Course Business

* Homework 3
e Due: Tuesday, October 315t at the beginning of class

e Professor Blocki is travelling, but will be back on Thursday

e Remaining Office Hours before Deadline:
e Professor Blocki: Friday @ 10:30 AM
e TA Duc Le: Wed @ 10AM
* TA Duc Le: Mon @ 10AM



Cryptography
CS 555

Week 10:

* RSA

e Attacks on Plain RSA
e Discrete Log/DDH
Readings: Katz and Lindell Chapter 8.2-8.3,11.5.1

Fall 2017



CS 555: Week 10: Topic 1
Finding Prime Numbers, RSA




Recap

* Number Theory Basics

e Polynomial Time Operations on Integers
e Addition/Subtraction/Multiplication/Division
e Exponentiation Modulo N

e GCD
e Find Modular Inverse of x € Z:
¢ p(N) = |27

* Special Case: ¢(pg) = (p — 1)(q — 1) for distinct primes p and q

e Key Property: For each g € Z* and integer x € N we have
[g¥mod NJ = [glx med #Mimed NJ



RSA Key-Generation

KeyGeneration(1")
Step 1: Pick two random n-bit primes p and g

Step 2: Let N=pq, p(N) = (p — D)(q — 1)
Step 3: ...

Question: How do we accomplish step one?



Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at
least 1/3,,.

R Prime(1" ‘o
Gen.erate andomPrime(1") Can we do this in
For i=1 to 3nZ:

i
o & (0,1} polynomial time:
p< 1||p’
if isPrime(p) then

return p
return fail



Bertrand’s Postulate

Iheorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least
/3n-

Assume for now that we can run isPrime(p). What are the
odds that the algorithm fails?

GenerateRandomPrime(1")

For i=1 to 3n?: On each iteration the probability that p is not a prime is
p’ € {0,1) (1-2)
p< 1lp’
if isPrime(p) then We fail if we pick a non-prime in all 3n? iterations. The
return p probability of failure is at most

return fail




isPrime(p): Miller-Rabin Test
* We can check for primality of p in polynomial time in ||p]].

Theory: Deterministic algorithm to test for primality.
* See breakthrough paper “Primes is in P”

Practice: Miller-Rabin Test (randomized algorithm)
e Guarantee 1: If p is prime then the test outputs YES

e Guarantee 2: If p is not prime then the test outputs NO except with
negligible probability.

https://www.cse.iitk.ac.in/users/manindra/algebra/primality v6.pdf



https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1!
Output: “prime” or “composite”
fori=1to t:
a < {1,..,N-1}
if a1 # 1 mod N then return “composite”
Return “prime”

Claim: If N is prime then algorithm always outputs “prime”
Proof: For any a € {1,..,N-1} we have a1 = a®W™) = 1 mod N



The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1° Need a bit of extra work to
Output: “prime” or “composite” handle Carmichael
fori=1to t: numbers (see textbook).

a < {1,.. N-1}
if a1 # 1 mod N then return “composit
Return “prime”

Fact: If N is composite and not a Carmichael number then the algorithm
outputs “composite” with probability

1—-271

10



Back to RSA Key-Generation

KeyGeneration(1")
Step 1: Pick two random n-bit primes p and q

Step 2: Let N=pqg, ¢(N) = (p — 1)(q — 1)
Step 3: Pick e > 1 such that gcd(e, p(N))=1
Step 4: Set d=[e! mod ¢p(N)] (secret key)
Return: N, e, d

e How do we find d?
* Answer: Use extended gcd algorithm to find e*mod ¢ (N).



Be Careful Where You Get Your “Random Bits!”

int getRandomNumber () AfS TECHNICA & mon
return 4; j;' ;::3:: tt’ff‘i‘:i‘:;ji | Millions of high-security crypto keys
? crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data.

DAN GOODIN - 10/16/2017, 7:00 AM

* RSA Keys Generated with weak PRG

. EESTI VABARIIK DIGITAALNE ISIKUTUNNISTUS
e Implementation Flaw MemmCoRESTMA  DIGITAL DENTITY GARD
e Unfortunately Commonplace @ R EES
e Resulting Keys are Vulnerable e~ 02122017
e Sophisticated Attack P Mreavie
. ;::g#;g;fgLRsféOSLLLJEEKS KASUTAMISEKS
e Coppersmith’s Method

o]

Enlarge / 750,000 Estonian cards that look like this us

e a 2048-bit RSA key that can be factored in a matter of days.

