Course Business

* Homework 3
e Due: Tuesday, October 315t at the beginning of class

e Professor Blocki is travelling, but will be back on Thursday

e Remaining Office Hours before Deadline:
e Professor Blocki: Friday @ 10:30 AM
e TA Duc Le: Wed @ 10AM
* TA Duc Le: Mon @ 10AM

Cryptography
CS 555

Week 10:

* RSA

e Attacks on Plain RSA
e Discrete Log/DDH
Readings: Katz and Lindell Chapter 8.2-8.3,11.5.1

Fall 2017

CS 555: Week 10: Topic 1
Finding Prime Numbers, RSA

Recap

* Number Theory Basics

e Polynomial Time Operations on Integers
e Addition/Subtraction/Multiplication/Division
e Exponentiation Modulo N

e GCD
e Find Modular Inverse of x € Z:
¢ p(N) = |27

* Special Case: ¢(pg) = (p — 1)(q — 1) for distinct primes p and q

e Key Property: For each g € Z* and integer x € N we have
[g¥mod NJ = [glx med #Mimed NJ

RSA Key-Generation

KeyGeneration(1")
Step 1: Pick two random n-bit primes p and g

Step 2: Let N=pq, p(N) = (p — D)(q — 1)
Step 3: ...

Question: How do we accomplish step one?

Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at
least 1/3,,.

R Prime(1" ‘o
Gen.erate andomPrime(1") Can we do this in
For i=1 to 3nZ:

i
o & (0,1} polynomial time:
p< 1||p’
if isPrime(p) then

return p
return fail

Bertrand’s Postulate

Iheorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least
/3n-

Assume for now that we can run isPrime(p). What are the
odds that the algorithm fails?

GenerateRandomPrime(1")

For i=1 to 3n?: On each iteration the probability that p is not a prime is
p’ € {0,1) (1-2)
p< 1lp’
if isPrime(p) then We fail if we pick a non-prime in all 3n? iterations. The
return p probability of failure is at most

return fail

isPrime(p): Miller-Rabin Test
* We can check for primality of p in polynomial time in ||p]].

Theory: Deterministic algorithm to test for primality.
* See breakthrough paper “Primes is in P”

Practice: Miller-Rabin Test (randomized algorithm)
e Guarantee 1: If p is prime then the test outputs YES

e Guarantee 2: If p is not prime then the test outputs NO except with
negligible probability.

https://www.cse.iitk.ac.in/users/manindra/algebra/primality v6.pdf

https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1!
Output: “prime” or “composite”
fori=1to t:
a < {1,..,N-1}
if a1 # 1 mod N then return “composite”
Return “prime”

Claim: If N is prime then algorithm always outputs “prime”
Proof: For any a € {1,..,N-1} we have a1 = a®W™) = 1 mod N

The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1° Need a bit of extra work to
Output: “prime” or “composite” handle Carmichael
fori=1to t: numbers (see textbook).

a < {1,.. N-1}
if a1 # 1 mod N then return “composit
Return “prime”

Fact: If N is composite and not a Carmichael number then the algorithm
outputs “composite” with probability

1—-271

10

Back to RSA Key-Generation

KeyGeneration(1")
Step 1: Pick two random n-bit primes p and q

Step 2: Let N=pqg, ¢(N) = (p — 1)(q — 1)
Step 3: Pick e > 1 such that gcd(e, p(N))=1
Step 4: Set d=[e! mod ¢p(N)] (secret key)
Return: N, e, d

e How do we find d?
* Answer: Use extended gcd algorithm to find e*mod ¢ (N).

Be Careful Where You Get Your “Random Bits!”

int getRandomNumber () AfS TECHNICA & mon
return 4; j;' ;::3:: tt’ff‘i‘:i‘:;ji | Millions of high-security crypto keys
? crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data.

DAN GOODIN - 10/16/2017, 7:00 AM

* RSA Keys Generated with weak PRG

. EESTI VABARIIK DIGITAALNE ISIKUTUNNISTUS
e Implementation Flaw MemmCoRESTMA DIGITAL DENTITY GARD
e Unfortunately Commonplace @ R EES
e Resulting Keys are Vulnerable e~ 02122017
e Sophisticated Attack P Mreavie
. ;::g#;g;fgLRsféOSLLLJEEKS KASUTAMISEKS
e Coppersmith’s Method

o]

Enlarge / 750,000 Estonian cards that look like this us

e a 2048-bit RSA key that can be factored in a matter of days.

