
1

Week 9.2,  Wed, Oct 16

Homework 5 Released Soon



2

Not Maximal: C′ = 𝐶 ∪ {𝑣, 𝑥}
is strongly connected

u
w

t

v x

SCC

C

Definition 1: A subset 𝐶 ⊂ 𝑉 of nodes is strongly connected if for all 

u,𝑤 ∈ 𝐶 the directed graph G contains a path from u to w (and vice versa)

Definition 2: A Strongly Connected Component 𝐶 ⊂ 𝑉 of a directed 

graph G is maximal if for all sets C′ ⊃ 𝐶 with C′ ≠ 𝐶 the set C′ ⊂ 𝑉 is 

not strongly connected



3

Claim: If C′ ≠ 𝐶 are maximal SCCs then C and C’ are disjoint.

Proof: Otherwise if v ∈ 𝐶 ∩ 𝐶′ then C′′ = 𝐶⋃𝐶′ is strongly 

connected. Contradicts maximality of C′ and C! For any pair w ∈ 𝐶′
and u ∈ 𝐶 we can find directed path from w to u (via v e.g., w →
x → v → t → u) and can find directed path from u to w (via v e.g., 

u → v → w)

u
v

t

w x

SCCs Partition V

C

C’



A

E

H

B

F

D

I

G

C

J

K

Directed Graph G 



A

E

H

B

F

D

I

G

C

J

K

Strongly connected 

components of G 



6

Strongly Connected Components (22.5)

Let G be a directed graph.

 G is strongly connected if there exists a path between 

any pair of vertices.

 If G is not strongly connected, decompose G into strongly 

connected components:

 sets of vertices in which any two vertices are mutually 

reachable 

 each vertex set cannot be enlarged by adding more 

vertices without destroying this property.



7

Determine the strongly connected components (stcc) in 

O(n+m) time

Perform 2 DFS’s

On what graphs?

• GT is the transpose of G generated by reversing the 

direction of every edge

• GT and G have the same strongly connected 

components

Record discovery and finish times  



A

E

H

B

F

D

I

G

C

J

K

Directed Graph G   

d(A)=1

d(J)=2

d(G)=3

d(K)=4

f(K)=5

f(G)=6

f(J)=7

d(F)=8

d(I)=9

d(E)=10

f(E)=11

f(I)=12

d(B)=13

f(B)=14

f(F)=15

f(A)=16

d(C)=17

d(D)=18

d(H)=19

f(H)=20

f(D)=21

f(C)=22

DFS restarts



A

E

H

B

F

D

I

G

C

J

K

Directed Graph GT (Reverse Edges!)  

d(A)=1

d(J)=2

d(G)=3

d(K)=4

f(K)=5

f(G)=6

f(J)=7

d(F)=8

d(I)=9

d(E)=10

f(E)=11

f(I)=12

d(B)=13

f(B)=14

f(F)=15

f(A)=16

d(C)=17

d(D)=18

d(H)=19

f(H)=20

f(D)=21

f(C)=22

Run DFS at C

(node with max 

finish time)

Claim: Same strongly 

connected components as G! 

Why?

Run DFS at A

(remaining node with max 

finish time)
Run DFS at J

(remaining node with max finish time)



10

Sketch of algorithm finding the stcc

1. call DFS on G to compute f[u] for each vertex u

A. Sort nodes in decreasing order of f[u]

B. (Only requires time O(n) since 1 ≤ f u ≤ 2𝑛)

2. find GT, the transpose of G

3. call DFS on GT

• consider the vertices in order of decreasing f[u]

4. the second DFS generates one or more tree

• the vertices in each tree form one strongly 

connected component



11

Why does the algorithm find the stcc?
Not obvious. 

Create the following “reduced” graph R=(VR,ER)

• Shrink every stcc into a single vertex.

• Put edges not in a stcc into graph R and remove 

duplicate edges.

Graph R is a dag

There must exist at least one “vertex” that has no incoming 

edges and at least one vertex with no outgoing edges.



A

E

H

B

F

D

I

G

C

J

K

DFS on G starts at A and restarts at 

vertex C

DFS on GT starts at vertex 

C  and finds the first stcc

R

DFS on GT re-starts at 

vertex A and finds the 

second stcc



13

Let U be a set of vertices of directed graph G

• d(U) is the smallest discovery time of any vertex in U

• f(U) is the largest finishing time of any vertex in U

Assume C and C′ are two strongly connected components 

of G.

C

C’

Claim 1:  If there is an edge (u, v) in G with u in 

C and v in C′, then f(C) > f(C′).

Claim 2:  If there is an edge (v,u) in the transpose 

of G with v in C’ and u in C, then f(C’) < f(C).

C

C’

GT

G



14

Main Idea - Summary
Second DFS on GT 

• we start with the component C whose f(C) is the biggest 

(actually we start with x in C where f(x) is the biggest). 

• No edges go from inside C to any other component.

• The tree rooted at x contains exactly the vertices in C and 

we generated one strongly connected component.

Repeat the argument for the next sink in graph R until all 

strongly connected components have been generated.

Hence, the strongly connected components can be found in 

O(n+m) time by doing two DFS’s.

Tarjan[72]: One pass is sufficient with “low numbers”



4.4  Shortest Paths in a Graph

5

10

4
3

5

10

6



16

Shortest Path Problem

Shortest path network.

 Directed graph G = (V, E).

 Source s, destination t.

 Length e = length of edge e.

Shortest path problem:  find shortest directed path from s to t.

Cost of path s-2-3-5-t
=  9 + 23 + 2 + 16
= 50.

cost of path = sum of edge costs in path

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6



17

Dijkstra's Algorithm

Dijkstra's algorithm (Greedy).

 Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u.

 Initialize S = { s }, d(s) = 0.

 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

,)(min)(
:),(

e
Suvue

udv 




s

v

u

d(u)

S

e

shortest path to some u in explored 
part, followed by a single edge (u, v)



18

Dijkstra's Algorithm

Dijkstra's algorithm.

 Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u.

 Initialize S = { s }, d(s) = 0.

 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = (v).

,)(min)(
:),(

e
Suvue

udv 




s

v

u

d(u)

shortest path to some u in explored 
part, followed by a single edge (u, v)

S

e



19

Dijkstra's Algorithm:  Proof of Correctness

Invariant.  For each node u  S, d(u) is the length of the shortest s-u path.

Pf.  (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for |S| = k   1.

 Let v be next node added to S, and let u-v be the chosen edge.

 The shortest s-u path plus (u, v) is an s-v path of length (v).

 Consider any s-v path P. We'll see that it's no shorter than (v).

 Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.

 P is already too long as soon as it leaves S.

 (P)   (P') +  (x,y)  d(x) +  (x, y)  (y)   (v)

nonnegative
weights

inductive
hypothesis

defn of (y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'