The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017) .



(Plain) RSA Encryption

e Public Key: PK=(N,e)
e Message m € Z

" Enc, (m) = [m® mod N]

 Remark: Encryption is efficient if we use the power mod algorithm.



(Plain) RSA Decryption

e Secret Key: SK=(N,d)
e Ciphertext c € Z

N

Dec,(c) = [c? mod N]

e Remark 1: Decryption is efficient if we use the power mod algorithm.
* Remark 2: Suppose that m € Z' and let c=Ency(m) = [m® mod N]

[(m®)? mod N] = [m®? mod N]
[ [ed mod ¢p(N)] mod N]

= [m'modN|] =m

Decg(c) =



RSA Decryption

e Secret Key: SK=(N,d)
e Ciphertext c € Z

N

Dec,(c) = [c? mod N]

 Remark 1: Decryption is efficient if we use the power mod algorithm.

* Remark 2: Suppose that m € Z° and let c=Enc,(m) = Im€ mod N] then
Decg(c) = m
* Remark 3: Evenifm € Z — Z and let c=Encp(m) = [m® mod N] then
ﬁecs,((c) = m
e Use Chinese Remainder Theorem to show this



Plain RSA (Summary)

» Public Key (pk): N = pq, e such that GCD(e, ¢p(N)) = 1
e (N) = (p —1)(q — 1) for distinct primes p and q

 Secret Key (sk): N, d such that ed=1 mod ¢(N)

* Encrypt(pk=(N,e),m) =m® mod N

e Decrypt(sk=(N,d),c) =c® mod N

e Decryption Works because
[c®*mod N] = [m®@¥mod N] = [mled mod $(MImod N| = [m mod N]



Factoring Assumption

Let GenModulus(1") be a randomized algorithm that outputs
(N=pq,p,q) where p and q are n-bit primes (except with negligible
probability negl(n)).

Experiment FACTOR, ,

1. (N=pq,p,q) € GenModulus(1")

2. Attacker Ais given N as input

3. Attacker Aoutputsp’>1landqg >1
4. Attacker A wins if N=p'q’.




Factoring Assumption

 Necessary for security of RSA.
Experiment FACTOR, , * Not known to be sufficient.
1. (N=pq,p,q) € GenModulus(1")
2. Attacker Ais given N as input
3. Attacker Aoutputsp’>1landqg >1
4. Attacker A wins (FACTOR, , = 1) if and only if N=p’q".

VPPT A Ju (negligible) s.t Pr[FACTOR, , = 1] < u(n)

18



RSA-Assumption

RSA-Experiment: RSA-INV,

1. Run KeyGeneration(1") to obtain (N,e,d)

2. Pick uniformy € Z:

3. Attacker Ais given N, e, y and outputs X € Z:
4. Attacker wins (RSA-INV, =1) if x® = y mod N

VPPT A Ju (negligible) s.t Pr[RSA-INVA = 1] < u(n)



RSA-Assumption

RSA-Experiment: RSA-INV,

1. Run KeyGeneration(1") to obtain (N,e,d)

2. Pick uniformy € Z:

3. Attacker Ais given N, e, y and outputs x € Z:
4. Attacker wins (RSA-INV, =1) if x® = y mod N

VPPT A Ju (negligible) s.t Pr[RSA-INVA = 1] < u(n)

* Plain RSA Encryption behaves like a one-way function

e Attacker cannot invert encryption of random message

20



Discussion of RSA-Assumption

* Plain RSA Encryption behaves like a one-way-function
e Decryption key is a “trapdoor” which allows us to invert the OWF

e RSA-Assumption = OWFs exist



Recap

e Plain RSA

» Public Key (pk): N = pq, e such that GCD(e, ¢p(N)) = 1
e d(N) = (p —1)(q — 1) for distinct primes p and q