The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017) .

(Plain) RSA Encryption

e Public Key: PK=(N,e)
e Message m € Z

" Enc, (m) = [m® mod N]

 Remark: Encryption is efficient if we use the power mod algorithm.

(Plain) RSA Decryption

e Secret Key: SK=(N,d)
e Ciphertext c € Z

N

Dec,(c) = [c? mod N]

e Remark 1: Decryption is efficient if we use the power mod algorithm.
* Remark 2: Suppose that m € Z' and let c=Ency(m) = [m® mod N]

[(m®)? mod N] = [m®? mod N]
[[ed mod ¢p(N)] mod N]

= [m'modN|] =m

Decg(c) =

RSA Decryption

e Secret Key: SK=(N,d)
e Ciphertext c € Z

N

Dec,(c) = [c? mod N]

 Remark 1: Decryption is efficient if we use the power mod algorithm.

* Remark 2: Suppose that m € Z° and let c=Enc,(m) = Im€ mod N] then
Decg(c) = m
* Remark 3: Evenifm € Z — Z and let c=Encp(m) = [m® mod N] then
ﬁecs,((c) = m
e Use Chinese Remainder Theorem to show this

Plain RSA (Summary)

» Public Key (pk): N = pq, e such that GCD(e, ¢p(N)) = 1
e (N) = (p —1)(q — 1) for distinct primes p and q

 Secret Key (sk): N, d such that ed=1 mod ¢(N)

* Encrypt(pk=(N,e),m) =m® mod N

e Decrypt(sk=(N,d),c) =c® mod N

e Decryption Works because
[c®*mod N] = [m®@¥mod N] = [mled mod $(MImod N| = [m mod N]

Factoring Assumption

Let GenModulus(1") be a randomized algorithm that outputs
(N=pq,p,q) where p and q are n-bit primes (except with negligible
probability negl(n)).

Experiment FACTOR, ,

1. (N=pq,p,q) € GenModulus(1")

2. Attacker Ais given N as input

3. Attacker Aoutputsp’>1landqg >1
4. Attacker A wins if N=p'q’.

Factoring Assumption

 Necessary for security of RSA.
Experiment FACTOR, , * Not known to be sufficient.
1. (N=pq,p,q) € GenModulus(1")
2. Attacker Ais given N as input
3. Attacker Aoutputsp’>1landqg >1
4. Attacker A wins (FACTOR, , = 1) if and only if N=p’q".

VPPT A Ju (negligible) s.t Pr[FACTOR, , = 1] < u(n)

18

RSA-Assumption

RSA-Experiment: RSA-INV,

1. Run KeyGeneration(1") to obtain (N,e,d)

2. Pick uniformy € Z:

3. Attacker Ais given N, e, y and outputs X € Z:
4. Attacker wins (RSA-INV, =1) if x® = y mod N

VPPT A Ju (negligible) s.t Pr[RSA-INVA = 1] < u(n)

RSA-Assumption

RSA-Experiment: RSA-INV,

1. Run KeyGeneration(1") to obtain (N,e,d)

2. Pick uniformy € Z:

3. Attacker Ais given N, e, y and outputs x € Z:
4. Attacker wins (RSA-INV, =1) if x® = y mod N

VPPT A Ju (negligible) s.t Pr[RSA-INVA = 1] < u(n)

* Plain RSA Encryption behaves like a one-way function

e Attacker cannot invert encryption of random message

20

Discussion of RSA-Assumption

* Plain RSA Encryption behaves like a one-way-function
e Decryption key is a “trapdoor” which allows us to invert the OWF

e RSA-Assumption = OWFs exist

Recap

e Plain RSA

» Public Key (pk): N = pq, e such that GCD(e, ¢p(N)) = 1
e d(N) = (p —1)(q — 1) for distinct primes p and q

* Secret Key (sk): N, d such that ed=1 mod ¢(N)

* Encrypt(pk=(N,e),m) =m® mod N

e Decrypt(sk=(N,d),c) =c® mod N

e Decryption Works because
[c?*mod N] = [m®@mod N] = [mléd mod #NMImed N| = [m mod N]

Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555 Springl7/slid

es/Lecture24Demo.nb

Note: Online version of mathematica available at
https://sandbox.open.wolframcloud.com (reduced functionality, but
can be used to solve homework bonus problems)

23

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb
https://sandbox.open.wolframcloud.com/

