
Course Business

• Homework 4 Released
• Bonus Problem (10 Points)

• Second bonus problem (5 pts) is easiest to solve with Mathematica
• https://sandbox.open.wolframcloud.com

• Homework 3 Grades

1

Minimum Value 60.00
Maximum Value 93.00
Range 33.00
Average 83.10
Median 87.00
Standard Deviation 9.00
Variance 81.09

https://sandbox.open.wolframcloud.com/

Cryptography
CS 555

Week 12:
• Discrete Log Attacks + NIST Recommendations for Concrete Security

Parameters
• Key Management
• Formalizing Public Key Encryption
• El Gamal
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

2Fall 2017

Week 12: Topic 0: Discrete Log
Attacks + NIST

Recommendations for Concrete
Security Parameters

3

Factoring Algorithms (Summary)

• Pollard’s p-1 Algorithm
• Works when 𝑁𝑁 = 𝑝𝑝𝑝𝑝 where (p-1) has only “small” prime factors
• Defense: Ensure that p (resp. q) is a strong prime (p-1) has no “small” prime factors.
• Note: A random prime is strong with high probability.

• Pollard’s Rho Algorithm
• General purpose factoring algorithm
• Core: Low Space Cycle Detection
• Time: T(N) = 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)
• Naïve Algorithm takes time 𝑂𝑂 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁) to factor

• Quadratic Sieve
• Time: 2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛 (sub-exponential, but not polynomial time)
• Preprocessing + Linear Algebra: find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and 𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?

4

Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑝𝑝 𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑝𝑝 𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝)
• Bonus: Constant memory!

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)

5

Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑝𝑝 𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝)
• Requires memory 𝑂𝑂 𝑝𝑝 𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑝𝑝 𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash
function

𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑦𝑦𝑥𝑥1ℎ𝑥𝑥2
𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 → ℎ𝑦𝑦2−𝑥𝑥2 = 𝑦𝑦𝑥𝑥1−𝑦𝑦1

→ ℎ = 𝑦𝑦 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address

6

Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑝𝑝 𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝)
• Requires memory 𝑂𝑂 𝑝𝑝 𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑝𝑝 𝑝𝑝𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*)
𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑦𝑦𝑥𝑥1ℎ𝑥𝑥2

𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2

→ ℎ𝑦𝑦2−𝑥𝑥2 = 𝑦𝑦𝑥𝑥1−𝑦𝑦1
→ ℎ = 𝑦𝑦 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address

7

Remark: We used discrete-log problem to
construct collision resistant hash functions.

Security Reduction showed that attack on
collision resistant hash function yields attack

on discrete log.

Generic attack on collision resistant hash
functions (e.g., low space birthday attack)

yields generic attack on discrete log.

Discrete Log Attacks

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑝𝑝 log log 𝑝𝑝

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)

• As before let {p1,…,pk} denote the set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑦𝑦𝑗𝑗 = 𝑦𝑦𝑥𝑥𝑗𝑗 𝑚𝑚𝑦𝑦𝑚𝑚 𝑝𝑝 is

B-smooth for each j. That is

𝑦𝑦𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

8

Discrete Log Attacks

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑦𝑦𝑗𝑗 = 𝑦𝑦𝑥𝑥𝑗𝑗 𝑚𝑚𝑦𝑦𝑚𝑚 𝑝𝑝 is

B-smooth for each j. That is

𝑦𝑦𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

• Step 1.B: Use linear algebra to solve the equations

𝑥𝑥𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐩𝐩𝐢𝐢 × 𝑒𝑒𝑖𝑖,𝑗𝑗 mod (𝑝𝑝 − 1).

(Note: the 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐩𝐩𝐢𝐢’s are the unknowns)

9

Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑦𝑦𝑦𝑦𝑖𝑖 𝑚𝑚𝑦𝑦𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑦𝑦𝑧𝑧h mod p is B-smooth

𝑦𝑦𝑧𝑧h mod p = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖

= �
𝑖𝑖=1

𝑘𝑘

𝑦𝑦𝑦𝑦𝑖𝑖 𝑒𝑒𝑖𝑖 = 𝑦𝑦∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖

10

Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑦𝑦𝑦𝑦𝑖𝑖 𝑚𝑚𝑦𝑦𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑦𝑦𝑧𝑧h mod p is B-smooth
𝑦𝑦𝑧𝑧h mod p = 𝑦𝑦∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 → ℎ = 𝑦𝑦∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖−𝑧𝑧

→ 𝑥𝑥 = �
𝑖𝑖

𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 − 𝑧𝑧

• Remark: Precomputation costs can be amortized over many discrete
log instances

• In practice, the same group 𝔾𝔾 = 𝑦𝑦 and generator g are used repeatedly.

11Reference: https://www.weakdh.org/

https://www.weakdh.org/

NIST Guidelines (Concrete Security)
Best known attack against 1024 bit RSA takes time (approximately) 280

12

NIST Guidelines (Concrete Security)
Diffie-Hellman uses subgroup of ℤ𝑝𝑝∗ size q

13

q=224 bits

q=256 bits

q=384 bits

q=512 bits

NIST Guidelines (Concrete Security)
112 bits = log 2224

2
= log 2224 bits (Pollard’s Rho)

14

q=224 bits

q=256 bits

q=384 bits

q=512 bits

NIST Guidelines (Concrete Security)
112 bits ≈ 2048 log 2048 bits (Index Calculus)

15

q=224 bits

q=256 bits

q=384 bits

q=512 bits

16

Week 12: Topic 1: Key
Management

17

18

Key-Exchange Problem

• Key-Exchange Problem:
• Obi-Wan and Yoda want to communicate securely
• Suppose that

• Obi-Wan and Yoda don’t have time to meet privately and generate one
• Obi-Wan and Yoda share a symmetric key with Anakin
• Suppose that they fully trust Anakin

19

Key-Distribution Center
(with Symmetric Key-Crypto)

20

Kyoda: Shared key
between yoda and
Anakin

Kobiwan: Shared
key between
Obiwan and
Anakin

Enc(Kobiwan ,”I would like to talk to Yoda”)

Ok, here is a fresh key that no sith lord has seen

c1=Enc(Kobiwan ,ts, Knew),
c2=Enc(Kyoda , ts, “Obiwan/Yoda”, Knew)

Key-Distribution Center
(with Symmetric Key-Crypto)

21

Enc(Kobiwan ,”I would like to talk to Yoda”)

Ok, here is a fresh key that no sith lord has seen

c1=Enc(Kobiwan ,ts, Knew),
c2=Enc(Kyoda , ts, “Obiwan/Yoda”, Knew)

Key-Distribution Center (with Symmetric Key-
Crypto)

• Vulnerability: If Key-Distribution Center is compromised then all
security guarantees are broken.

• KDC is a valuable target for attackers
• Possibility of insider attacks (e.g., employees)

• Denial of Service (DOS) Attack: If KDC is down then secure
communication is temporarily impossible.

