Course Business

- Homework 3
 - **Due:** Tuesday, October 31st at the *beginning* of class
- Professor Blocki is travelling, but will be back on Thursday
- Remaining Office Hours before Deadline:
 - Professor Blocki: Friday @ 10:30 AM
 - TA Duc Le: Wed @ 10AM
 - TA Duc Le: Mon @ 10AM

Cryptography CS 555

Week 10:

- RSA
- Attacks on Plain RSA
- Discrete Log/DDH

Readings: Katz and Lindell Chapter 8.2-8.3,11.5.1

CS 555: Week 10: Topic 1 Finding Prime Numbers, RSA

Recap

- Number Theory Basics
- Polynomial Time Operations on Integers
 - Addition/Subtraction/Multiplication/Division
 - Exponentiation Modulo N
 - GCD
 - Find Modular Inverse of $x \in \mathbb{Z}_{_{N}}^{*}$
- $\phi(N) = |\mathbb{Z}_{N}^{*}|$
- Special Case: $\phi(pq) = (p-1)(q-1)$ for distinct primes p and q
- Key Property: For each $g \in \mathbb{Z}^*$ and integer $x \in \mathbb{N}$ we have $[g^x \mod \mathbb{N}]^{\mathbb{N}} = [g^{[x \mod \phi(\mathbb{N})]} \mod \mathbb{N}]$

RSA Key-Generation

KeyGeneration(1ⁿ)

Step 1: Pick two random n-bit primes p and q Step 2: Let N=pq, $\phi(N) = (p-1)(q-1)$ Step 3: ...

Question: How do we accomplish step one?

Bertrand's Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least $1/_{3n}$.

GenerateRandomPrime(1ⁿ) For i=1 to $3n^2$: $p' \in \{0,1\}^{n-1}$ $p \in 1 || p'$ if isPrime(p) then return p return fail

Can we do this in polynomial time?

Bertrand's Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least $\frac{1}{3n}$.

GenerateRandomPrime(1ⁿ)

For i=1 to $3n^2$: $p' \leftarrow \{0,1\}^{n-1}$ $p \leftarrow 1 || p'$ if isPrime(p) then return p return fail Assume for now that we can run isPrime(p). What are the odds that the algorithm fails?

On each iteration the probability that p is not a prime is $\left(1-\frac{1}{3n}\right)$

We fail if we pick a non-prime in all 3n² iterations. The probability of failure is at most

$$\left(1-\frac{1}{3n}\right)^{3n^2} = \left(\left(1-\frac{1}{3n}\right)^{3n}\right)^n \le e^{-n}$$

isPrime(p): Miller-Rabin Test

• We can check for primality of p in polynomial time in ||p||.

Theory: Deterministic algorithm to test for primality.

• See breakthrough paper "Primes is in P"

Practice: Miller-Rabin Test (randomized algorithm)

- Guarantee 1: If p is prime then the test outputs YES
- Guarantee 2: If p is not prime then the test outputs NO except with negligible probability.

The "Almost" Miller-Rabin Test

```
Input: Integer N and parameter 1<sup>t</sup>

Output: "prime" or "composite"

for i=1 to t:

a \leftarrow \{1,...,N-1\}

if a^{N-1} \neq 1 \mod N then return "composite"

Return "prime"
```

Claim: If N is prime then algorithm always outputs "prime" **Proof:** For any $a \in \{1, ..., N-1\}$ we have $a^{N-1} = a^{\phi(N)} = 1 \mod N$

The "Almost" Miller-Rabin Test

Input: Integer N and parameter 1^t
Output: "prime" or "composite"
for i=1 to t:

a \leftarrow {1,...,N-1} if $a^{N-1} \neq$ 1 mod N then return "composit **Return** "prime"

Need a bit of extra work to handle Carmichael numbers (see textbook).

Fact: If N is composite and not a Carmichael number then the algorithm outputs "composite" with probability $1 - 2^{-t}$

Back to RSA Key-Generation

KeyGeneration(1ⁿ)

Step 1: Pick two random n-bit primes p and q Step 2: Let N=pq, $\phi(N) = (p-1)(q-1)$ Step 3: Pick e > 1 such that gcd(e, $\phi(N)$)=1 Step 4: Set d=[e⁻¹ mod $\phi(N)$] (secret key) **Return:** N, e, d

- How do we find d?
- Answer: Use extended gcd algorithm to find e^{-1} mod $\phi(N)$.