* Secret Key (sk): N, d such that ed=1 mod ¢(N)

* Encrypt(pk=(N,e),m) =m® mod N

e Decrypt(sk=(N,d),c) =c® mod N

e Decryption Works because
[c?*mod N] = [m®@mod N] = [mléd mod #NMImed N| = [m mod N]



Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555 Springl7/slid

es/Lecture24Demo.nb

Note: Online version of mathematica available at
https://sandbox.open.wolframcloud.com (reduced functionality, but
can be used to solve homework bonus problems)

23


https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb
https://sandbox.open.wolframcloud.com/

(Toy) RSA Implementation in Mathematica

(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *)
SeedRandom|[123456]
(* Step 1: Generate primes for an RSA key *)
p = RandomPrime[{1071000, 1071050}];
q = RandomPrime[{1071000, 10r1050}];
NN=paqg; (*Symbol N is protected in mathematica *)

phi=(p-1)(q-1);

https://www.cs.purdue.edu/homes/jblocki/courses/555 Springl7/slides/Lecture24Demo.nb



https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

(Toy) RSA Implementation in Mathematica

(* Step 1.A: Find e *)

GCD[phi,7]

Output: 7/

(* GCD[phi,7] is not 1, so he have to try a different value of e *)
GCD[phi,3]

Output: 1

(* We can set e=3 *)
e=3;

https://www.cs.purdue.edu/homes/jblocki/courses/555 Springl7/slides/Lecture24Demo.nb



https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

(Toy) RSA Implementation in Mathematica

(* Step 1.B find d s.t. ed =1 mod N by using the extended GCD algorithm *)
(* Mathematica is clever enough to do this automatically *)

Solve[e x == 1, Modulus->phi]
Output:
{{x->36469680590663028301700626132883867272718728905205088...
394069421778610209425624440980084481398131}}
(* We can now setd =x *)

d=364696805.... 8131;



(Toy) RSA Implementation in Mathematica

(* Double Check 1 = [ed mod ¢ (N)] *)
Mod [e d, (p-1)(g-1)]

Output: 1

(* Encrypt the message 200, c= m”"e mod N *)
m = 200;
PowerMod[m,e,NN]

Output: 8 000 000



(Toy) RSA Implementation in Mathematica

(* Encrypt the message 200, c= m”"e mod N *)
m = 200;
PowerMod[m,e,NN]

Output: 8 000 000

(* Hm...That doesn't seem too secure *)
CubeRoot[PowerMod[m,e,NN]]

Output: 200

(* Moral: if m¢ < N then Plain RSA does not hide the message m. *)



RSA Implementation in Mathematica

(* Encrypt a larger message, c= m”e mod N *)
SeedRandom[1234567];
m2= Randominteger[{1071500,10°1501}];
c=PowerMod[m2,e,NN]

Output: 405215834903772786......... 388068292685976133

(* Does it Decrypt Properly? *)
PowerMod|c,d, NN]-m2

Output: 0

(* Yes! *)



CS 555: Week 10: Topic 2
Attacks on Plain RSA



(Plain) RSA Discussion

* We have not introduced security models like CPA-Security or CCA-
security for Public Key Cryptosystems

 However, notice that (Plain) RSA Encryption is stateless and
deterministic.

—>Plain RSA is not secure against chosen-plaintext attacks

* As we will see Plain RSA is also highly vulnerable to chosen-ciphertext
attacks



(Plain) RSA Discussion

 However, notice that (Plain) RSA Encryption is stateless and deterministic.

—Plain RSA is not secure against chosen-plaintext attacks

 Remark: In a public key setting the attacker who knows the public key
always has access to an encryption oracle

* Encrypted messages with low entropy are particularly vulnerable to brute-

force attacks
 Example: If m < B then attacker can recover m from ¢ = Encpk(m) after at most B
gueries to encryption oracle (using public key)



Chosen Ciphertext Attack on Plain RSA

1. Attacker intercepts ciphertext ¢ = [m€ mod N]

2. Attacker generates ciphertext ¢’ for secret message 2m as follows
3. ¢ =[(c2f) modN]

4. = [(m®2¢) mod N}

5. = [(2m)€ mod N]