22

• Benefit: Authenticated Encryption provides authentication as well
• Yoda can be sure he is talking to Obiwan (assuming he trusts the KDC)

• Kerberos uses similar protocol
• Yoda’s key and Obiwan’s key are typically derived from a password that they

known.
• Vulnerability: An eavesdropping attacker can mount a brute-force attack on

the (low-entropy) passwords to recover Kyoda and Kobiwan.

• Recommendation: Always use Public Key Initialization with Kerberos

23

Key-Distribution Center (with Symmetric Key-
Crypto)

Key-Explosion Problem

• To avoid use a trusted KDC we could have
every pair of users exchange private keys

• How many private keys per person?
• Answer: n-1
• Need to meet up with n-1 different users in

person!

• Key Explosion Problem
• n can get very big if you are Google or

Amazon!

24

Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑦𝑦𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑦𝑦𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑦𝑦𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

25

Key-Exchange Experiment 𝐾𝐾𝐾𝐾𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 :

• Two parties run Π to exchange secret messages (with security parameter 1n).
• Let trans be a transcript which contains all messages sent and let k be the secret

key output by each party.
• Let b be a random bit and let kb = k if b=0; otherwise kb is sampled uniformly at

random.
• Attacker A is given trans and kb (passive attacker).
• Attacker outputs b’ (𝐾𝐾𝐾𝐾𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 =1 if and only if b=b’)

Security of Π against an eavesdropping attacker: For all PPT A there is a negligible
function negl such that

Pr 𝐾𝐾𝐾𝐾𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 =½ + 𝐧𝐧𝐧𝐧𝐥𝐥𝐥𝐥 n .

26

Diffie-Hellman Key-Exchange is Secure

Theorem: If the decisional Diffie-Hellman problem is hard relative to group
generator 𝒢𝒢 then the Diffie-Hellman key-exchange protocol Π is secure in the
presence of an eavesdropper (*).
(*) Assuming keys are chosen uniformly at random from the cyclic group 𝔾𝔾

Protocol Π
1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑦𝑦𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑦𝑦𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑦𝑦𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

27

Diffie-Hellman Assumptions

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑦𝑦𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑦𝑦𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑦𝑦𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl upper
bounding the probability that A succeeds

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑦𝑦𝑥𝑥1𝑥𝑥2 and let z1 = 𝑦𝑦𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑦𝑦𝑥𝑥1, 𝑦𝑦𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that

A succeeds with probability at most ½ + negl(n).

29

Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑦𝑦𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑦𝑦𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑦𝑦𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

Intuition: Decisional Diffie-Hellman assumption implies that a passive
attacker who observes 𝑦𝑦𝑥𝑥𝐴𝐴 and 𝑦𝑦𝑥𝑥𝐵𝐵 still cannot distinguish between
𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑦𝑦𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 and a random group element.

30

Diffie-Hellman Key-Exchange is Secure

Theorem: If the decisional Diffie-Hellman problem is hard relative to group
generator 𝒢𝒢 then the Diffie-Hellman key-exchange protocol Π is secure in the
presence of an eavesdropper (*).
Proof:

Pr 𝐾𝐾𝐾𝐾𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1

=½Pr 𝐾𝐾𝐾𝐾𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1|𝑏𝑏 = 1 + ½Pr 𝐾𝐾𝐾𝐾𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1|𝑏𝑏 = 0
=½Pr 𝐴𝐴 𝔾𝔾 ,𝑦𝑦, 𝑝𝑝,𝑦𝑦𝑥𝑥 ,𝑦𝑦𝑦𝑦 ,𝑦𝑦𝑥𝑥𝑦𝑦 = 1 + ½Pr 𝐴𝐴 𝔾𝔾 ,𝑦𝑦, 𝑝𝑝,𝑦𝑦𝑥𝑥 ,𝑦𝑦𝑦𝑦 ,𝑦𝑦𝑧𝑧 = 1

=½+½ Pr 𝐴𝐴 𝔾𝔾 ,𝑦𝑦, 𝑝𝑝,𝑦𝑦𝑥𝑥 ,𝑦𝑦𝑦𝑦 ,𝑦𝑦𝑥𝑥𝑦𝑦 = 1 − Pr 𝐴𝐴 𝔾𝔾 ,𝑦𝑦, 𝑝𝑝,𝑦𝑦𝑥𝑥 ,𝑦𝑦𝑦𝑦 ,𝑦𝑦𝑧𝑧 = 1 .
≤ ½ + ½negl(n) (by DDH)

(*) Assuming keys are chosen uniformly at random from the cyclic group 𝔾𝔾

31

Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑦𝑦𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑦𝑦𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑦𝑦𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

Intuition: Decisional Diffie-Hellman assumption implies that a passive
attacker who observes 𝑦𝑦𝑥𝑥𝐴𝐴 and 𝑦𝑦𝑥𝑥𝐵𝐵 still cannot distinguish between
𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑦𝑦𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 and a random group element.
Remark: The protocol is vulnerable against active attackers who can
tamper with messages.

32

Man in the Middle Attack (MITM)

33

Man in the Middle Attack (MITM)

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑦𝑦𝑥𝑥𝐴𝐴 to Bob
• Eve intercepts 𝑦𝑦𝑥𝑥𝐴𝐴 , picks 𝑥𝑥𝐾𝐾 and sends 𝑦𝑦𝑥𝑥𝐸𝐸 to Bob instead

2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑦𝑦𝑥𝑥𝐵𝐵 to Alice
1. Eve intercepts 𝑦𝑦𝑥𝑥𝐵𝐵, picks 𝑥𝑥𝐾𝐾′ and sends 𝑦𝑦𝑥𝑥𝐸𝐸𝐸 to Alice instead

3. Eve computes 𝑦𝑦𝑥𝑥𝐸𝐸𝐸𝑥𝑥𝐴𝐴 and 𝑦𝑦𝑥𝑥𝐸𝐸𝑥𝑥𝐵𝐵
1. Alice computes secret key 𝑦𝑦𝑥𝑥𝐸𝐸𝐸𝑥𝑥𝐴𝐴 (shared with Eve not Bob)
2. Bob computes 𝑦𝑦𝑥𝑥𝐸𝐸𝑥𝑥𝐵𝐵(shared with Eve not Alice)

4. Eve forwards messages between Alice and Bob (tampering with the
messages if desired)

5. Neither Alice nor Bob can detect the attack

34

Password Authenticated Key-Exchange

• Suppose Alice and Bob share a low-entropy password pwd and wish
to communicate securely

• (without using any trusted party)
• Assuming an active attacker may try to mount a man-in-the-middle attack

• Can they do it?

Tempting Approach:
• Alice and Bob both compute K= KDF(pwd)=Hn(pwd) and communicate with

using an authenticated encryption scheme.
• Midterm Exam: Secure in random oracle model if attacker cannot query

random oracle too many time.