Be Careful Where You Get Your "Random Bits!"

int getRandomNumber() return 4; // chosen by fair dice roll. // guaranteed to be random.

- RSA Keys Generated with weak PRG
 - Implementation Flaw
 - Unfortunately Commonplace
- Resulting Keys are Vulnerable
 - Sophisticated Attack
 - Coppersmith's Method

Q BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE FORUMS

COMPLETELY BROKEN -

Millions of high-security crypto keys crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data. DAN GOODIN - 10/16/2017, 7:00 AM

The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017)

(Plain) RSA Encryption

- Public Key: PK=(N,e)
- Message $m \in \mathbb{Z}_{N}$ Encode

$$Enc_{PK}(m) = [m^e \mod N]$$

• **Remark:** Encryption is efficient if we use the power mod algorithm.

(Plain) RSA Decryption

- Secret Key: SK=(N,d)
- Ciphertext $c \in \mathbb{Z}_{N}$

 $Dec_{sk}(c) = [c^d \mod N]$

- Remark 1: Decryption is efficient if we use the power mod algorithm.
- **Remark 2:** Suppose that $m \in \mathbb{Z}_{N}^{*}$ and let $c=Enc_{PK}(m) = [m^{e} \mod N]$

$$\begin{aligned} \mathsf{Dec}_{\mathsf{SK}}(\mathsf{c}) &= \left[(m^e)^d \mod \mathsf{N} \right] &= \left[m^{ed} \mod \mathsf{N} \right] \\ &= \left[m^{\left[ed \ mod \ \phi(\mathsf{N}) \right]} \mod \mathsf{N} \right] \\ &= \left[m^1 \mod \mathsf{N} \right] = m \end{aligned}$$

RSA Decryption

- Secret Key: SK=(N,d)
- Ciphertext $c \in \mathbb{Z}_{_{N}}$

$$\mathbf{Dec}_{\mathsf{SK}}(\mathsf{c}) = [c^d \mod \mathsf{N}]$$

- Remark 1: Decryption is efficient if we use the power mod algorithm.
- Remark 2: Suppose that $m \in \mathbb{Z}^*$ and let $c=Enc_{PK}(m) = [m^e \mod N]$ then $D_{SK}^{N}(c) = m$
- Remark 3: Even if $m \in \mathbb{Z}_{N} \mathbb{Z}^{*}$ and let $c=Enc_{PK}(m) = [m^{e} \mod N]$ then $Dec_{SK}(c) = m$
 - Use Chinese Remainder Theorem to show this

Plain RSA (Summary)

- Public Key (pk): N = pq, e such that $GCD(e, \phi(N)) = 1$
 - $\phi(N) = (p-1)(q-1)$ for distinct primes p and q
- Secret Key (sk): N, d such that ed=1 mod $\phi(N)$
- Encrypt(pk=(N,e),m) = m^e mod N
- Decrypt(sk=(N,d),c) = $c^d \mod N$
- Decryption Works because $[c^d \mod N] = [m^{ed} \mod N] = [m^{[ed \mod \phi(N)]} \mod N] = [m \mod N]$

Factoring Assumption

Let **GenModulus**(1ⁿ) be a randomized algorithm that outputs (N=pq,p,q) where p and q are n-bit primes (except with negligible probability **negl**(n)).

Experiment FACTOR_{A,n}

- 1. $(N=pq,p,q) \leftarrow GenModulus(1^n)$
- 2. Attacker A is given N as input
- 3. Attacker A outputs p' > 1 and q' > 1
- 4. Attacker A wins if N=p'q'.

Factoring Assumption

Experiment FACTOR_{A,n}

- 1. $(N=pq,p,q) \leftarrow GenModulus(1^n)$
- 2. Attacker A is given N as input
- 3. Attacker A outputs p' > 1 and q' > 1
- 4. Attacker A wins (FACTOR_{A,n} = 1) if and only if N=p'q'.

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t } \Pr[FACTOR_{A,n} = 1] \leq \mu(n)$

Necessary for security of RSA.Not known to be sufficient.