(Toy) RSA Implementation in Mathematica

(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *)
SeedRandom|[123456]
(* Step 1: Generate primes for an RSA key *)
p = RandomPrime[{1071000, 1071050}];
q = RandomPrime[{1071000, 10r1050}];
NN=paqg; (*Symbol N is protected in mathematica *)

phi=(p-1)(q-1);

https://www.cs.purdue.edu/homes/jblocki/courses/555 Springl7/slides/Lecture24Demo.nb

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

(Toy) RSA Implementation in Mathematica

(* Step 1.A: Find e *)

GCD[phi,7]

Output: 7/

(* GCD[phi,7] is not 1, so he have to try a different value of e *)
GCD[phi,3]

Output: 1

(* We can set e=3 *)
e=3;

https://www.cs.purdue.edu/homes/jblocki/courses/555 Springl7/slides/Lecture24Demo.nb

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

(Toy) RSA Implementation in Mathematica

(* Step 1.B find d s.t. ed =1 mod N by using the extended GCD algorithm *)
(* Mathematica is clever enough to do this automatically *)

Solve[e x == 1, Modulus->phi]
Output:
{{x->36469680590663028301700626132883867272718728905205088...
394069421778610209425624440980084481398131}}
(* We can now setd =x *)

d=364696805.... 8131;

(Toy) RSA Implementation in Mathematica

(* Double Check 1 = [ed mod ¢ (N)] *)
Mod [e d, (p-1)(g-1)]

Output: 1

(* Encrypt the message 200, c= m”"e mod N *)
m = 200;
PowerMod[m,e,NN]

Output: 8 000 000

(Toy) RSA Implementation in Mathematica

(* Encrypt the message 200, c= m”"e mod N *)
m = 200;
PowerMod[m,e,NN]

Output: 8 000 000

(* Hm...That doesn't seem too secure *)
CubeRoot[PowerMod[m,e,NN]]

Output: 200

(* Moral: if m¢ < N then Plain RSA does not hide the message m. *)

RSA Implementation in Mathematica

(* Encrypt a larger message, c= m”e mod N *)
SeedRandom[1234567];
m2= Randominteger[{1071500,10°1501}];
c=PowerMod[m2,e,NN]

Output: 405215834903772786......... 388068292685976133

(* Does it Decrypt Properly? *)
PowerMod|c,d, NN]-m2

Output: 0

(* Yes! *)

CS 555: Week 10: Topic 2
Attacks on Plain RSA

(Plain) RSA Discussion

* We have not introduced security models like CPA-Security or CCA-
security for Public Key Cryptosystems

 However, notice that (Plain) RSA Encryption is stateless and
deterministic.

—>Plain RSA is not secure against chosen-plaintext attacks

* As we will see Plain RSA is also highly vulnerable to chosen-ciphertext
attacks

(Plain) RSA Discussion

 However, notice that (Plain) RSA Encryption is stateless and deterministic.

—Plain RSA is not secure against chosen-plaintext attacks

 Remark: In a public key setting the attacker who knows the public key
always has access to an encryption oracle

* Encrypted messages with low entropy are particularly vulnerable to brute-

force attacks
 Example: If m < B then attacker can recover m from ¢ = Encpk(m) after at most B
gueries to encryption oracle (using public key)

Chosen Ciphertext Attack on Plain RSA

1. Attacker intercepts ciphertext ¢ = [m€ mod N]

2. Attacker generates ciphertext ¢’ for secret message 2m as follows
3. ¢ =[(c2f) modN]

4. = [(m®2¢) mod N}

5. = [(2m)€ mod N]

6. Attacker asks for decryption of [c2° mod N] and receives 2m.

7. Divide by two to recover message

Above Example: Shows plain RSA is highly vulnerable to ciphertext-
tampering attacks

More Weaknesses: Plain RSA with small e

* (Small Messages) If me < N then we can decrypt c = m® mod N directly
e.g., m=c(l/e)

e (Partially Known Messages) If an attacker knows first 1-(1/e) bits of
secret message m = m4||? ? then he can recover m given
Encrypt(pk,m) = m®mod N

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in
polynomial time (in log(N), €) we can find all m such that p(m) = 0 mod

N and | m|<N(1/e)

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in

polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod
N and | m|<N(1/e)

Example: e = 3, m = m,||m, and attacker knows m(2k bits) and ¢ =
(m,|lm,)®mod N, but not m,(k bits)

p(x) = (2%m, + x)3 —C

Polynomial has a small root mod N at x=m, and coppersmith’s method
will find it!