35

Password Authenticated Key-Exchange

Tempting Approach:
• Alice and Bob both compute K= KDF(pwd)=Hn(pwd) and communicate with

using an authenticated encryption scheme.
• Midterm Exam: Secure in random oracle model if attacker cannot query

random oracle too many time.
• Problems:

• In practice the attacker can (and will) query the random oracle many times.
• In practice people tend to pick very weak passwords
• Brute-force attack: Attacker enumerates over a dictionary of passwords and attempts to

decrypt messages with Kpwd’=KDF(pwd’) (only succeeds if Kpwd’=K).
• An offline attack (brute-force) will almost always succeed

36

Password Authenticated Key-Exchange (PAKE)
Better Approach (PAKE):
1. Alice and Bob both compute W = 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝

2. Alice picks 𝑥𝑥𝐴𝐴 and sends “Alice", 𝑋𝑋 = 𝑦𝑦𝑥𝑥𝐴𝐴 to Bob
3. Bob picks 𝑥𝑥𝐵𝐵 computes r = H 1,𝐴𝐴𝑦𝑦𝐴𝐴𝐴𝐴𝑒𝑒,𝐵𝐵𝑦𝑦𝑏𝑏,𝑋𝑋 and 𝑌𝑌 = 𝑋𝑋 × 𝑊𝑊 𝑟𝑟 𝑥𝑥𝐵𝐵 and sends Alice the following

message: "𝐵𝐵𝑦𝑦𝑏𝑏, " 𝑌𝑌
4. Alice computes K = 𝑌𝑌𝑍𝑍 = 𝑦𝑦𝑥𝑥𝐵𝐵 where 𝑧𝑧 = ⁄1 𝑝𝑝𝑝𝑝𝑚𝑚 × 𝑟𝑟 + 𝑥𝑥𝐴𝐴 𝑚𝑚𝑦𝑦𝑚𝑚 𝑝𝑝. Alice sends the message VA=

H(2,Alice,Bob,X,Y,K) to Bob.
5. Bob verifies that VA== H(2,Alice,Bob,X,Y,K) where K = 𝑦𝑦𝑥𝑥𝐵𝐵. Bob generates VB= H(3,Alice,Bob,X,Y,K) and sends VB to

Alice.
6. Alice verifies that VB==H(3,Alice,Bob,X,Y, 𝑌𝑌𝑍𝑍) where 𝑧𝑧 = ⁄1 𝑝𝑝𝑝𝑝𝑚𝑚 × 𝑟𝑟 + 𝑥𝑥𝐴𝐴 .
7. If Alice and Bob don’t terminate the session key is H(4,Alice,Bob,X,Y, 𝐾𝐾)
Security:
• No offline attack (brute-force) is possible. Attacker get’s one password guess per instantiation of the protocol.
• If attacker is incorrect and he tampers with messages then he will cause the Alice & Bob to quit.
• If Alice and Bob accept the secret key K and the attacker did not know/guess the password then K is “just as good” as a

truly random secret key.
37

See RFC 6628

https://tools.ietf.org/html/rfc6628

Key-Explosion Problem

• So far neither Diffie-Hellman Key Exchange
nor PAKEs completely solved the problem

• PAKEs require a shared password
• (n-1) shared passwords?

• Diffie-Hellman Key Exchange is vulnerable to
man-in-the-middle

• Can use KDC to store database of public-keys
(e.g., 𝑦𝑦𝑥𝑥𝐴𝐴) for each party.

• Breached KDC doesn’t reveal secret keys
38

Public Key Revolution

• Digital Signatures can help
• Private-Key Analogue: MAC
• Private Key required to produce signature for a message m
• Anyone with Public Key can verify the message

• An authority could sign the message “Alice’s public key is 𝑦𝑦𝑥𝑥𝐴𝐴 ”
• Anyone could use the authority’s public key to validate Alice’s public

key
• The authority does not actually need to store 𝑦𝑦𝑥𝑥𝐴𝐴 .
• In fact, if Alice has signature then she can use this to prove her

identity to Bob (and Bob doesn’t need to interact the authority)

39

Week 12 Topic 2: Formalizing
Public Key Cryptography

40

Public Key Encryption: Basic Terminology

• Plaintext/Plaintext Space
• A message m ∈ ℳ

• Ciphertext c ∈ 𝒞𝒞
• Public/Private Key Pair 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒑𝒑 ∈ 𝓚𝓚

41

Public Key Encryption Syntax

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒑𝒑 ∈ 𝓚𝓚

• Encpk(𝑚𝑚) ∈ 𝒞𝒞 (Encryption algorithm)
• Decsk(𝐴𝐴) (Decryption algorithm)

• Input: Secret key sk and a ciphertex c
• Output: a plaintext message m ∈ ℳ

• Invariant: Decsk(Encpk(m))=m

Alice must run key generation
algorithm in advance an publishes the

public key: pk

Assumption: Adversary only gets to
see pk (not sk)

42

Chosen-Plaintext Attacks

• Model ability of adversary to control or influence what the honest
parties encrypt.

• Historical Example: Battle of Midway (WWII).
• US Navy cryptanalysts were able to break Japanese code by tricking Japanese

navy into encrypting a particular message

• Private Key Cryptography

43

Recap CPA-Security (Symmetric Key Crypto)

44

m0,1,m1,1

Random bit b
K = Gen(.)

c1 = EncK(mb,1)

b’

m0,2,m1,2

c2 = EncK(mb,2)

c3 = EncK(mb,3)
m0,3,m1,3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝑒𝑒𝐺𝐺𝐺𝐺𝑒𝑒𝐺𝐺 𝑏𝑏𝐸 = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

Chosen-Plaintext Attacks

• Model ability of adversary to control or influence what the honest
parties encrypt.

• Private Key Crypto
• Attacker tricks victim into encrypting particular messages

• Public Key Cryptography
• The attacker already has the public key pk
• Can encrypt any message s/he wants!
• CPA Security is critical!