RSA-Assumption

RSA-Experiment: RSA-INV_{A,n}

- **1.** Run KeyGeneration(1ⁿ) to obtain (N,e,d)
- **2.** Pick uniform $y \in \mathbb{Z}_{N}^{*}$
- 3. Attacker A is given N, e, y and outputs $x \in \mathbb{Z}_{M}^{*}$
- 4. Attacker wins (RSA-INV_{A,n}=1) if $x^e = y \mod N$

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t } \Pr[\text{RSA-INVA}_n = 1] \leq \mu(n)$

RSA-Assumption

RSA-Experiment: RSA-INV_{A,n}

- **1.** Run KeyGeneration(1ⁿ) to obtain (N,e,d)
- **2.** Pick uniform $y \in \mathbb{Z}_{N}^{*}$
- 3. Attacker A is given N, e, y and outputs $x \in \mathbb{Z}_{M}^{*}$
- 4. Attacker wins (RSA-INV_{A,n}=1) if $x^e = y \mod N$

 $\forall PPT \ A \exists \mu \text{ (negligible) s.t } \Pr[\text{RSA-INVA}_n = 1] \leq \mu(n)$

Plain RSA Encryption behaves like a one-way function
Attacker cannot invert encryption of random message

Discussion of RSA-Assumption

- Plain RSA Encryption behaves like a one-way-function
- Decryption key is a "trapdoor" which allows us to invert the OWF
- RSA-Assumption → OWFs exist

Recap

- Plain RSA
- Public Key (pk): N = pq, e such that $GCD(e, \phi(N)) = 1$
 - $\phi(N) = (p-1)(q-1)$ for distinct primes p and q
- Secret Key (sk): N, d such that ed=1 mod $\phi(N)$
- Encrypt(pk=(N,e),m) = m^e mod N
- Decrypt(sk=(N,d),c) = $c^d \mod N$
- Decryption Works because $[c^d \mod N] = [m^{ed} \mod N] = [m^{[ed \mod \phi(N)]} \mod N] = [m \mod N]$

Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555 Spring17/slid es/Lecture24Demo.nb

Note: Online version of mathematica available at https://sandbox.open.wolframcloud.com (reduced functionality, but can be used to solve homework bonus problems)

(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *) SeedRandom[123456]

(* Step 1: Generate primes for an RSA key *)

- p = RandomPrime[{10^1000, 10^1050}];
- q = RandomPrime[{10^1000, 10^1050}];

NN = p q; (*Symbol N is protected in mathematica *)
phi = (p - 1) (q - 1);

```
(* Step 1.A: Find e *)
GCD[phi,7]
```

Output: 7

(* GCD[phi,7] is not 1, so he have to try a different value of e *) GCD[phi,3]

Output: 1

```
(* We can set e=3 *)
```

e=3;

(* Step 1.B find d s.t. ed = 1 mod N by using the extended GCD algorithm *)

(* Mathematica is clever enough to do this automatically *)

Solve[e x == 1, Modulus->phi]

Output:

 $\{\{x->36469680590663028301700626132883867272718728905205088...$

 $394069421778610209425624440980084481398131\}\}$

```
(* We can now set d = x *)
```

d=364696805.... 8131;

```
(* Double Check 1 = [ed mod \phi(N)] *)
Mod [e d, (p-1)(q-1)]
```

Output: 1

(* Encrypt the message 200, c= m^e mod N *)

m = 200;

PowerMod[m,e,NN]

Output: 8 000 000

```
(* Encrypt the message 200, c= m^e mod N *)
    m = 200;
    PowerMod[m,e,NN]
Output: 8 000 000
(* Hm...That doesn't seem too secure *)
    CubeRoot[PowerMod[m,e,NN]]
Output: 200
```

(* Moral: if $m^e < N$ then Plain RSA does not hide the message m. *)

```
(* Does it Decrypt Properly? *)

PowerMod[c,d, NN]-m2

Output: 0

(* Yes! *)
```

CS 555: Week 10: Topic 2 Attacks on Plain RSA

(Plain) RSA Discussion

- We have not introduced security models like CPA-Security or CCAsecurity for Public Key Cryptosystems
- However, notice that (Plain) RSA Encryption is stateless and deterministic.
- \rightarrow Plain RSA is not secure against chosen-plaintext attacks
- As we will see Plain RSA is also highly vulnerable to chosen-ciphertext attacks

