal Encryption

* Enc  (m) = (g¥,m - h”) forarandomy € Z; and h = g7,

° Decsk(c — (Cl' CZ)) — C2C1—x

Fact: El-Gamal Encryption is malleable.
c = Enc_(m) = (g”,m-h”)
c = Encpllz(m) =(gY,2-m-hY)
Dec, (ch=2-m-hY g™ =2m

Hint: This observation may be relevant for homework 4.



Key Encapsulation Mechanism (KEM)

* Three Algorithms
e Gen(1", R) (Key-generation algorithm)
* |nput: Random Bits R
e Output: (pk,sk) € I
* Encaps (1", R)
e Input: security parameter, random bits R
* Output: Symmetric key k € {0,1}Y™ and a ciphertext c
e Decaps, (c) (Deterministic algorithm)
e Input: Secret key sk € K and a ciphertex c
e Output: a symmetric key{0,1}*™ or 1 (fail)

* Invariant: Decaps,,(c)=k whenever (c,k) = Encapspk(ln, R)



KEM CCA-Security (KEMz(n))

(pk,c, kb)

C1:/:C

Decapsg(cy)

Cy FC

Decapsg;(c;) ;

Random bitb 7~
VPPT A Ju (negllglble) s.t  (pksk)=Gen(.) |

Pr[KEMSSE = 1] < + u(n)  (cky) = Encapsy()
k, —{0,1}",




KEM from RSA and EI-Gamal

e CCA-Secure KEM from RSA in Random Oracle Model
e El-Gamal also yields CCA-Secure KEM in Random Oracle Model

e El-Gamal also yields a CPA-Secure KEM in standard model
e Disadvantage: weaker security notion for KEM



CCA-Secure Variant in Random Oracle Model

e Key Generation (Gen(1™)):

1. Run G(1™) to obtain a cyclic group G of order g (with ||g]|| = n) and a generator g such
that < g >= G.

2. Choose arandomx € Z, and set h = g*
3. PublicKey: pk = (G, q, g, h)
4. Private Key: sk = (G, q, g, x)

* Enc  (m) = (g7, c’,MacKM(c’)) for arandomy € Z, where

Kg||Ky = H(RY) (KEM)

and
¢’ = Encg_ (m)



CCA-Secure Variant in Random Oracle Model

Public Key: pk = (G, g, g, h)
Private Key: sk = (G, g, g, x)

* Enc, (m) = (g7, c’,MacKM(c’)> for arandomy € Z, and K¢ ||Ky =
H(hY) and ¢" = Encg, (m)

* Dec.({c,c’, t))
1. Kg||Ky = H(c¥)
2. If Vrfyg, (c',t) # 1 orc & Goutput L; otherwise output Decl’<E (c',t)



CCA-Secure Variant in Random Oracle Model

Theorem: If Encl’<E is CPA-secure, Macg  is a strong MAC and a problem

called gap-CDH is hard then this a CCA-secure public key encryption
scheme in the random oracle model.

* Enc, (m) = (gy, ¢’,Macg,, (c’)) forarandomy € Z, and KEHKM =
H(hY) and ¢" = Encg, (m)

* Dec,. ({c,c’, t))
1. Kg||Ky = H(c¥)
2. If Vrfyg, (c',t) # 1 or c & G output 1; otherwise output DeCI’<E (c',t)



CCA-Secure Variant in Random Oracle Model

Remark: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2
standard for public-key encryption.