45

CPA-Security (PubKA,Π
LR−cpa n)

46

𝑚𝑚0
1,𝑚𝑚1

1

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄𝟏𝟏 = 𝐄𝐄𝐧𝐧𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟏𝟏

b’

𝒄𝒄𝟐𝟐 = 𝐄𝐄𝐧𝐧𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟐𝟐

𝒄𝒄𝟑𝟑 = 𝐄𝐄𝐧𝐧𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟑𝟑

𝑚𝑚0
3,𝑚𝑚1

3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

LR−cpa n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝑚𝑚0
2,𝑚𝑚1

2

Public Key: pk

CPA-Security (Single Message)

47

m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m2

c2 = EncK(m2)

c3 = EncK(m3)
m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝑒𝑒𝐺𝐺𝐺𝐺𝑒𝑒𝐺𝐺 𝑏𝑏𝐸 = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

𝐹𝐹𝑦𝑦𝑟𝑟𝑚𝑚𝐹𝐹𝑦𝑦𝑦𝑦𝑦𝑦, 𝑦𝑦𝑒𝑒𝑙𝑙 Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴,𝐷𝐷𝑒𝑒𝐴𝐴 𝑚𝑚𝑒𝑒𝑛𝑛𝑦𝑦𝑙𝑙𝑒𝑒 𝑙𝑙ℎ𝑒𝑒 𝑒𝑒𝑛𝑛𝐴𝐴𝑟𝑟𝑦𝑦𝑝𝑝𝑙𝑙𝐴𝐴𝑦𝑦𝑛𝑛 𝐺𝐺𝐴𝐴ℎ𝑒𝑒𝑚𝑚𝑒𝑒,
𝐴𝐴𝐹𝐹𝑦𝑦𝑦𝑦 𝑙𝑙ℎ𝑒𝑒 𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑟𝑟𝐴𝐴𝑚𝑚𝑒𝑒𝑛𝑛𝑙𝑙 𝑃𝑃𝐺𝐺𝑏𝑏𝐾𝐾𝐴𝐴,Π

𝐿𝐿𝐿𝐿−𝑐𝑐𝑝𝑝𝑒𝑒 𝑛𝑛 𝐹𝐹𝑛𝑛𝑚𝑚 𝑚𝑚𝑒𝑒𝑑𝑑𝐴𝐴𝑛𝑛𝑒𝑒 𝐹𝐹 𝑟𝑟𝐹𝐹𝑛𝑛𝑚𝑚𝑦𝑦𝑚𝑚 𝑣𝑣𝐹𝐹𝑟𝑟𝐴𝐴𝐹𝐹𝑏𝑏𝑦𝑦𝑒𝑒

PubKA,Π
LR−cpa 𝑛𝑛 = 1 𝐴𝐴𝑑𝑑 𝑏𝑏 = 𝑏𝑏𝐸

PubKA,Π
LR−cpa 𝑛𝑛 = 0 𝑦𝑦𝑙𝑙ℎ𝑒𝑒𝑟𝑟𝑝𝑝𝐴𝐴𝐺𝐺𝑒𝑒

Π ℎ𝐹𝐹𝐺𝐺 𝐴𝐴𝑛𝑛𝑚𝑚𝐴𝐴𝐺𝐺𝑙𝑙𝐴𝐴𝑛𝑛𝑦𝑦𝐺𝐺𝐴𝐴𝐺𝐺ℎ𝐹𝐹𝑏𝑏𝑦𝑦𝑒𝑒 𝑒𝑒𝑛𝑛𝐴𝐴𝑟𝑟𝑦𝑦𝑝𝑝𝑙𝑙𝐴𝐴𝑦𝑦𝑛𝑛𝐺𝐺 𝐺𝐺𝑛𝑛𝑚𝑚𝑒𝑒𝑟𝑟 𝐹𝐹 𝐴𝐴ℎ𝑦𝑦𝐺𝐺𝑒𝑒𝑛𝑛 𝑝𝑝𝑦𝑦𝐹𝐹𝐴𝐴𝑛𝑛𝑙𝑙𝑒𝑒𝑥𝑥𝑙𝑙 𝐹𝐹𝑙𝑙𝑙𝑙𝐹𝐹𝐴𝐴𝑘𝑘
𝐴𝐴𝑑𝑑 𝑑𝑑𝑦𝑦𝑟𝑟 𝐹𝐹𝑦𝑦𝑦𝑦 𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝑚𝑚𝑣𝑣𝑒𝑒𝑟𝑟𝐺𝐺𝐹𝐹𝑟𝑟𝐴𝐴𝑒𝑒𝐺𝐺 𝐴𝐴, 𝑙𝑙ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝐴𝐴𝐺𝐺 𝐹𝐹 negligible function 𝜇𝜇 such that

Pr[PubKA,Π
LR−cpa 𝑛𝑛 = 1] ≤ 1

2
+ 𝜇𝜇(𝑛𝑛)

Private Key Crypto

• CPA Security was stronger than eavesdropping security

EncK(m) = G(K)⨁𝑚𝑚

Vs.

EncK(m) = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

48

Public Key Crypto

• Fact 1: CPA Security and Eavesdropping Security are Equivalent
• Key Insight: The attacker has the public key so he doesn’t gain anything from being able to

query the encryption oracle!

• Fact 2: Any deterministic encryption scheme is not CPA-Secure
• Historically overlooked in many real world public key crypto systems

• Fact 3: Plain RSA is not CPA-Secure
• Fact 4: No Public Key Cryptosystem can achieve Perfect Secrecy!

• Exercise 11.1
• Hint: Unbounded attacker can keep encrypting the message m using the public key to recover

all possible encryptions of m.

49

Encrypting Longer Messages

Claim 11.7: Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴,𝐷𝐷𝑒𝑒𝐴𝐴 denote a CPA-Secure public key
encryption scheme and let Π′ = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴′,𝐷𝐷𝑒𝑒𝐴𝐴′ be defined such
that

𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩𝐸 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ

Then Π′ is also CPA-Secure.

50

Chosen Ciphertext Attacks

• Models ability of attacker to obtain (partial) decryption of selected
ciphertexts

• Attacker might intercept ciphertext c (sent from S to R) and send c’
instead.

• After that attacker can observe receiver’s behavior (abort, reply etc…)

• Attacker might send a modified ciphertext c’ to receiver R in his own
name.

• E-mail response: Receiver might decrypt c’ to obtain m’ and include m’ in the
response to the attacker

51

Recap CCA-Security (Symmetric Key Crypto)

52

m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m3

c2 = EncK(m2)

m3 = DecK(m3)
c3

…

“No Way!”
c4 =c

m-1
c-1 = EncK(m-1)

m-2 = DecK(c-2)
c-2 …

We could set m0 = m-1 or m1 = m-2

However, we could still flip 1 bit
of c and ask challenger to decrypt

Recap CCA-Security 𝑃𝑃𝑟𝑟𝐴𝐴𝑣𝑣𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑒𝑒 𝑛𝑛

1. Challenger generates a secret key k and a bit b
2. Adversary (A) is given oracle access to Enck and Deck
3. Adversary outputs m0,m1
4. Challenger sends the adversary c=Enck(mb).
5. Adversary maintains oracle access to Enck and Deck ,however the adversary is

not allowed to query Deck(c).
6. Eventually, Adversary outputs b’.

𝑃𝑃𝑟𝑟𝐴𝐴𝑣𝑣𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑒𝑒 𝑛𝑛 = 1 if b = b𝐸; otherwise 0.

CCA-Security: For all PPT A exists a negligible function negl(n) s.t.