(Plain) RSA Discussion

- However, notice that (Plain) RSA Encryption is stateless and deterministic.
- \rightarrow Plain RSA is not secure against chosen-plaintext attacks
- **Remark:** In a public key setting the attacker who knows the public key *always* has access to an encryption oracle
- Encrypted messages with low entropy are particularly vulnerable to bruteforce attacks
 - **Example:** If m < B then attacker can recover m from $c = Enc_{pk}(m)$ after at most B queries to encryption oracle (using public key)

Chosen Ciphertext Attack on Plain RSA

- 1. Attacker intercepts ciphertext $c = [m^e \mod N]$
- 2. Attacker generates ciphertext c' for secret message 2m as follows
- 3. $c' = [(c2^e) \mod N]$
- $4. \qquad = [(m^e 2^e) \mod N]$

5.
$$= [(2m)^e \mod N]$$

- 6. Attacker asks for decryption of $[c2^e \mod N]$ and receives 2m.
- 7. Divide by two to recover message

Above Example: Shows plain RSA is highly vulnerable to ciphertext-tampering attacks

More Weaknesses: Plain RSA with small e

- (Small Messages) If m^e < N then we can decrypt c = m^e mod N directly e.g., m=c^(1/e)
- (Partially Known Messages) If an attacker knows first 1-(1/e) bits of secret message m = m₁||?? then he can recover m given
 Encrypt(pk, m) = m^e mod N

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in polynomial time (in log(N), e) we can find all m such that $p(m) = 0 \mod N$ and $|m| < N^{(1/e)}$

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in polynomial time (in log(N), e) we can find all m such that $p(m) = 0 \mod N$ and $|m| < N^{(1/e)}$

Example: e = 3, $m = m_1 || m_2$ and attacker knows $m_1(2k \text{ bits})$ and $c = (m_1 || m_2)^e \mod N$, but not $m_2(k \text{ bits})$ $p(x) = (2^k m_1 + x)^3 - c$

Polynomial has a small root mod N at x= m_2 and coppersmith's method will find it!

D. Coppersmith (1996). "Finding a Small Root of a Univariate Modular Equation".

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: Can also find small roots of bivariate polynomial $p(x_1, x_2)$

- Similar Approach used to factor weak RSA secret keys N=q₁q₂
- Weak PRG \rightarrow Can guess many of the bits of prime factors
 - Obtain $\widetilde{q_1} \approx q_1$ and $\widetilde{q_2} \approx q_2$
- Coppersmith Attack: Define polynomial p(.,.) as follows $p(x_1, x_2) = (x_1 + \widetilde{q_1})(x_2 + \widetilde{q_2}) N$
- Small Roots of $p(x_1, x_2)$: $x_1 = q_1 \widetilde{q_1}$ and $x_2 = q_2 \widetilde{q_2}$

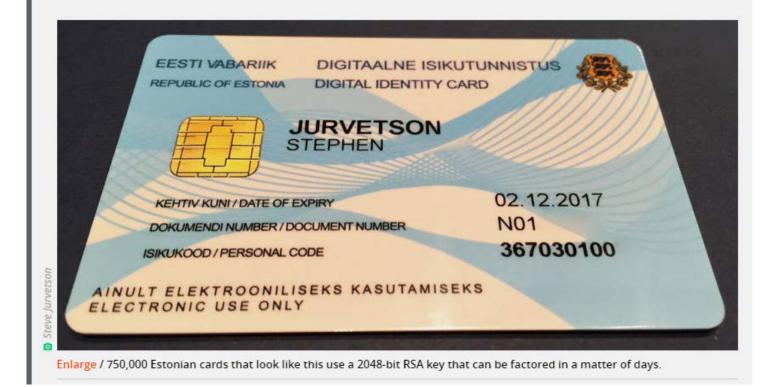
ars technica < biz & it tech science policy cars gaming & culture forums ≡

COMPLETELY BROKEN -

Millions of high-security crypto keys crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data.