6. Attacker asks for decryption of [c2° mod N] and receives 2m.

7. Divide by two to recover message

Above Example: Shows plain RSA is highly vulnerable to ciphertext-
tampering attacks



More Weaknesses: Plain RSA with small e

* (Small Messages) If me < N then we can decrypt c = m® mod N directly
e.g., m=c(l/e)

e (Partially Known Messages) If an attacker knows first 1-(1/e) bits of
secret message m = m4||? ? then he can recover m given
Encrypt(pk,m) = m®mod N

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in
polynomial time (in log(N), €) we can find all m such that p(m) = 0 mod

N and | m|<N(1/e)



More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in

polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod
N and | m|<N(1/e)

Example: e = 3, m = m,||m, and attacker knows m(2k bits) and ¢ =
(m,|lm,)®mod N, but not m,(k bits)

p(x) = (2%m, + x)3 —C

Polynomial has a small root mod N at x=m, and coppersmith’s method
will find it!

D. Coppersmith (1996). "Finding a Small Root of a Univariate Modular Equation”.



More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: Can also find small roots of bivariate
polynomial p(x{, x5)

* Similar Approach used to factor weak RSA secret keys N=q,q,

* Weak PRG = Can guess many of the bits of prime factors
e Obtaing; = gy andq; = q,
* Coppersmith Attack: Define polynomial p(.,.) as follows
p(x1,x2) = (X1 +q1)(x2 +q2) — N
e Small Roots of p(x¢,x3): x; =q; —q{ andx, =q, — 7,

D. Coppersmith (1996). "Finding a Small Root of a Bivariate Integer Equation; Factoring with high bits known"



adlf'S TECHNICA & #iar

Millions of high-security crypto keys
crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data.

DAN GOODIN - 10/16/2017, 7-:00 AM

EESTI VABARIIK DIGITAALNE ISIKUTUNNISTUS
REPUBLIC OF ESTONIA DIGITAL IDENTITY CARD

@ JURVETSON
STEPHEN

KEHTIV KUNI / DATE OF EXPIRY 02.142.2017
DOKUMEND! NUMBER / DOCUMENT NUMBER NO1

ISIKUKOOD / PERSONAL CODE 367030100

AINULT ELEKTROONILISEKS KASUTAMISEKS
ELECTRONIC USE ONLY

5]

Enlarge / 750,000 Estonian cards that look like this use a 2048-bit RSA key that can be factored in a matter of days.

The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017)
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Fixes for Plain RSA

 Approach 1: RSA-OAEP

 Incorporates random nonce r
e CCA-Secure (in random oracle model)

e Approach 2: Use RSA to exchange symmetric key for Authenticated
Encryption scheme (e.g., AES)

e Key Encapsulation Mechanism (KEM)

 More details in future lectures...stay tuned!
 For now we will focus on attacks on Plain RSA



Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let f: ZN = Z, X
L, be defined as follows

f(x) = ([x mod p], [x mod q])
then

 fis a bijective mapping (invertible)
e fand its inversef ~1: Ly, X L, = ZN can be computed efficiently
*flx+y)=fx)+f)

* The restriction of f to Z; yields a bijective mapping to Z;‘ X Z:
* Forinputs x,y € Z" we have fO)f(y) = f(xy)



Chinese Remainder Theorem

Application of CRT: Faster computation
Example: Compute [11°3 mod 15]
f(11)=([-1 mod 3],[1 mod 5])

f(11°3) =([(-1)°3 mod 3],[1°3 mod 5])= (-1,1)

f(-1,1)=11

Thus, 11=[11°3 mod 15]



A Side Channel Attack on RSA with CRT

e Suppose that decryption is done via Chinese Remainder Theorem for
speed.

Decg,(c) = c?mod N < (¢® mod p,c? mod q)

e Attacker has physical access to smartcard
e Can mess up computation of ¢4 mod p
e ResponseisR & (r, c? mod q)
* R—m & (r—mmod p,0 mod q)
e GCD(R-m,N)=q

43



Recovering Encrypted Message faster than
Brute-Force

: 1
Claim: Let m < 2" be a secret message. For some constant @ = > + €.
We can recover minin time T = 29™ with high probability.