Pr 𝑃𝑃𝑟𝑟𝐴𝐴𝑣𝑣𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑒𝑒 𝑛𝑛 = 1 ≤

1
2

+ 𝑛𝑛𝑒𝑒𝑦𝑦𝑦𝑦(𝑛𝑛)

53

CCA-Security (PubKA,Π
cca n)

54

𝑚𝑚0 ,𝑚𝑚1

Random bit b
(pk,sk) = Gen(.)

𝒎𝒎−𝟏𝟏 = 𝐃𝐃𝐧𝐧𝐄𝐄𝒔𝒔𝒑𝒑 𝒄𝒄−𝟏𝟏

b’

𝒄𝒄𝒃𝒃 = 𝐄𝐄𝐧𝐧𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

cca n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝒄𝒄−𝟏𝟏

…

𝒄𝒄𝒑𝒑
𝒎𝒎𝒑𝒑 = 𝐃𝐃𝐧𝐧𝐄𝐄𝒔𝒔𝒑𝒑 𝒄𝒄𝒑𝒑

Public Key: pk

Encrypting Longer Messages

Claim 11.7: Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴,𝐷𝐷𝑒𝑒𝐴𝐴 denote a CPA-Secure public key
encryption scheme and let Π′ = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴′,𝐷𝐷𝑒𝑒𝐴𝐴′ be defined such that

𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩𝐸 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is also CPA-Secure.

Claim? Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴,𝐷𝐷𝑒𝑒𝐴𝐴 denote a CCA-Secure public key encryption
scheme and let Π′ = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴′,𝐷𝐷𝑒𝑒𝐴𝐴′ be defined such that

𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩𝐸 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is also CCA-Secure.

Is this second claim true?

55

Encrypting Longer Messages

Claim? Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴,𝐷𝐷𝑒𝑒𝐴𝐴 denote a CCA-Secure public key
encryption scheme and let Π′ = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴′,𝐷𝐷𝑒𝑒𝐴𝐴′ be defined such
that

𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩𝐸 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ

Then Π′ is also CCA-Secure.

Is this second claim true?
Answer: No!

56

Encrypting Longer Messages

Fact: Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴,𝐷𝐷𝑒𝑒𝐴𝐴 denote a CCA-Secure public key encryption scheme
and let Π′ = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴′,𝐷𝐷𝑒𝑒𝐴𝐴′ be defined such that

𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩𝐸 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is Provably Not CCA-Secure.

1. Attacker sets 𝒎𝒎𝟎𝟎 = 𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 and 𝒎𝒎𝟏𝟏 = 𝟎𝟎𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 and gets 𝒄𝒄𝒃𝒃 =
𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩𝐸 𝒎𝒎𝒃𝒃 = 𝒄𝒄𝒃𝒃,𝟏𝟏 ∥ 𝒄𝒄𝒃𝒃,𝟐𝟐 ∥ 𝒄𝒄𝒃𝒃,𝟑𝟑

2. Attacker sets 𝒄𝒄′ = 𝒄𝒄𝒃𝒃,𝟐𝟐 ∥ 𝒄𝒄𝒃𝒃,𝟑𝟑 ∥ 𝒄𝒄𝒃𝒃,𝟏𝟏 , queries the decryption oracle and gets

𝐃𝐃𝐧𝐧𝐄𝐄𝐬𝐬𝐩𝐩𝐸 𝒄𝒄′ = �𝟏𝟏𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 if b=𝟎𝟎
𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒔𝒔𝒐𝒐

57

Achieving CPA and CCA-Security

• Plain RSA is not CPA Secure (therefore, not CCA-Secure)

• El-Gamal (next class) is CPA-Secure, but not CCA-Secure
• Homework 4

• Tools to build CCA-Secure Encryption
• Key Encapsulation Mechanism

58

Key Encapsulation Mechanism (KEM)

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒑𝒑 ∈ 𝓚𝓚

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Input: security parameter, random bits R
• Output: Symmetric key k ∈ 0,1 ℓ 𝑛𝑛 and a ciphertext c

• Decapssk(𝐴𝐴) (Deterministic algorithm)
• Input: Secret key sk ∈ 𝒦𝒦 and a ciphertex c
• Output: a symmetric key 0,1 ℓ 𝑛𝑛 or ⊥ (fail)

• Invariant: Decapssk(c)=k whenever (c,k) = Encapspk(1𝑛𝑛,𝑅𝑅)

59

KEM CCA-Security (KEMA,Π
cca n)

60

𝒄𝒄𝟏𝟏 ≠ 𝒄𝒄

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄,𝒑𝒑𝟎𝟎 = 𝐄𝐄𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝒑𝒑𝒑𝒑 .
𝒑𝒑𝟏𝟏 ⟵ 𝟎𝟎,𝟏𝟏 𝒏𝒏

b’

𝐃𝐃𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝒔𝒔𝒑𝒑 𝒄𝒄𝟏𝟏

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr KEMA,Π

cca = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

…

𝒄𝒄𝟐𝟐 ≠ 𝒄𝒄
𝐃𝐃𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝒔𝒔𝒑𝒑 𝒄𝒄𝟐𝟐

𝒑𝒑𝒑𝒑, 𝒄𝒄,𝒑𝒑𝒃𝒃

CCA-Secure Encryption from CCA-Secure KEM

𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎;𝑹𝑹 = 𝒄𝒄,𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩∗ 𝒎𝒎
Where

• 𝒄𝒄,𝒑𝒑 ← 𝐄𝐄𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹 ,
• 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩∗ is a CCA-Secure symmetric key encryption algorithm, and

• 𝐄𝐄𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝐩𝐩𝐩𝐩 is a CCA-Secure KEM.

Theorem 11.14: 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme.

61

CCA-Secure KEM in the Random Oracle Model

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encapspk 1𝑛𝑛,𝑅𝑅 = 𝑟𝑟𝑒𝑒 𝑚𝑚𝑦𝑦𝑚𝑚 𝑁𝑁, 𝑘𝑘 = 𝐻𝐻 𝑟𝑟

• Remark 1: k is completely random string unless the adversary
can query random oracle H on input r.

• Remark 2: If Plain-RSA is hard to invert for a random input
then PPT attacker finds r with negligible probability.

62

Week 12 Topic 3: El-Gamal
Encryption

63

A Quick Remark about Groups

• Let 𝔾𝔾 be a group with order m = 𝔾𝔾 with a binary operation ∘ (over
G) and let g, h ∈ 𝔾𝔾 be given and consider sampling k ∈ 𝔾𝔾 uniformly at
random then we have

Prk←𝔾𝔾 𝑘𝑘 = 𝑦𝑦 =
1
𝑚𝑚

Question: What is Prk←𝔾𝔾 𝑘𝑘 ∘ ℎ = 𝑦𝑦 = 1
𝑚𝑚

?
Answer:

Prk←𝔾𝔾 𝑘𝑘 ∘ ℎ = 𝑦𝑦 = Prk←𝔾𝔾 𝑘𝑘 = 𝑦𝑦 ∘ ℎ−1 =
1
𝑚𝑚

64

A Quick Remark about Groups

Lemma 11.15: Let 𝔾𝔾 be a group with order m = 𝔾𝔾 with a binary
operation ∘ (over G) then for any pair g, h ∈ 𝔾𝔾 we have

Prk←𝔾𝔾 𝑘𝑘 ∘ ℎ = 𝑦𝑦 =
1
𝑚𝑚

Remark: This lemma gives us a way to construct perfectly secret
private-key crypto scheme. How?