DAN GOODIN - 10/16/2017, 7:00 AM



The Return of **Coppersmith's Attack**: Practical Factorization of Widely Used RSA Moduli (CCS 2017)

Fixes for Plain RSA

- Approach 1: RSA-OAEP
 - Incorporates random nonce r
 - CCA-Secure (in random oracle model)
- Approach 2: Use RSA to exchange symmetric key for Authenticated Encryption scheme (e.g., AES)
 - Key Encapsulation Mechanism (KEM)
- More details in future lectures...stay tuned!
 - For now we will focus on attacks on Plain RSA

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let $f: \mathbb{Z}_{N} \to \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ be defined as follows $f(x) = ([x \mod p], [x \mod q])$

then

- f is a bijective mapping (invertible)
- f and its inverse $f^{-1}: \mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_{\mathbb{N}}$ can be computed efficiently
- f(x + y) = f(x) + f(y)
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{n}^{*} \times \mathbb{Z}_{n}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have f(x)f(y) = f(xy)

Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute $[11^{53} \mod 15]$ f(11)=([-1 mod 3],[1 mod 5]) f(11⁵³)=([(-1)⁵³ mod 3],[1⁵³ mod 5])= (-1,1)

 $f^{-1}(-1,1)=11$

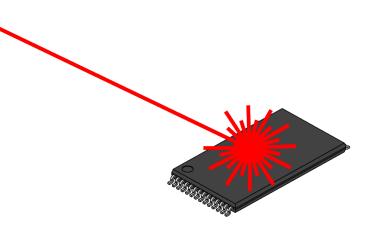
Thus, 11=[11⁵³ mod 15]

A Side Channel Attack on RSA with CRT

 Suppose that decryption is done via Chinese Remainder Theorem for speed.

$$\operatorname{Dec}_{sk}(c) = c^d \mod N \leftrightarrow (c^d \mod p, c^d \mod q)$$

- Attacker has physical access to smartcard
 - Can mess up computation of $c^d \mod p$
 - Response is $\mathbb{R} \leftrightarrow (r, c^d \mod q)$
 - $R m \leftrightarrow (r m \mod p, 0 \mod q)$
 - GCD(R-m,N)=q



Claim: Let $m < 2^n$ be a secret message. For some constant $\alpha = \frac{1}{2} + \varepsilon$. We can recover m in in time $T = 2^{\alpha n}$ with high probability.

For r=1,...,T
let
$$x_r = [cr^{-e} \mod N]$$
, where $r^{-e} = (r^{-1})^e \mod N$
Sort $\mathbf{L} = \{(r, x_r)\}_{r=1}^T$ (by the x_r values)
For s=1,...,T
if $[s^e \mod N] = x_r$ for some r then
return $[rs \mod N]$

For r=1,...,T let $x_r = [cr^{-e}mod N]$, where $r^{-e} = (r^{-1})^e mod N$ Sort $\mathbf{L} = \{(r, x_r)\}_{r=1}^T$ (by the x_r values) For s=1,...,T if $[s^e mod N] = x_r$ for some r then return [rs mod N]

Analysis:
$$[rs \mod N] = [r(s^e)^d \mod N] = [r(x_r)^d \mod N]$$

= $[r(cr^{-e})^d \mod N] = [rr^{-ed}(c)^d \mod N]$
= $[rr^{-1}m \mod N] = m$

For r=1,...,T let $x_r = [cr^{-e}mod N]$, where $r^{-e} = (r^{-1})^e mod N$ Sort $\mathbf{L} = \{(r, x_r)\}_{r=1}^T$ (by the x_r values) For s=1,...,T if $[s^e mod N] = x_r$ for some r then return [rs mod N]

Fact: some constant $\alpha = \frac{1}{2} + \varepsilon$ setting $T = 2^{\alpha n}$ with high probability we will find a pair **s** and **x**_r with $[s^e \mod N] = xr$.

Claim: Let $m < 2^n$ be a secret message. For some constant $\alpha = \frac{1}{2} + \varepsilon$. We can recover m in in time $T = 2^{\alpha n}$ with high probability.

Roughly \sqrt{B} steps to find a secret message m < B

CS 555: Week 10: Topic 3 Discrete Log + DDH Assumption

(Recap) Finite Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation \circ (over G) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have

$$g \circ e = g = e \circ g$$

- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h = e$. We say that h is the inverse of g.
- (Associativity:) For all $g_1, g_2, g_3 \in \mathbb{G}$ we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

We say that the group is **abelian** if

• (Commutativity:) For all g, $h \in \mathbb{G}$ we have $g \circ h = h \circ g$

Finite Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N] = [N-x+x \mod N] = 0$.
- Example 2: \mathbb{Z}_{M}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$

Observe that: $x^{-1} = a$. Why?

