


SCC

Definition 1: A subset C C V of nodes is strongly connected if for all

U, W € C the directed graph G contains a path from u to w (and vice versa)
Definition 2: A Strongly Connected Component C C V of a directed
graph G is maximal if for all sets C' D C withC' # C theset C' c V is

not strongly connected

Not Maximal: C' = C U {v, x}

is Strongly connected
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SCCs Partition V

Claim: If C' # C are maximal SCCs then C and C’ are disjoint.
Proof: Otherwise if v € C N C' then C"" = CUC" is strongly
connected. Contradicts maximality of C’ and C! For any pair W € C '
and U € C we can find directed path from w to u (viave.g., W —
X = V = t = U) and can find directed path from u to w (viave.g,,
u-—v-ow)
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Directed Graph G




Strongly connected

components of G
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Strongly Connected Components (22.5)

Let G be a directed graph.
G is strongly connected if there exists a path between
any pair of vertices.
If G is not strongly connected, decompose G into strongly
connected components:
® sets of vertices in which any two vertices are mutually
reachable

® cach vertex set cannot be enlarged by adding more

vertices without destroying this property.




Determine the strongly connected components (stcc) in
O(n+m) time

Perform 2 DES’s
On what graphs?

e Glisthe transpose of G generated by reversing the
direction of every edge
e GU' and G have the same strongly connected

components

Record discovery and finish times




Directed Graph G

d(B)=13
f(B)=14

DES restarts

d(C)=17

f(C)=22 Q

d(D)=18

d(H)=19

f(H)=20 d(K)=4

f(K)=5

f(A)=16 d(F)=8
f(F)=15

d(E)=10
f(E)=11

I

d(1)=9
f(1)=12




- N

Directed Graph G! SReverse Edges!) Claim: Same strongly

(B)=13 connected components as G!
f(B)=14 Why?
Run DFS at C
(node with max
finish time)

d(E)=10

d(C)=17 f(E)=11

f(C)=22
d(D)=18

d(A)=1
f(A)=16 d(F)=8
f(F)=15

d(H)=19
f(H)=20

d(I)=9
f(I):12
Run DES at A

Run DFS at (remaining node with max

K (remaining node with max finish time)

finish time) /




Sketch of algorithm ﬁnding the stcc

1. call DFS on G to compute f[u] for each vertex u
A. Sortnodes in decreasing order of {fJu]
B. (Only requires time O(n) since 1 < flu] < 2n)
2. find G, the transpose of G
3. call DFS on G'
* consider the vertices in order of decreasing {Ju]
4. the second DFS generates one or more tree
* the vertices in each tree form one strongly

connected component




Why does the algorithm find the stcc?

Not obvious.

Create the following “reduced” graph R=(V,Ey)
e Shrink every stcc into a single vertex.
* Put edges not in a stcc into graph R and remove

duplicate edges.

Graph Risa dag
There must exist at least one “vertex” that has no incoming

edges and at least one vertex with no outgoing edges.
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R DEFS on G starts at A and restarts at
vertex C

@ DEFS on GTre-starts at
DEFES on GTstarts at vertex vertex A and finds the

C and finds the first stcc second stcc
N\ /




Let U be a set of vertices of directed graph G
* d(U) is the smallest discovery time of any vertex in U

* {(U) is the largest finishing time of any vertex in U

Assume C and C' are two strongly connected components

Claim 2: If there is an edge (v,u) in the transpose
of G with vin C’ and u in C, then {(C") < {(C).

of G.
Claim 1: If there is an edge (u, v) in G with u in &
C and v in C', then f(C) > f(C").
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Main Idea - Summary

Second DFS on G

* we start with the component C whose £(C) is the biggest
(actually we start with x in C where f(x) is the biggest).

* No edges go from inside C to any other component.

* The tree rooted at x contains exactly the vertices in C and
we generated one strongly connected component.

Repeat the argument for the next sink in graph R until all

strongly connected components have been generated.

Hence, the strongly connected components can be found in
O(n+m) time by doing two DFS’s.
Tarjan|72]: One pass is sufficient with “low numbers”




4.4 Shor’res’r Paths in a Graph
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Shortest Path Problem

Shortest path network.
. Directed graph G = (V, E).
. Source s, destination .
. Length 7, = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of pa‘rh s-2-3-5-t cost of path = sum of edge costs in path
= 9+23+2+16
= 50.
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Dijkstra's Algorithm

Dijkstra's algorithm (Greedy).
. Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.

. Initialize S={s}, d(s) = 0.
. Repeatedly choose unexplored node v which minimizes

z7(v)= min d(u)+/,,
e=(u,v):uesS \

add v to S, and set d(V) - TE(V)- shortest path to some u in explored
part, followed by a single edge (u, v)
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Dijkstra's Algorithm

Dijkstra's algorithm.
. Maintain a set of explored nodes S for which we have determined
the shortest path distance d(u) from s to u.
. Initialize S={s}, d(s)=0.
. Repeatedly choose unexplored node v which minimizes

z7(v)= min d(u)+/,,
e=(u,v):uesS \

add v to S, and set d(V) - TE(V)- shortest path to some u in explored
part, followed by a single edge (u, v)
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Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u € S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S|)
Base case: |S| =1is trivial.
Inductive hypothesis: Assume true for |S| =k > 1.
. Let v be next node added to S, and let u-v be the chosen edge.
. The shortest s-u path plus (u, v) is an s-v path of length =(v).
. Consider any s-v path P. We'll see that it's no shorter than n(v).
. Let x-y be the first edge in P that leaves S,
and let P* be the subpath to x.
. P is already too long as soon as it leaves S.

7 (P) Izz (P') + 1 (xy) I dex) + ¢ (x, Y)IZ (y) I n(v)

nonnegative inductive defn of n(y)  Dijkstra chose v
weights hypothesis instead of y