65

El-Gamal Encryption

• Key Generation (Gen(1𝑛𝑛)):
1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑝𝑝 = 𝑛𝑛) and a

generator g such that < g >= 𝔾𝔾.
2. Choose a random x ∈ ℤ𝑞𝑞 and set ℎ = 𝑦𝑦𝑥𝑥

3. Public Key: pk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦,ℎ
4. Private Key: sk = 𝔾𝔾,𝑝𝑝,𝑦𝑦, 𝑥𝑥

• Encpk(𝑚𝑚) = 𝑦𝑦𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞
• Decsk(𝐴𝐴 = 𝐴𝐴1, 𝐴𝐴2) = 𝐴𝐴2𝐴𝐴1−𝑥𝑥

66

El-Gamal Encryption

• Encpk(𝑚𝑚) = 𝑦𝑦𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞
• Decsk(𝐴𝐴 = 𝐴𝐴1, 𝐴𝐴2) = 𝐴𝐴2𝐴𝐴1−𝑥𝑥

Decsk(𝑦𝑦𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦) = 𝑚𝑚 � ℎ𝑦𝑦 𝑦𝑦𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � ℎ𝑦𝑦 𝑦𝑦𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � 𝑦𝑦𝑥𝑥 𝑦𝑦 𝑦𝑦𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � 𝑦𝑦𝑥𝑥𝑦𝑦𝑦𝑦−𝑥𝑥𝑦𝑦
= 𝑚𝑚

67

CPA-Security (PubKA,Π
LR−cpa n)

68

𝑚𝑚0
1,𝑚𝑚1

1

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄𝟏𝟏 = 𝐄𝐄𝐧𝐧𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟏𝟏

b’

𝒄𝒄𝟐𝟐 = 𝐄𝐄𝐧𝐧𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟐𝟐

𝒄𝒄𝟑𝟑 = 𝐄𝐄𝐧𝐧𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟑𝟑

𝑚𝑚0
3,𝑚𝑚1

3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

LR−cpa n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝑚𝑚0
2,𝑚𝑚1

2

Public Key: pk

El-Gamal Encryption

• Encpk(𝑚𝑚) = 𝑦𝑦𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞
• Decsk(𝐴𝐴 = 𝐴𝐴1, 𝐴𝐴2) = 𝐴𝐴2𝐴𝐴1−𝑥𝑥

Theorem 11.18: Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴,𝐷𝐷𝑒𝑒𝐴𝐴 be the El-Gamal Encryption
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is CPA-Secure.
Proof: Recall that CPA-security and eavesdropping security are
equivalent for public key crypto. It suffices to show that for all PPT A
there is a negligible function negl such that

Pr PubKA,Π
eav n = 1 ≤

1
2

+ negl(n)

69

Eavesdropping Security (PubKA,Π
eav n)

70

𝑚𝑚0 ,𝑚𝑚1

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄𝟏𝟏 = 𝐄𝐄𝐧𝐧𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃

b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

eav n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Public Key: pk

El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴,𝐷𝐷𝑒𝑒𝐴𝐴 be the El-Gamal Encryption scheme
(above) then if DDH is hard relative to 𝒢𝒢 then Π is CPA-Secure.
Proof: First introduce an `encryption scheme’ �Π in which �Encpk 𝑚𝑚 = 𝑦𝑦𝑦𝑦,𝑚𝑚 � 𝑦𝑦𝑧𝑧
for random y, z ∈ ℤ𝑞𝑞 (there is actually no way to do decryption, but the experiment
PubKA,�Π

eav n is still well defined). In fact, (using Lemma 11.15)

Pr PubKA,�Π
eav n = 1

=
1
2

Pr PubKA,�Π
eav n = 1|𝑏𝑏 = 1 +

1
2

1 − Pr PubKA,�Π
eav n = 1|𝑏𝑏 = 0

=
1
2

+
1
2

Pry,z←ℤ𝑞𝑞 𝐴𝐴 𝑦𝑦𝑦𝑦,𝑚𝑚 � 𝑦𝑦𝑧𝑧 = 1 −
1
2

Pry,z←ℤ𝑞𝑞 𝐴𝐴 𝑦𝑦𝑦𝑦,𝑦𝑦𝑧𝑧 = 1

=
1
2

71

El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴,𝐷𝐷𝑒𝑒𝐴𝐴 be the El-Gamal Encryption
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is CPA-Secure.
Proof: We just showed that

Pr PubKA,�Π
eav n = 1 =

1
2

Therefore, it suffices to show that
Pr PubKA,Π

eav n = 1 − Pr PubKA,�Π
eav n = 1 ≤ 𝐧𝐧𝐧𝐧𝐥𝐥𝐥𝐥(𝑛𝑛)

This, will follow from DDH assumption.

72

El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐾𝐾𝑛𝑛𝐴𝐴,𝐷𝐷𝑒𝑒𝐴𝐴 be the El-Gamal Encryption scheme
(above) then if DDH is hard relative to 𝒢𝒢 then Π is CPA-Secure.
Proof: We can build 𝐵𝐵 𝑦𝑦𝑥𝑥,𝑦𝑦𝑦𝑦,𝑍𝑍 to break DDH assumption if Π is not CPA-Secure.
Simulate eavesdropping attacker A
1. Send attacker public key pk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦, ℎ = 𝑦𝑦𝑥𝑥
2. Receive m0,m1 from A.
3. Send A the ciphertext 𝑦𝑦𝑦𝑦,𝑚𝑚𝑏𝑏 � 𝑍𝑍 .
4. Output 1 if and only if attacker outputs b’=b.