* Diffie-Hellman Integrated Encryption Scheme (DHIES)
e Elliptic Curve Integrated Encryption Scheme (ECIES)

* Enc , (m) = (gy, c', Macg (c’)) forarandomy € Z, and KEHKM =
H(h”) and ¢" = Encg, (m

* Dec.({c,c’, t))
1. Kg||Ky = H(c*)
2. If Vrfyg, (c',t) # 1 orc & G output L; otherwise output DeCI'<E (c',t)



Week 13: Topic 2: More RSA
Attacks + Fixes



Recap

e CPA/CCA Security for Public Key Crypto
* Key Encapsulation Mechanism
e El-Gamal



Recap

* Plain RSA

» Public Key (pk): N = pq, e such that GCD(e, ¢p(N)) = 1
e (N) = (p —1)(q — 1) for distinct primes p and g

 Secret Key (sk): N, d such that ed=1 mod ¢(N)

Enc,,(m) = m® mod N
Dec.(c) = c*mod N

e Decryption Works because
[c®*mod N] = [m®@mod N] = [mléd mod #NMImed N| = [m mod N]



Recap RSA-Assumption

RSA-Experiment: RSA-INV,

1.

Run KeyGeneration(1") to obtain (N,e,d)

2. Pick uniformy € Z:
3. )
4. Attacker wins (RSA-INV, =1) if x® = y mod N

Attacker A is given N, e, y and outputs x € Z~

VPPT A Ju (negligible) s.t Pr[RSA-INVA = 1] < u(n)



(Review) Attacks on Plain RSA

* We have not introduced security models like CPA-Security or CCA-security
for Public Key Cryptosystems

 However, notice that (Plain) RSA Encryption is stateless and deterministic.
—Plain RSA is not secure against chosen-plaintext attacks

* Plain RSA is also highly vulnerable to chosen-ciphertext attacks
o Attacker intercepts ciphertext c of secret message m
o Attacker generates ciphertext ¢’ for secret message 2m
o Attacker asks for decryption of ¢’ to obtain 2m
e Divide by 2 to recover original message m



(Review) More Plain RSA Attacks

* Encrypted messages with low entropy are vulnerable to a brute-force
attack.

e |f m < B then attacker can recover m after at most B queries to encryption
oracle (using public key)

1
e In fact, we saw an attack that runs in time Bz*¢

e Coppersmith Attacks
e Recover partially known message m from ciphertext (when e is small)
e Factor N=pg when we have good estimatep = p



More Attacks: Encrypting Related Messages

e Sender encrypts m and m + 9, where offset 6 is known to attacker

e Attacker intercepts
¢; = Enc,,(m) = m® mod N
and
¢, = Enc,y(m + 6) = (m + 6)° mod N
e Attacker defines polynomials
f1(x) =x®—c,mod N

and
fo(x) =(x+68)°—c,mod N



More Attacks: Encrypting Related Messages

¢; = Enc,,(m) = m® mod N
¢, = Enc,y(m + 6) = (m + 6)° mod N
e Attacker defines polynomials
f1(x) =x®—c,mod N

and
fr(x) =(x+68)°—c,mod N

e Both polynomials have a root at x=m, thus (x-m) is a factor of both
polynomials

* The GCD operation can be extended to operate over polynomials ©
* GCD(f,(x), f,(x)) reveals the factor (x-m), and hence the message m



Sending the Same Message to Multiple
Recelvers

* Homework 4 Bonus Question
* e=3
e ¢,= [m3 mod N/]
e ¢,= [m> mod N,]
e ¢,= [m3 mod N,]

e Attacker receives all (e=3) ciphexts (sent to Alice, Bob and Jane) and can recover
m.

e Homework 4 Hint: The solution involves the Chinese Remainder Theorem



Apply GCD to Pairs of RSA Moduli?

* Fact: If we pick two random RSA moduli N, and N, then except with
negligible probability gcd(N,, N,)=1

* In theory the attack shouldn’t work, but...

* In practice, many people generated RSA moduli using weak
pseudorandom number generators.

* 5% of TLS hosts
* .03% of SSH hosts

e See https://factorable.net



https://factorable.net/

Dependent Keys Part 1

e Suppose an organization generates N=pq and a pair (e, d.) for each
employee | subject to the constraints e,d.=1 mod ¢(N).

e Question: Is this secure?