D. Coppersmith (1996). "Finding a Small Root of a Univariate Modular Equation”.

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: Can also find small roots of bivariate
polynomial p(x{, x5)

* Similar Approach used to factor weak RSA secret keys N=q,q,

* Weak PRG = Can guess many of the bits of prime factors
e Obtaing; = gy andq; = q,
* Coppersmith Attack: Define polynomial p(.,.) as follows
p(x1,x2) = (X1 +q1)(x2 +q2) — N
e Small Roots of p(x¢,x3): x; =q; —q{ andx, =q, — 7,

D. Coppersmith (1996). "Finding a Small Root of a Bivariate Integer Equation; Factoring with high bits known"

adlf'S TECHNICA & #iar

Millions of high-security crypto keys
crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data.

DAN GOODIN - 10/16/2017, 7-:00 AM

EESTI VABARIIK DIGITAALNE ISIKUTUNNISTUS
REPUBLIC OF ESTONIA DIGITAL IDENTITY CARD

@ JURVETSON
STEPHEN

KEHTIV KUNI / DATE OF EXPIRY 02.142.2017
DOKUMEND! NUMBER / DOCUMENT NUMBER NO1

ISIKUKOOD / PERSONAL CODE 367030100

AINULT ELEKTROONILISEKS KASUTAMISEKS
ELECTRONIC USE ONLY

5]

Enlarge / 750,000 Estonian cards that look like this use a 2048-bit RSA key that can be factored in a matter of days.

The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017)

37

Fixes for Plain RSA

 Approach 1: RSA-OAEP

 Incorporates random nonce r
e CCA-Secure (in random oracle model)

e Approach 2: Use RSA to exchange symmetric key for Authenticated
Encryption scheme (e.g., AES)

e Key Encapsulation Mechanism (KEM)

 More details in future lectures...stay tuned!
 For now we will focus on attacks on Plain RSA

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let f: ZN = Z, X
L, be defined as follows

f(x) = ([x mod p], [x mod q])
then

 fis a bijective mapping (invertible)
e fand its inversef ~1: Ly, X L, = ZN can be computed efficiently
*flx+y)=fx)+f)

* The restriction of f to Z; yields a bijective mapping to Z;‘ X Z:
* Forinputs x,y € Z" we have fO)f(y) = f(xy)

Chinese Remainder Theorem

Application of CRT: Faster computation
Example: Compute [11°3 mod 15]
f(11)=([-1 mod 3],[1 mod 5])

f(11°3) =([(-1)°3 mod 3],[1°3 mod 5])= (-1,1)

f(-1,1)=11

Thus, 11=[11°3 mod 15]

A Side Channel Attack on RSA with CRT

e Suppose that decryption is done via Chinese Remainder Theorem for
speed.

Decg,(c) = c?mod N < (¢® mod p,c? mod q)

e Attacker has physical access to smartcard
e Can mess up computation of ¢4 mod p
e ResponseisR & (r, c? mod q)
* R—m & (r—mmod p,0 mod q)
e GCD(R-m,N)=q

43

Recovering Encrypted Message faster than
Brute-Force

: 1
Claim: Let m < 2" be a secret message. For some constant @ = > + €.
We can recover minin time T = 29™ with high probability.

Forr=1,...,T
let x. = [cr~®mod N], wherer=¢ = (r"1)®mod N
Sort L = {(r,x,)}]_; (by the x_values)
For s=1,....T
if [s®mod N] = x,.for some r then
return [rs mod N|

Recovering Encrypted Message faster than
Brute-Force

Forr=1,...T
let x. = [cr®mod N], where r=¢ = (r~1)émod N
Sort L = {(r, x,)}_ (by the x_values)
Fors=1,...T
if [s®mod N| = x, for some r then
return [rs mod N]

Analysis: [rs mod N| = [r(s®)¢ mod N] = [r(x,)¢ mod N]
= [r(cr~®)?mod N] = [rr~¢%(c)? mod N]
= [rr"'m mod N] = m

Recovering Encrypted Message faster than
Brute-Force

Forr=1,...,T
let x. = [cr~®mod N], wherer=¢ = (r"1)®mod N
Sort L = {(1,x,)}]_; (by the x_values)
For s=1,....T
if [s®mod N] = x,- for some r then
return [rs mod N|]

Fact: some constant a = % + £ setting T = 2% with high probability
we will find a pair s and x, with [s®mod N| = xr.

Recovering Encrypted Message faster than
Brute-Force

: 1
Claim: Let m < 2"be a secret message. For some constant a = > + €.
We can recover minin time T = 29" with high probability.