Pr 𝐵𝐵 𝑦𝑦𝑥𝑥,𝑦𝑦𝑦𝑦,𝑍𝑍 = 1�𝑍𝑍 = 𝑦𝑦𝑥𝑥𝑦𝑦 − Pr 𝐵𝐵 𝑦𝑦𝑥𝑥,𝑦𝑦𝑦𝑦,𝑍𝑍 = 1�𝑍𝑍 = 𝑦𝑦𝑧𝑧
= Pr PubKA,Π

eav n = 1 − Pr PubKA,�Π
eav n = 1

= Pr PubKA,Π
eav n = 1 − �1

2
73

El-Gamal Encryption

• Encpk(𝑚𝑚) = 𝑦𝑦𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞 and ℎ = 𝑦𝑦𝑥𝑥 ,
• Decsk(𝐴𝐴 = 𝐴𝐴1, 𝐴𝐴2) = 𝐴𝐴2𝐴𝐴1−𝑥𝑥

Fact: El-Gamal Encryption is malleable.
c = Encpk(𝑚𝑚) = 𝑦𝑦𝑦𝑦 ,𝑚𝑚 � ℎ𝑦𝑦

c′ = Encpk(𝑚𝑚) = 𝑦𝑦𝑦𝑦 , 2 � 𝑚𝑚 � ℎ𝑦𝑦
Decsk(𝐴𝐴′) = 2 � 𝑚𝑚 � ℎ𝑦𝑦 � 𝑦𝑦−𝑥𝑥𝑦𝑦 = 2𝑚𝑚

74

Key Encapsulation Mechanism (KEM)

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒑𝒑 ∈ 𝓚𝓚

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Input: security parameter, random bits R
• Output: Symmetric key k ∈ 0,1 ℓ 𝑛𝑛 and a ciphertext c

• Decapssk(𝐴𝐴) (Deterministic algorithm)
• Input: Secret key sk ∈ 𝒦𝒦 and a ciphertex c
• Output: a symmetric key 0,1 ℓ 𝑛𝑛 or ⊥ (fail)

• Invariant: Decapssk(c)=k whenever (c,k) = Encapspk(1𝑛𝑛,𝑅𝑅)

75

KEM CCA-Security (KEMA,Π
cca n)

76

𝒄𝒄𝟏𝟏 ≠ 𝒄𝒄

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄,𝒑𝒑𝟎𝟎 = 𝐄𝐄𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝒑𝒑𝒑𝒑 .
𝒑𝒑𝟏𝟏 ⟵ 𝟎𝟎,𝟏𝟏 𝒏𝒏

b’

𝐃𝐃𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝒔𝒔𝒑𝒑 𝒄𝒄𝟏𝟏

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr KEMA,Π

cca = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

…

𝒄𝒄𝟐𝟐 ≠ 𝒄𝒄
𝐃𝐃𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝒔𝒔𝒑𝒑 𝒄𝒄𝟐𝟐

𝒑𝒑𝒑𝒑, 𝒄𝒄,𝒑𝒑𝒃𝒃

Recall: Last Lecture

• CCA-Secure KEM from RSA in Random Oracle Model

• What if we want security proof in the standard model?

• Answer: DDH yields a CPA-Secure KEM in standard model

77

KEM CPA-Security (KEMA,Π
cpa n)

78

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄,𝒑𝒑𝟎𝟎 = 𝐄𝐄𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝒑𝒑𝒑𝒑 .
𝒑𝒑𝟏𝟏 ⟵ 𝟎𝟎,𝟏𝟏 𝒏𝒏

b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr KEMA,Π

cpa = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝒑𝒑𝒑𝒑, 𝒄𝒄,𝒑𝒑𝒃𝒃

CCA-Secure Encryption from CPA-Secure KEM

𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎;𝑹𝑹 = 𝒄𝒄,𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩∗ 𝒎𝒎
Where

• 𝒄𝒄,𝒑𝒑 ← 𝐄𝐄𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹 ,
• 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩∗ is a eavesdropping-secure symmetric key encryption algorithm

• 𝐄𝐄𝐧𝐧𝐄𝐄𝐄𝐄𝐩𝐩𝐬𝐬𝐩𝐩𝐩𝐩 is a CPA-Secure KEM.

Theorem 11.12: 𝐄𝐄𝐧𝐧𝐄𝐄𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme.

79

CPA-Secure KEM with El-Gamal

• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)
1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑝𝑝 = 2𝑛𝑛) and a

generator g such that < g >= 𝔾𝔾.
2. Choose a random x ∈ ℤ𝑞𝑞 and set ℎ = 𝑦𝑦𝑥𝑥
3. Public Key: pk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦,ℎ
4. Private Key: sk = 𝔾𝔾,𝑝𝑝,𝑦𝑦, 𝑥𝑥

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Pick random y ∈ ℤ𝑞𝑞
• Output: 𝑦𝑦𝑦𝑦 ,𝑘𝑘 = LeastSigNBits ℎ𝑦𝑦

• Decapssk(𝐴𝐴) (Deterministic algorithm)
• Output: 𝑘𝑘 = LeastSigNBits 𝐴𝐴𝑥𝑥

80

CPA-Secure KEM with El-Gamal

• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)
1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑝𝑝 = 2𝑛𝑛) and a generator g such that < g >=

𝔾𝔾.
2. Choose a random x ∈ ℤ𝑞𝑞 and set ℎ = 𝑦𝑦𝑥𝑥
3. Public Key: pk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦,ℎ
4. Private Key: sk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦, 𝑥𝑥

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Pick random y ∈ ℤ𝑞𝑞
• Output: 𝑦𝑦𝑦𝑦, 𝑘𝑘 = LeastSigNBits ℎ𝑦𝑦

• Decapssk(𝐴𝐴) (Deterministic algorithm)
• Output: 𝑘𝑘 = LeastSigNBits 𝐴𝐴𝑥𝑥

Decapssk 𝑦𝑦𝑦𝑦 = LeastSigNBits 𝑦𝑦𝑥𝑥𝑦𝑦 = LeastSigNBits ℎ𝑦𝑦 = 𝑘𝑘

81

CPA-Secure KEM with El-Gamal

• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)
1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑝𝑝 = 2𝑛𝑛) and a generator g

such that < g >= 𝔾𝔾.
2. Choose a random x ∈ ℤ𝑞𝑞 and set ℎ = 𝑦𝑦𝑥𝑥
3. Public Key: pk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦, ℎ
4. Private Key: sk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦, 𝑥𝑥

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Pick random y ∈ ℤ𝑞𝑞
• Output: 𝑦𝑦𝑦𝑦, 𝑘𝑘 = LeastSigNBits ℎ𝑦𝑦

• Decapssk(𝐴𝐴) (Deterministic algorithm)
• Output: 𝑘𝑘 = LeastSigNBits 𝐴𝐴𝑥𝑥

Theorem 11.20: If DDH is hard relative to 𝒢𝒢 then (Gen,Encaps,Decaps) is a
CPA-Secure KEM

82

CPA-Secure KEM with El-Gamal

• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)
1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑝𝑝 = 2𝑛𝑛) and a generator g such

that < g >= 𝔾𝔾.
2. Choose a random x ∈ ℤ𝑞𝑞 and set ℎ = 𝑦𝑦𝑥𝑥
3. Public Key: pk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦,ℎ
4. Private Key: sk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦, 𝑥𝑥