* Answer: No, given e;d,employee i can factor N (and then recover
everyone else's secret key).

e See Theorem 8.50 in the textbook



Dependent Keys Part 2

e Suppose an organization generates N=pq and a pair (e, d.) for each
employee i subject to the constraints e.d.=1 mod ¢(N).

e Suppose that each employee is trusted (so it is ok if employee i factors
N)

e Suppose that a message m is encrypted and sent to employee 1 and 2.
* Attacker intercepts ¢c,= [m® mod N] and c,= [m®2 mod N,]



Dependent Keys Part 2

e Suppose an organization generates N=pq and a pair (e, d.) for each
employee i subject to the constraints e.d.=1 mod ¢(N).

e Suppose that a message m is encrypted and sent to employee 1 and 2.
* Attacker intercepts ¢,= [m® mod N] and c,= [m®2 mod N,]

e [f gcd(e,,e,)=1 (which is reasonably likely) then attacker can run
extended GCD algorithm to find X,Y such that Xe,+Ye,=1.
[c,¥c,"mod N,] = [m*®1mY¢2mod N,] = [m%©1*Y¢2 mod N,] = m



RSA-OAEP
(Optimal Asymmetric Encryption Padding)

L n-kO-k1 Kkt . kO

. Encpk (m;r) = [(X | )’)e mod N| = 0 r
e Wherex | y « OAEP(m || 0% || 1) A4

* Decy, (c) = é}@,_ Y

e M < [(c)* mod N]J

o If ||M]| > n return fail X

em |l z || v « OAEP~1() - 'E]_b ’@
b
kO

=il

Y
X

e If z = 0% then output fail
* Otherwise output m

n-KO

f— | e



RSA-OAEP

(Optimal Asymmetric Encryption Padding)

Theorem: If we model G and H as
Random oracles then RSA-OAEP is
a CCA-Secure public key encryption scheme.

Bonus: One of the fastest in practice!

 n-kO-k1 K

kO

0

r

\+/
<@

Y

X

ot

n-KO

@

e




PKCS #1 v2.0

* Implementation of RSA-OAEP

e James Manger found a chosen-ciphertext attack.

* What gives?



PKCS #1 v2.0 (Bad Implementation)

L n-kO-k1 Kkt . kO

. Encpk (m;r) = [(X | )’)e mod N| = 0 r
e Wherex | y « OAEP(m || 0% || 1) A4

Y
* Decg, (c) = N .
e M «— [(c)dmod N] <>@
o If ||| > n return Error Message 1 X
em |l z || v « OAEP~1() - @ ’@
b
kO

=il

Y
X

e If z # 0%1 then output Error Message 2

n-KO

e Otherwise output



PKCS #1 v2.0 (Attack)

 Manger’s CCA-Attack recovers secret key
* Requires ||N|| queries to decryption oracle.

e Attack also works as a side channel attack
e Even if error messages are the same the time to respond could be different in
each case.

* Fix: Implementation should return same error message and should
make sure that the time to return each error is the same.



Week 13: Topic 3: Digital
Signatures (Part 1)




Recap

e CPA/CCA Security for Public Key Crypto
* Key Encapsulation Mechanism
e El-Gamal/RSA-OAEP



What Does It Mean to “Secure Information”

e Confidentiality (Security/Privacy)
* Only intended recipient can see the communication

* Integrity (Authenticity)
e The message was actually sent by the alleged sender

We need to

| love you
Alice... - Bob break up -Bob




Encryption/MACs/Signatures

e (Public/Private Key) Encryption: Focus on Secrecy
* But does not promise integrity

* MACs/Digital Signatures: Focus on Integrity
* But does not promise secrecy

e Digital Signatures
e Public key analogue of MAC



Digital Signature: Application
 Verify updates to software package

e Vendor generates (sk,pk) for Digital Signature scheme and packages
pk in the original software bundle

 An update m should be sighed by vendor using secret key sk

e Security: Malicious party should not be able to generate signature for
new update m’



Digital Signature vs MACs

e Application: Validate updates to software

* Problem can be addressed by MACs, but there are several problems

» Key Explosion: Vendor must sign update using every individual key
e Thought Question: Why not use a shared Private key?