Cyclic Group

• Let \mathbb{G} be a group with order $m = |\mathbb{G}|$ with a binary operation \circ (over G) and let $g \in \mathbb{G}$ be given consider the set $\langle g \rangle = \{g^0, g^1, g^2, \dots\}$

Fact: $\langle g \rangle$ defines a subgroup of \mathbb{G} .

- Identity: g^0
- Closure: $g^i \circ g^j = g^{i+j} \in \langle g \rangle$
- g is called a "generator" of the subgroup.

Fact: Let $r = |\langle g \rangle|$ then $g^i = g^j$ if and only if $i = j \mod r$. Also m is divisible by r.

Finite Abelian Groups (Examples)

Fact: Let p be a prime then \mathbb{Z}_p^* is a cyclic group of order p-1.

• Note: Number of generators g s.t. of $\langle g \rangle = \mathbb{Z}_p^*$ is $\frac{|\phi(p-1)|}{p-1}$

Example (generator): p=7, g=5
<2>={1,5,4,6,2,3}

Discrete Log Experiment DLog_{A,G}(n)

- 1. Run G(1ⁿ) to obtain a cyclic group \mathbb{G} of order q (with ||q|| = n) and a generator g such that $\langle g \rangle = \mathbb{G}$.
- 2. Select $h \in \mathbb{G}$ uniformly at random.
- 3. Attacker A is given \mathbb{G} , q, g, h and outputs integer x.
- 4. Attacker wins $(DLog_{A,G}(n)=1)$ if and only if $g^x=h$.

We say that the discrete log problem is hard relative to generator G if $\forall PPT \ A \exists \mu \text{ (negligible) s.t } \Pr[DLog_{A,n} = 1] \leq \mu(n)$

Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)

- Attacker is given $h_1 = g^{\chi_1} \in \mathbb{G}$ and $h_2 = g^{\chi_2} \in \mathbb{G}$.
- Attackers goal is to find $g^{x_1x_2} = (h_1)^{x_2} = (h_2)^{x_1}$
- CDH Assumption: For all PPT A there is a negligible function negl upper bounding the probability that A succeeds with probability at most negl(n).
 Decisional Diffie-Hellman Problem (DDH)
- Let $z_0 = g^{x_1x_2}$ and let $z_1 = g^r$, where x_1, x_2 and r are random
- Attacker is given g^{x_1} , g^{x_2} and z_b (for a random bit b)
- Attackers goal is to guess b
- **DDH Assumption**: For all PPT A there is a negligible function negl such that A succeeds with probability at most ½ + negl(n).

Secure key-agreement with DDH

- 1. Alice publishes g^{x_A} and Bob publishes g^{x_B}
- 2. Alice and Bob can both compute $K_{A,B} = g^{x_B x_A}$ but to Eve this key is indistinguishable from a random group element (by DDH)

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob cannot validate g^{x_A} .

- **Example 1:** \mathbb{Z}_p^* where p is a random n-bit prime.
 - CDH is believed to be hard
 - DDH is *not* hard (Exercise 13.15)
- Theorem: Let p=rq+1 be a random n-bit prime where q is a large λ bit prime then the set of r^{th} residues modulo p is a cyclic subgroup of order q. Then $\mathbb{G}_r = \{ [h^r \mod p] | h \in \mathbb{Z}_p^* \}$ is a cyclic subgroup of \mathbb{Z}_p^* of order q.
 - Remark 1: DDH is believed to hold for such a group
 - **Remark 2:** It is easy to generate uniformly random elements of \mathbb{G}_r
 - Remark 3: Any element (besides 1) is a generator of \mathbb{G}_r

- Theorem: Let p=rq+1 be a random n-bit prime where q is a large λ -bit prime then the set of rth residues modulo p is a cyclic subgroup of order q. Then $\mathbb{G}_r = \{ [h^r \mod p] | h \in \mathbb{Z}_p^* \}$ is a cyclic subgroup of \mathbb{Z}_p^* of order q.
 - Closure: $h^r g^r = (hg)^r$
 - Inverse of h^r is $(h^{-1})^r \in \mathbb{G}_r$
 - Size $(h^r)^x = h^{[rx \mod rq]} = (h^r)^x = h^{r[x \mod q]} = (h^r)^{[x \mod q]} \mod p$

Remark: Two known attacks on Discrete Log Problem for \mathbb{G}_r (Section 9.2).