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Pick random y ∈ ℤ𝑞𝑞
• Output: 𝑦𝑦𝑦𝑦, 𝑘𝑘 = LeastSigNBits ℎ𝑦𝑦

• Decapssk(𝐴𝐴) (Deterministic algorithm)
• Output: 𝑘𝑘 = LeastSigNBits 𝐴𝐴𝑥𝑥

Remark: If CDH is hard relative to 𝒢𝒢 then (Gen,Encaps,Decaps) and we replace
LeastSigNBits with a random oracle H then this is a CPA-Secure KEM
(…also CCA-secure under a slightly stronger assumption called gap-CDH)

83

CCA-Secure Variant in Random Oracle Model

• Key Generation (Gen(1𝑛𝑛)):
1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑝𝑝 = 𝑛𝑛) and a generator g such

that < g >= 𝔾𝔾.
2. Choose a random x ∈ ℤ𝑞𝑞 and set ℎ = 𝑦𝑦𝑥𝑥
3. Public Key: pk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦, ℎ
4. Private Key: sk = 𝔾𝔾, 𝑝𝑝,𝑦𝑦, 𝑥𝑥

• Encpk(𝑚𝑚) = 𝑦𝑦𝑦𝑦, 𝐴𝐴𝐸,𝑀𝑀𝐹𝐹𝐴𝐴𝐾𝐾𝑀𝑀 𝐴𝐴′ for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 ℎ𝑦𝑦
and 𝐴𝐴𝐸 = EncKE

𝐸 𝑚𝑚
• Decsk(𝐴𝐴, 𝐴𝐴𝐸, 𝑙𝑙)
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝐴𝐴𝑥𝑥

2. If VrfyKM 𝐴𝐴𝐸, 𝑙𝑙 ≠ 1 or 𝐴𝐴 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
𝐸 𝐴𝐴𝐸, 𝑙𝑙

84

CCA-Secure Variant in Random Oracle Model

Theorem: If EncKE
𝐸 is CPA-secure, MacKM is a strong MAC and a problem

called gap-CDH is hard then this a CCA-secure public key encryption
scheme in the random oracle model.

• Encpk(𝑚𝑚) = 𝑦𝑦𝑦𝑦 , 𝐴𝐴𝐸, MacKM 𝐴𝐴′ for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝐴𝐴𝐸 = EncKE

𝐸 𝑚𝑚
• Decsk(𝐴𝐴, 𝐴𝐴𝐸, 𝑙𝑙)
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝐴𝐴𝑥𝑥

2. If VrfyKM 𝐴𝐴𝐸, 𝑙𝑙 ≠ 1 or 𝐴𝐴 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
𝐸 𝐴𝐴𝐸, 𝑙𝑙

85

CCA-Secure Variant in Random Oracle Model

Remark: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2
standard for public-key encryption.
• Diffie-Hellman Integrated Encryption Scheme (DHIES)
• Elliptic Curve Integrated Encryption Scheme (ECIES)
• Encpk(𝑚𝑚) = 𝑦𝑦𝑦𝑦 , 𝐴𝐴𝐸, MacKM 𝐴𝐴′ for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝐴𝐴𝐸 = EncKE

𝐸 𝑚𝑚
• Decsk(𝐴𝐴, 𝐴𝐴𝐸, 𝑙𝑙)
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝐴𝐴𝑥𝑥

2. If VrfyKM 𝐴𝐴𝐸, 𝑙𝑙 ≠ 1 or 𝐴𝐴 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
𝐸 𝐴𝐴𝐸, 𝑙𝑙

86

	Course Business
	Cryptography�CS 555
	Week 12: Topic 0: Discrete Log Attacks + NIST Recommendations for Concrete Security Parameters�
	Factoring Algorithms (Summary)
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log
	Discrete Log
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	Slide Number 16
	Week 12: Topic 1: Key Management
	Slide Number 18
	Key-Exchange Problem
	Key-Distribution Center �(with Symmetric Key-Crypto)
	Key-Distribution Center �(with Symmetric Key-Crypto)
	Key-Distribution Center (with Symmetric Key-Crypto)
	Key-Distribution Center (with Symmetric Key-Crypto)
	Key-Explosion Problem
	Diffie-Hellman Key Exchange
	Key-Exchange Experiment 𝐾𝐸 𝐴,Π 𝑒𝑎𝑣 𝑛 :
	Diffie-Hellman Key-Exchange is Secure
	Diffie-Hellman Assumptions
	Diffie-Hellman Key Exchange
	Diffie-Hellman Key-Exchange is Secure
	Diffie-Hellman Key Exchange
	Man in the Middle Attack (MITM)
	Man in the Middle Attack (MITM)
	Password Authenticated Key-Exchange
	Password Authenticated Key-Exchange
	Password Authenticated Key-Exchange (PAKE)
	Key-Explosion Problem
	Public Key Revolution
	Week 12 Topic 2: Formalizing Public Key Cryptography
	Public Key Encryption: Basic Terminology
	Public Key Encryption Syntax
	Chosen-Plaintext Attacks
	Recap CPA-Security (Symmetric Key Crypto)
	Chosen-Plaintext Attacks
	CPA-Security (PubK A,Π LR−cpa n)
	CPA-Security (Single Message)
	Private Key Crypto
	Public Key Crypto
	Encrypting Longer Messages
	Chosen Ciphertext Attacks
	Recap CCA-Security (Symmetric Key Crypto)
	Recap CCA-Security 𝑃𝑟𝑖𝑣𝐾 𝐴,Π 𝑐𝑐𝑎 𝑛
	CCA-Security (PubK A,Π cca n)
	Encrypting Longer Messages
	Encrypting Longer Messages
	Encrypting Longer Messages
	Achieving CPA and CCA-Security
	Key Encapsulation Mechanism (KEM)
	KEM CCA-Security (KEM A,Π cca n)
	CCA-Secure Encryption from CCA-Secure KEM
	CCA-Secure KEM in the Random Oracle Model
	Week 12 Topic 3: El-Gamal Encryption
	A Quick Remark about Groups
	A Quick Remark about Groups
	El-Gamal Encryption
	El-Gamal Encryption
	CPA-Security (PubK A,Π LR−cpa n)
	El-Gamal Encryption
	Eavesdropping Security (PubK A,Π eav n)
	El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	Key Encapsulation Mechanism (KEM)
	KEM CCA-Security (KEM A,Π cca n)
	Recall: Last Lecture
	KEM CPA-Security (KEM A,Π cpa n)
	CCA-Secure Encryption from CPA-Secure KEM
	CPA-Secure KEM with El-Gamal
	CPA-Secure KEM with El-Gamal
	CPA-Secure KEM with El-Gamal
	CPA-Secure KEM with El-Gamal
	CCA-Secure Variant in Random Oracle Model
	CCA-Secure Variant in Random Oracle Model
	CCA-Secure Variant in Random Oracle Model