 Non-Transferable: If Alice validates an update from vendor she can
not convince Bob that the update is valid

* Bob needs to receive MAC directly from vendor



Digital Signatures vs MACs

e Publicly Verifiable

e Transferable
e Alice can forward digital signature to Bob, who is convinced (both Alice and Bob have
the public key of the vendor)
* Non-repudiation
e Can “certify” a particular message came from sender

e MACs do not satisfy non-repudiation

e Suppose Alice reveals a shared key KAB along with a valid tag for a message m to a
judge.
 The judge should not be convinced the message was MACed by Bob. Why not?



Digital Signature Scheme

* Three Algorithms

* Gen(1", R) (Key-generation algorithm)
e Input: Random Bits R
e Output: (pk,sk) € K

e 0 « Sign, (m, R) (Signing algorit
e |nput: Secret key sk message m, random bitst
e Qutput: signature o

* b= Vrfy, (m, o) (Verification algorithm --- Deterministi

* Input: Public key pk, message m and a signature o .
e Output: 1 (Valid) or 0 (Invalid) Assumption: Adversary only gets to
see pk (not sk)

Alice must run key generation
algorithm in advance an publishes the
public key: pk

* Correctness: Vrfy  (m, Signg (m, R) )=1 (except with negligible probability)
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Signature Experiment (Sig — forge, ;(n))
Public Key: pk

m,

o1 = Signg(m, )

‘mz

o, = Signg(m, )

o,m&Xd ={m;,m,..}

_ Sig — forge, p(n) = Vrfy , (m, o) (pk,sk) = Gen(.) f R\

G )\ i\
NS W

VPPT A Qu (negligible) s. t
Pr [Sig — forge, n(n) = 1] < u(n) )



Signature Experiment (Sig — forge




Existential Unforgeability

 Limitation: Does not prevent replay attacks
e 0 « Sign_ ("Pay Bob $50", R)
e |f this is a problem then you can include timestamp in signature

e Does rule out the possibility of modifying a sighature as in Homework 3
e Homework 3: Plain RSA signatures are malleable



Hash and Sign Paradigm

e Public-Key vs Private Key Encryption
e Private Key Encryption is much more efficient (computationally)

e Similarly, natural signature schemes (e.g., RSA signatures) are much
less efficient than MACs

* For long messages we can achieve same (amortized) efficiency



Hash and Sign Paradigm

e Suppose we have a Digital Signature Scheme for messages of length
£(n) and we want to sign a longer message m € {0,1}".

* Attempt 1:
Signg, (m,, m,, ..., m;, R, ..., Rk) =
Signg, (my, Ry), - Slgnsk(mk’ R;)

* Problem?



Hash and Sign Paradigm

e Suppose we have a Digital Signature Scheme for messages of length
£(n) and we want to sign a longer message m € {0,1}".
Signfsk,” (m,,m,,...,m, R) = Signg (H(m,,m,, ..,mk),R)

Vrfyfsk’5> (my,m,,...,mk,o0) = Vrty, (H*(m,m,, ..., mk), g)

e Secure?



Hash and Sign Paradigm

e Suppose we have a Digital Signature Scheme for messages of length
£(n) and we want to sign a longer message m € {0,1}".

Signfské,) (my,m,, ...,m,, R) = Signg (H*(m,, m,, ..., mk), R)
Vrfyfsk’5> (my,m,,...,mk,o0) = Vrty, (H*(m,m,, ..., mk), g)
e Secure?

Theorem 12.4. If IT = (Gen, Sign, Vrfy) is a secure signature scheme
for messages of length £(n) and Il is collision resistant then the
above construction is a secure signature scheme for arbitrary length
messages.