Forr=1,...,T
let x. = [cr~®mod N], wherer=¢ = (r"1)®mod N
Sort L = {(r,x,)}]_; (by the x_values)
For s=1,....T
if [s®mod N] = x,.for some r then
return [rs mod N|



Recovering Encrypted Message faster than
Brute-Force

Forr=1,...T
let x. = [cr®mod N], where r=¢ = (r~1)émod N
Sort L = {(r, x,)}_ (by the x_values)
Fors=1,...T
if [s®mod N| = x, for some r then
return [rs mod N]

Analysis: [rs mod N| = [r(s®)¢ mod N] = [r(x,)¢ mod N]
= [r(cr~®)?mod N] = [rr~¢%(c)? mod N]
= [rr"'m mod N] = m



Recovering Encrypted Message faster than
Brute-Force

Forr=1,...,T
let x. = [cr~®mod N], wherer=¢ = (r"1)®mod N
Sort L = {(1,x,)}]_; (by the x_values)
For s=1,....T
if [s®mod N] = x,- for some r then
return [rs mod N|]

Fact: some constant a = % + £ setting T = 2% with high probability
we will find a pair s and x, with [s®mod N| = xr.



Recovering Encrypted Message faster than
Brute-Force

: 1
Claim: Let m < 2"be a secret message. For some constant a = > + €.
We can recover minin time T = 29" with high probability.

Roughly v/B steps to find a secret message m < B



CS 555: Week 10: Topic 3
Discrete Log + DDH Assumption



(Recap) Finite Groups

Definition: A (finite) group is a (finite) set G with a binary operation o (over
G) for which we have

 (Closure:) Forallg,h € Gwehavegoh € G
e (Identity:) There is an element e € G such that for allg € G we have
g o e = g = eo g
* (Inverses:) For each element fg € Gwecanfindh € Gsuchthatgoh =e.
We say that h is the inverse of g.

* (Associativity: ) For all g,, g,, 8; € G we have

(81°82) 283 =81°(8,°83)
We say that the group is abelian if
e (Commutativity:) Forallg,h € Gwehavegoh =hog



Finite Abelian Groups (Examples)

 Example 1: ZN when o denotes addition modulo N
e |dentity: 0, since 0 o x =[0+x mod N] = [x mod N].
* Inverse of x? Set x1=N-x so that [x1+x mod N] = [N-x+x mod N] = 0.

 Example 2: Z: when o denotes multiplication modulo N
e |dentity: 1, since 1o x =[1(x) mod N] = [x mod N].

* Inverse of x? Run extended GCD to obtain integers a and b such that
ax + bN = gcd(x,N) =1

Observe that: x* = a. Why?



Cyclic Group

* Let G be a group with order m = |G| with a binary operation o (over G)
and let g € @ be given consider the set

(9) =19% g% 9% ...}

Fact: (g) defines a subgroup of G.

* |dentity: g*

e Closure: gio g/ = g'*/ € {g)

e gis called a “generator” of the subgroup.

Eact: Letr = |{g)| then g' = g/ ifand onlyif i = j mod r. Also m is divisible
yr.



Finite Abelian Groups (Examples)

Fact: Let p be a prime then Z,, is a cyclic group of order p-1.

* Note: Number of generators g s.t. of (g) = Zj is |¢;p__11)|

Example (non-generator): p=7, g=2
<2>={1,2,4}

Example (generator): p=7, g=5
<2>={11514)612)3}



Discrete Log Experiment DLog, 5(n)

1. Run G(1") to obtain a cyclic group G of order g (with ||g|| = n) and
a generator g such that < g >= G.

2. Select h € G uniformly at random.
3. Attacker Ais given @, g, g, h and outputs integer x.
4. Attacker wins (DLog, (n)=1) if and only if g*=h.

We say that the discrete log problem is hard relative to generator G if
VPPT A Ju (negligible) s.t Pr[Dlog,, = 1] < u(n)



Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)
e Attacker is givenh, = g*1 € Gand h, = g*2 € G.
e Attackers goal is to find g***2= (h,)*2 = (h,)**

 CDH Assumption: For all PPT A there is a negligible function negl upper
bounding the probability that A succeeds with probability at most negl(n).