Roughly v/B steps to find a secret message m < B

CS 555: Week 10: Topic 3
Discrete Log + DDH Assumption

(Recap) Finite Groups

Definition: A (finite) group is a (finite) set G with a binary operation o (over
G) for which we have

 (Closure:) Forallg,h € Gwehavegoh € G
e (Identity:) There is an element e € G such that for allg € G we have
g o e = g = eo g
* (Inverses:) For each element fg € Gwecanfindh € Gsuchthatgoh =e.
We say that h is the inverse of g.

* (Associativity:) For all g,, g,, 8; € G we have

(81°82) 283 =81°(8,°83)
We say that the group is abelian if
e (Commutativity:) Forallg,h € Gwehavegoh =hog

Finite Abelian Groups (Examples)

 Example 1: ZN when o denotes addition modulo N
e |dentity: 0, since 0 o x =[0+x mod N] = [x mod N].
* Inverse of x? Set x1=N-x so that [x1+x mod N] = [N-x+x mod N] = 0.

 Example 2: Z: when o denotes multiplication modulo N
e |dentity: 1, since 1o x =[1(x) mod N] = [x mod N].

* Inverse of x? Run extended GCD to obtain integers a and b such that
ax + bN = gcd(x,N) =1

Observe that: x* = a. Why?

Cyclic Group

* Let G be a group with order m = |G| with a binary operation o (over G)
and let g € @ be given consider the set

(9) =19% g% 9% ...}

Fact: (g) defines a subgroup of G.

* |dentity: g*

e Closure: gio g/ = g'*/ € {g)

e gis called a “generator” of the subgroup.

Eact: Letr = |{g)| then g' = g/ ifand onlyif i = j mod r. Also m is divisible
yr.

Finite Abelian Groups (Examples)

Fact: Let p be a prime then Z,, is a cyclic group of order p-1.

* Note: Number of generators g s.t. of (g) = Zj is |¢;p__11)|

Example (non-generator): p=7, g=2
<2>={1,2,4}

Example (generator): p=7, g=5
<2>={11514)612)3}

Discrete Log Experiment DLog, 5(n)

1. Run G(1") to obtain a cyclic group G of order g (with ||g|| = n) and
a generator g such that < g >= G.

2. Select h € G uniformly at random.
3. Attacker Ais given @, g, g, h and outputs integer x.
4. Attacker wins (DLog, (n)=1) if and only if g*=h.

We say that the discrete log problem is hard relative to generator G if
VPPT A Ju (negligible) s.t Pr[Dlog,, = 1] < u(n)

Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)
e Attacker is givenh, = g*1 € Gand h, = g*2 € G.
e Attackers goal is to find g***2= (h,)*2 = (h,)**

 CDH Assumption: For all PPT A there is a negligible function negl upper
bounding the probability that A succeeds with probability at most negl(n).

Decisional Diffie-Hellman Problem (DDH)

e Letz, = g*1*2 and letz, = g", where x,,x, and r are random
e Attacker is given g*t, g*2 and z, (for a random bit b)

e Attackers goal is to guess b

 DDH Assumption: For all PPT A there is a negligible function negl such that
A succeeds with probability at most 2 + neg n%.

Secure key-agreement with DDH

1. Alice publishes g*a and Bob publishes g*s

2. Alice and Bob can both compute K, 5 = g”z %4 but to Eve this key is
indistinguishable from a random group element (by DDH)

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob
cannot validate g*a.

Can we find a cyclic group where DDH holds?

* Example 1: Z;, where p is a random n-bit prime.

e CDH is believed to be hard
e DDH is *not* hard (Exercise 13.15)

* Theorem: Let p=rq+1 be a random n-bit prime where g is a large A-
bit prime then the set of rt" residues modulo p is a cyclic subgroup of
order q. Then G, = {[h’”mod p]‘h € Z;‘,} is a cyclic subgroup of Zj, of
order q.

e Remark 1: DDH is believed to hold for such a group
e Remark 2: It is easy to generate uniformly random elements of G,
 Remark 3: Any element (besides 1) is a generator of G,

Can we find a cyclic group where DDH holds?

e Theorem: Let p=rq+1 be a random n-bit prime where g is a large A-bit
prime then the set of rth residues modulo p is a cyclic subgroup of order g.