Hash and Sign Paradigm

e Suppose we have a Digital Signature Scheme for messages of length
£(n) and we want to sign a longer message m € {0,1}".
Signfsk& (my,m,,...,my, R) = Signgy (H*(m;, m,, ..., m;.), R)
Vrfyzksk,s) (ml' my, ..., my, O-) — Vrstk(HS (ml' my, ..., mk): O-)
Theorem 12.4. If IT = (Gen, Sign, Vrfy) is a secure signature scheme

for messages of length £(n) and Il is collision resistant then the

above construction is a secure signature scheme for arbitrary length
messages.

Proof Sketch: If attacker wins security game with Sign;;. , then he
outputs message m & Q such that Vrfy ;. ., (m, o)



Hash and Sign Paradigm

e Suppose we have a Digital Signature Scheme for messages of length £(n) and we want to
sign a longer message m € {%,1}*.

Sign?skm (my,m,, ...,my, R) = Signy, (H*(m,, m,, ..., mk),R)
Vrfyzkskm (my,m,, ...,mk,a) = Vrfy, (H®*(m,, m,, ..., mk), o)

Theorem 12.4. If [ = (Gen, Sign, Vrfy) is a secure signature scheme for messages of
length fgn) and IIy is collision resistant then the above construction is a secure signature
scheme for arbitrary length messages.

Proof Sketch: If attacker wins security game with Signzkskm then he outputs message m &
Q such that Vrfy g, o (m, o)

e Case 1: H(m)=H(m’) for some m' ¢ Q

—break collision-resistance

e Case 2: H(m)# H(m’) forallm’ ¢ Q

— (break security of underlying signature scheme I1)



One-Time Signature Scheme

* Weak notion of one-time secure signature schemes

 Attacker makes one query to oracle Sign,(.) and then attempts to output
forged signature for m’

 |f attacker sees two different signatures then guarantees break down

e Achievable from Hash Functions
e No number theory!
* No Random Oracles!



Lamport’s Sighature Scheme

X1,0 X20 X3,0
sk =

X11 X21 X31

Y10 Y20 V3,0
pk = ]

Y11 Y21 Y31

x; j € {0,1}" (uniform)
yij = H(xi;)



Lamport’s Sighature Scheme

X10 X20 X3,0
sk =

X11 X21 X31

Y10 Y20 V3,0
pk = ]

Y11 Y21 Y31

Signg,(011) = (x1 0, %21, %31)



Lamport’s Signature Scheme

X1,0 X20 X3,0
sk =

X1,1 X21 X31

Y10 Y20 Y3,0]

pk = Yi1 Y21 Y31

Signg,(011) = (%1 0, %21, %31)

1 ifHS(x) = 1,0 A H® (x2) = yo10 A HS (x3) =
Vrf}’pk(Oll, (X1,X2,X3)) — {0 I Otgl?Cell?WiSi’1,o (x2) = ¥21 (x3) = ¥31

68



Lamport’s Sighature Scheme

Theorem 12.16: Lamport’s Signature Scheme is a secure one-time signature scheme
(assuming H is a one-way function).

Proof Sketch: Signing a fresh message requires inverting H(xl-,j) for some fresh i,j.

Remark: Attacker can break scheme if he can request two signatures.

How?

Request signatures of both 0" and 1".



Lamport’s Sighature Scheme

Remark: Attacker can break scheme if he can request two signatures.

How?
Request signatures of both 0" and 1".

X1,0 X20 X3,0]
X11 X21 X31

sk = |

Signg,(000) = (x1,0,%7,0,X3,0)

Signg,(111) = (x11,%51,%31)

70



Secure Signature Scheme from OWFs

Theorem 12.22: secure/stateless signature scheme from collision-resistant
hash functions.

 Collision Resistant Hash Functions do imply OWFs exist

Remark: Possible to construct signature scheme Il which is existentially
unforgeable under an adaptive chosen message attacks using the minimal
assumption that one-way functions exist.
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