- First runs in time $O(\sqrt{q}) = O(2^{\lambda/2})$
- Second runs in time $2^{O(\sqrt[3]{n}(\log n)^{2/3})}$

Remark: Two known attacks (Section 9.2).

- First runs in time $O(\sqrt{q}) = O(2^{\lambda/2})$ Second runs in time $2^{O(\sqrt[3]{n}(\log n)^{2/3})}$, where n is bit length of p

Goal: Set λ and n to balance attacks $\lambda = O\left(\sqrt[3]{n}(\log n)^{2/3}\right)$

How to sample p=rq+1?

- First sample a random λ -bit prime q and
- Repeatedly check if rq+1 is prime for a random n- λ bit value r

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider the equation

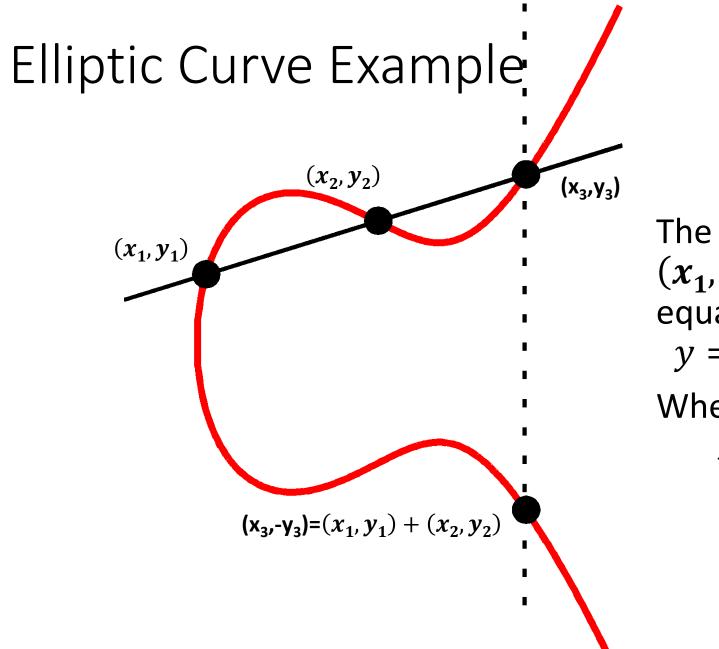
$$y^2 = x^3 + Ax + B \mod p$$

And let

$$E\left(\mathbb{Z}_p\right) = \left\{ (x, y) \in \mathbb{Z}_p^2 \middle| y^2 = x^3 + Ax + B \bmod p \right\} \cup \{\mathcal{O}\}$$