Then G, = {[hrmod p| ‘h € Z;’;} is a cyclic subgroup of Z,, of order q.
e Closure: h"g" = (hg)"
* Inverse of h"is (h™1)" € G,
e Sjze (hr)x — h[rx mod rq] — (hr)x — hr[x mod q] — (hr)[x mod q]mod D

Remark: Two known attacks on Discrete Log Problem for G,.(Section 9.2).
e First runs in time 0(y/q) = 0(2%/2)

e Second runs in time 20(¥Vn(logn)?/3)

Can we find a cyclic group where DDH holds?

Remark: Two known attacks (Section 9.2).
e First runs in time 0(y/q) = 0(2%/2)
e Second runs in time 20(¥n(og ")2/3), where n is bit length of p

Goal: Set A and n to balance attacks
A = 0(3n(logn)?/3)

How to sample p=rg+17?
e First sample a random A-bit prime g and
e Repeatedly check if rg+1 is prime for a random n- A bit value r

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be
constants. Consider the equation
y>=x3+Ax + Bmodp

And let
E(Zp) ={(x,y) € Z%‘yz = x3+ Ax + Bmod p } U {0}

Note: O is defined to be an additive identity (x,y) + 0 = (x,y)

What is (x,,y,) + (x5, y,)?

Elliptic Curve Example

(x1,¥1)

(X3,-y3)=(x1, ¥1) + (X3, ¥,) |

The line passing through

(x4, ¥1) and (x,,y,) has the
equation

y =m(x —x,) +y, mod P

Where the slope
Y1— W2
m =

X1 — Xy

mod p]

60

Elliptic Curve Example

(X3,¥3)

Formally, let
V1 — Yy]
m = mod p

Be the slope. Then the line
passing through (x,, y,) and
(x5, ¥,) has the equation
(X3¥3)=(Xy, ¥1) + (2, ¥2) y =m(x —x,) +y, modP

X3 = [m? — x; — x,mod p]

y3 = [m(x; — x1) + ¥y, mod p] (m(x = x,) + y,)*

=x3+Ax+Bmodp =«

Elliptic Curve Example
3 i

No third point R on the elliptic curve.

P+Q=0

63

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants.
Consider the equation
y>=x3+Ax + Bmodp

And let
E(Zp) = {(x,y) € Zzz,‘yz = x3+Ax+Bm0dp}U {0}

Fact: E(Zp) defines an abelian group

e For appropriate curves the DDH assumption is believed to hold

* |f you make up your own curve there is a good chance it is broken...
e NIST has a list of recommendations

	Course Business
	Cryptography�CS 555
	CS 555: Week 10: Topic 1�Finding Prime Numbers, RSA
	Recap
	RSA Key-Generation
	Bertrand’s Postulate
	Bertrand’s Postulate
	isPrime(p): Miller-Rabin Test
	The “Almost” Miller-Rabin Test
	The “Almost” Miller-Rabin Test
	Back to RSA Key-Generation
	Be Careful Where You Get Your “Random Bits!”
	(Plain) RSA Encryption
	(Plain) RSA Decryption
	RSA Decryption
	Plain RSA (Summary)
	Factoring Assumption
	Factoring Assumption
	RSA-Assumption
	RSA-Assumption
	Discussion of RSA-Assumption
	Recap
	Mathematica Demo
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	RSA Implementation in Mathematica
	CS 555: Week 10: Topic 2�Attacks on Plain RSA
	(Plain) RSA Discussion
	(Plain) RSA Discussion
	Chosen Ciphertext Attack on Plain RSA
	More Weaknesses: Plain RSA with small e
	More Weaknesses: Plain RSA with small e
	More Weaknesses: Plain RSA with small e
	Slide Number 37
	Fixes for Plain RSA
	Chinese Remainder Theorem
	Chinese Remainder Theorem
	A Side Channel Attack on RSA with CRT
	Recovering Encrypted Message faster than Brute-Force
	Recovering Encrypted Message faster than Brute-Force
	Recovering Encrypted Message faster than Brute-Force
	Recovering Encrypted Message faster than Brute-Force
	CS 555: Week 10: Topic 3�Discrete Log + DDH Assumption
	(Recap) Finite Groups
	Finite Abelian Groups (Examples)
	Cyclic Group
	Finite Abelian Groups (Examples)
	Discrete Log Experiment DLogA,G(n)
	Diffie-Hellman Problems
	Secure key-agreement with DDH
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	Elliptic Curve Example
	Elliptic Curve Example
	Slide Number 62
	Elliptic Curve Example
	Can we find a cyclic group where DDH holds?