Decisional Diffie-Hellman Problem (DDH)

e Letz, = g*1*2 and letz, = g", where x,,x, and r are random
e Attacker is given g*t, g*2 and z, (for a random bit b)

e Attackers goal is to guess b

 DDH Assumption: For all PPT A there is a negligible function negl such that
A succeeds with probability at most 2 + neg n%.



Secure key-agreement with DDH

1. Alice publishes g*a and Bob publishes g*s

2. Alice and Bob can both compute K, 5 = g”z %4 but to Eve this key is
indistinguishable from a random group element (by DDH)

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob
cannot validate g*a.



Can we find a cyclic group where DDH holds?

* Example 1: Z;, where p is a random n-bit prime.

e CDH is believed to be hard
e DDH is *not* hard (Exercise 13.15)

* Theorem: Let p=rq+1 be a random n-bit prime where g is a large A-
bit prime then the set of rt" residues modulo p is a cyclic subgroup of
order q. Then G, = {[h’”mod p]‘h € Z;‘,} is a cyclic subgroup of Zj, of
order q.

e Remark 1: DDH is believed to hold for such a group
e Remark 2: It is easy to generate uniformly random elements of G,
 Remark 3: Any element (besides 1) is a generator of G,



Can we find a cyclic group where DDH holds?

e Theorem: Let p=rq+1 be a random n-bit prime where g is a large A-bit
prime then the set of rth residues modulo p is a cyclic subgroup of order g.

Then G, = {[hrmod p| ‘h € Z;’;} is a cyclic subgroup of Z,, of order q.
e Closure: h"g" = (hg)"
* Inverse of h"is (h™1)" € G,
e Sjze (hr)x — h[rx mod rq] — (hr)x — hr[x mod q] — (hr)[x mod q]mod D

Remark: Two known attacks on Discrete Log Problem for G,.(Section 9.2).
e First runs in time 0(y/q) = 0(2%/2)

e Second runs in time 20(¥Vn(logn)?/3)



Can we find a cyclic group where DDH holds?

Remark: Two known attacks (Section 9.2).
e First runs in time 0(y/q) = 0(2%/2)
e Second runs in time 20(¥n(og ")2/3), where n is bit length of p

Goal: Set A and n to balance attacks
A = 0(3n(logn)?/3)

How to sample p=rg+17?
e First sample a random A-bit prime g and
e Repeatedly check if rg+1 is prime for a random n- A bit value r



Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be
constants. Consider the equation
y>=x3+Ax + Bmodp

And let
E(Zp) ={(x,y) € Z%‘yz = x3+ Ax + Bmod p } U {0}

Note: O is defined to be an additive identity (x,y) + 0 = (x,y)

What is (x,,y,) + (x5, y,)?



Elliptic Curve Example

(x1,¥1)

(X3,-y3)=(x1, ¥1) + (X3, ¥,) |

The line passing through

(x4, ¥1) and (x,,y,) has the
equation

y =m(x —x,) +y, mod P

Where the slope
Y1— W2
m =

X1 — Xy

mod p]

60



Elliptic Curve Example

(X3,¥3)

Formally, let
V1 — Yy ]
m = mod p

Be the slope. Then the line
passing through (x,, y,) and
(x5, ¥,) has the equation
(X3¥3)=(Xy, ¥1) + (2, ¥2) y =m(x —x,) +y, modP

X3 = [m? — x; — x,mod p]

y3 = [m(x; — x1) + ¥y, mod p] (m(x = x,) + y,)*

=x3+Ax+Bmodp =«






Elliptic Curve Example
3 i

No third point R on the elliptic curve.

P+Q=0
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Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants.
Consider the equation
y>=x3+Ax + Bmodp

And let
E(Zp) = {(x,y) € Zzz,‘yz = x3+Ax+Bm0dp}U {0}

Fact: E(Zp ) defines an abelian group

e For appropriate curves the DDH assumption is believed to hold

* |f you make up your own curve there is a good chance it is broken...
e NIST has a list of recommendations
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