Week 9.2, Wed, Oct 16

Homework 5 Released Soon
Strongly Connected Components (22.5)

Let G be a directed graph.

- G is **strongly connected** if there exists a path between any pair of vertices.
- If G is not strongly connected, decompose G into strongly connected components:
 - sets of vertices in which any two vertices are *mutually reachable*
 - each vertex set cannot be enlarged by adding more vertices without destroying this property.
Strongly connected components of G
Determine the strongly connected components (stcc) in $O(n+m)$ time

Perform 2 DFS’s
On what graphs?

• G^T is the transpose of G generated by reversing the direction of every edge
• G^T and G have the same strongly connected components

Record discovery and finish times
Directed Graph G

DFS restarts

d(C) = 17
f(C) = 22

d(B) = 13
f(B) = 14

d(H) = 19
f(H) = 20

d(G) = 3
f(G) = 6

d(J) = 2
f(J) = 7

d(K) = 4
f(K) = 5

d(A) = 1
f(A) = 16

d(F) = 8
f(F) = 15

d(I) = 9
f(I) = 12

d(E) = 10
f(E) = 11
Directed Graph G^T

- Run DFS at C (node with max finish time)
 - $d(C)=17$, $f(C)=22$
 - $d(B)=13$, $f(B)=14$
 - $d(D)=18$, $f(D)=21$
 - $d(H)=19$, $f(H)=20$

- Run DFS at J (remaining node with max finish time)
 - $d(J)=2$, $f(J)=7$
 - $d(K)=4$, $f(K)=5$

- Run DFS at A (remaining node with max finish time)
 - $d(A)=1$, $f(A)=16$
 - $d(F)=8$, $f(F)=15$
 - $d(E)=10$, $f(E)=11$
 - $d(I)=9$, $f(I)=12$

Claim: Same strongly connected components as G! Why?

Run DFS at C (node with max finish time)
Sketch of algorithm finding the stcc

1. call DFS on G to compute f[u] for each vertex u
 A. Sort nodes in decreasing order of f[u]
 B. (Only requires time $O(n)$ since $1 \leq f[u] \leq 2n$)
2. find G^T, the transpose of G
3. call DFS on G^T
 • consider the vertices in order of decreasing $f[u]$
4. the second DFS generates one or more tree
 • the vertices in each tree form one strongly connected component
Why does the algorithm find the stcc?
Not obvious.

Create the following “reduced” graph $R=(V_R,E_R)$

- Shrink every stcc into a single vertex.
- Put edges not in a stcc into graph R and remove duplicate edges.

Graph R is a dag
There must exist at least one “vertex” that has no incoming edges and at least one vertex with no outgoing edges.
DFS on G starts at A and restarts at vertex C

DFS on G^T starts at vertex C and finds the first stcc

DFS on G^T re-starts at vertex A and finds the second stcc
Let U be a set of vertices of directed graph G
- $d(U)$ is the smallest discovery time of any vertex in U
- $f(U)$ is the largest finishing time of any vertex in U

Assume C and C' are two strongly connected components of G.

Claim 1: If there is an edge (u, v) in G with u in C and v in C', then $f(C) > f(C')$.

Claim 2: If there is an edge (v, u) in the transpose of G with v in C' and u in C, then $f(C') < f(C)$.
Main Idea - Summary

Second DFS on G^T

• we start with the component C whose $f(C)$ is the biggest
 (actually we start with x in C where $f(x)$ is the biggest).
• No edges go from inside C to any other component.
• The tree rooted at x contains exactly the vertices in C and we
 generated one strongly connected component.

Repeat the argument for the next sink in graph R until all strongly
connected components have been generated.

Hence, the strongly connected components can be found in $O(n+m)$
time by doing two DFS’s.
4.4 Shortest Paths in a Graph
Shortest Path Problem

Shortest path network.

- Directed graph $G = (V, E)$.
- Source s, destination t.
- Length $\ell_e = \text{length of edge } e$.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t
\[= 9 + 23 + 2 + 16 \]
\[= 50. \]
Dijkstra's algorithm (Greedy).

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d(u) + l_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)
Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e,
$$

add v to S, and set $d(v) = \pi(v)$. shortest path to some u in explored part, followed by a single edge (u, v)

![Diagram of Dijkstra's algorithm](image-url)
Invariant. For each node \(u \in S \), \(d(u) \) is the length of the shortest \(s-u \) path.

Pf. (by induction on \(|S| \))

Base case: \(|S| = 1 \) is trivial.

Inductive hypothesis: Assume true for \(|S| = k \geq 1 \).

- Let \(v \) be next node added to \(S \), and let \(u-v \) be the chosen edge.
- The shortest \(s-u \) path plus \((u, v) \) is an \(s-v \) path of length \(\pi(v) \).
- Consider any \(s-v \) path \(P \). We'll see that it's no shorter than \(\pi(v) \).
- Let \(x-y \) be the first edge in \(P \) that leaves \(S \), and let \(P' \) be the subpath to \(x \).
- \(P \) is already too long as soon as it leaves \(S \).

\[
\ell(P) \geq \ell(P') + \ell(x,y) \geq d(x) + \ell(x,y) \geq \pi(y) \geq \pi(v)
\]

- \(\ell(P) \) nonnegative weights
- \(\ell(P') \) inductive hypothesis
- \(\ell(x,y) \) defn of \(\pi(y) \)
- \(d(x) \) Dijkstra chose \(v \) instead of \(y \)
Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain \(\pi(v) = \min_{e=(u,v): u \in S} d(u) + \ell_e \).

- Next node to explore = node with minimum \(\pi(v) \).
- When exploring \(v \), for each incident edge \(e = (v, w) \), update (decrease key)
 \[\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \} . \]

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by \(\pi(v) \).
Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain \(\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e \).

- Next node to explore = node with minimum \(\pi(v) \).
- When exploring \(v \), for each incident edge \(e = (v, w) \), update (decrease key)
 \[\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \} . \]

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by \(\pi(v) \).

<table>
<thead>
<tr>
<th>PQ Operation</th>
<th>Dijkstra</th>
<th>Array</th>
<th>Binary heap</th>
<th>d-way Heap</th>
<th>Fib heap (\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>(n)</td>
<td>(n)</td>
<td>(\log n)</td>
<td>(d \log_d n)</td>
<td>1</td>
</tr>
<tr>
<td>ExtractMin</td>
<td>(n)</td>
<td>(n)</td>
<td>(\log n)</td>
<td>(d \log_d n)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>ChangeKey</td>
<td>(m)</td>
<td>1</td>
<td>(\log n)</td>
<td>(\log_d n)</td>
<td>1</td>
</tr>
<tr>
<td>IsEmpty</td>
<td>(n)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>(n^2)</td>
<td>(m \log n)</td>
<td>(m \log_{m/n} n)</td>
<td>(m + n \log n)</td>
<td></td>
</tr>
</tbody>
</table>

\(\dagger \) Individual ops are amortized bounds
Maximum Capacity Path Problem

Each edge e has capacity c_e (e.g., maximum height)

Capacity of a path is Minimum capacity of any Edge in path

Goal: Find path from s to t with maximum capacity

Solution: Use Dijkstra!
With Small Modification

$$
\pi(v) = \max_{e=(u,v): u \in S} \min \{ \pi(u), c_e \}
$$