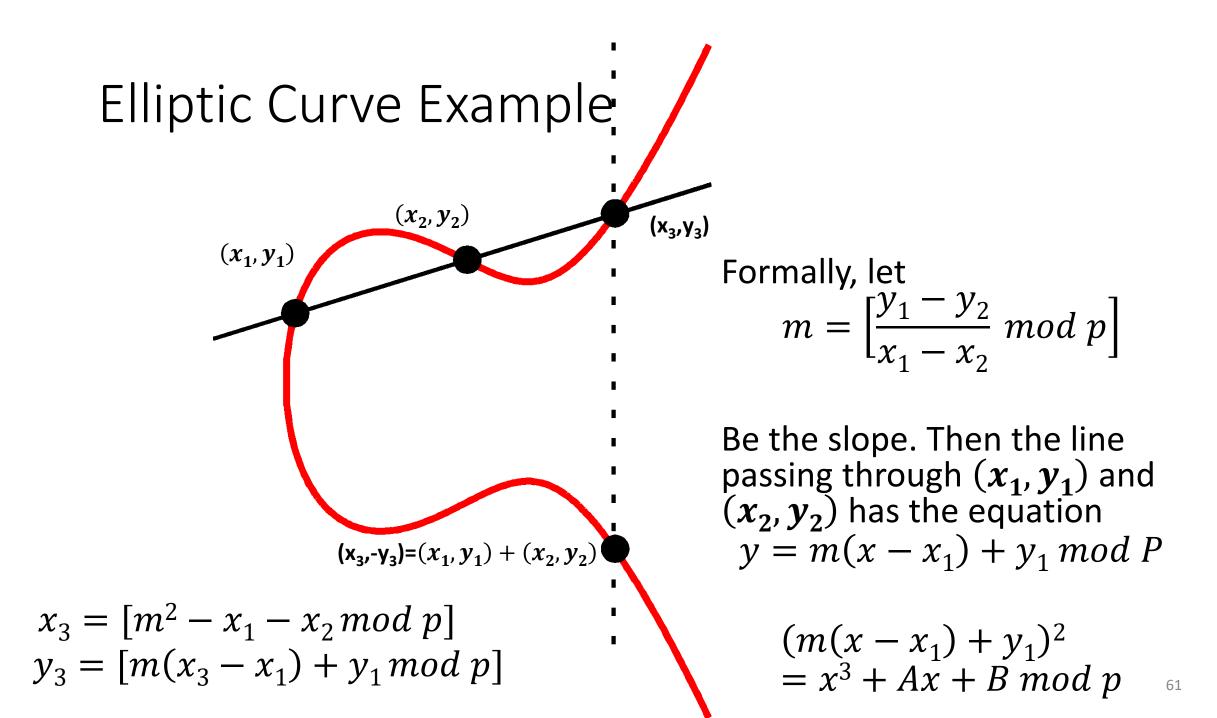
Note: \mathcal{O} is defined to be an additive identity $(x, y) + \mathcal{O} = (x, y)$

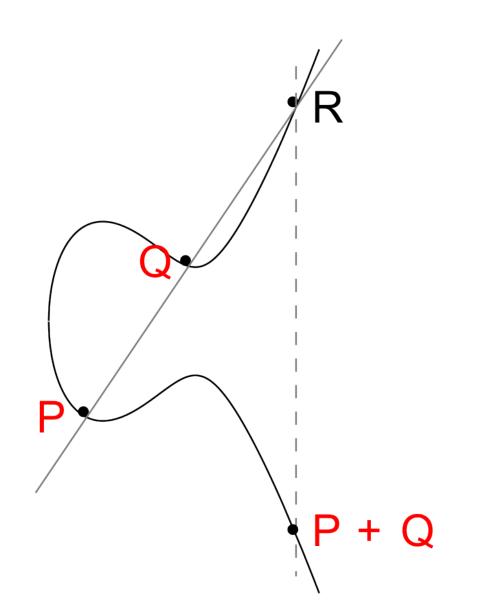
What is $(x_1, y_1) + (x_2, y_2)$?



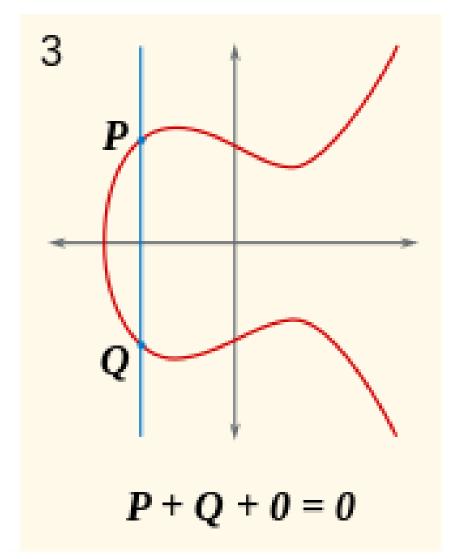
The line passing through (x_1, y_1) and (x_2, y_2) has the equation $y = m(x - x_1) + y_1 \mod P$ Where the slope

$$m = \left[\frac{y_1 - y_2}{x_1 - x_2} \mod p\right]$$





Elliptic Curve Example



No third point R on the elliptic curve.

P+Q = 0

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider the equation

$$y^2 = x^3 + Ax + B \mod p$$

And let

$$E\left(\mathbb{Z}_p\right) = \left\{ (x, y) \in \mathbb{Z}_p^2 \middle| y^2 = x^3 + Ax + B \bmod p \right\} \cup \{\mathcal{O}\}$$

Fact: $E(\mathbb{Z}_p)$ defines an abelian group

- For *appropriate curves* the DDH assumption is believed to hold
- If you make up your own curve there is a good chance it is broken...
- NIST has a list of recommendations