
2

Week 9.1,  Monday, Oct 14

Homework 4 Due Tonight! October 14th @ 11:59PM (Gradescope)
Reminder: You must include a collaborator/resource (CR) statement 
for every problem.
Homework 5: Planning to released on Wednesday (October 16th) 



3

Depth First Search (22.3+22.5; 251 text)

 DFS performs a recursive exploration of a graph
DFS follows a path until it is forced to back up –

“backtracking” 
 DFS operates on an adjacency list representation
 Most uses of DFS result in O(n+m) time
 DFS be used on directed and undirected graphs
 Undirected graph
DFS partitions the edges into tree and back edges
Assigns numbers to the vertices during exploration (e.g. 

DFS number, discovery number, finish number)



4

Depth First  Search 
 DFS can be used to solve
Determine connected components in an undirected graph 

(easy)
 Test for stronger forms of connectivity: is the graph still 

connected if any edge/vertex is removed? 
Bi-connected and bridge-connected.

Determine strongly connected components in a directed 
graph

 Test for planarity of a graph (can the graph 
be drawn without edges crossing?)



5

DFS in an undirected graph
DFS partitions edges into tree edges and back edges;
One often puts a direction on tree and back edges 
indicating who explored whom

numbers indicate the order in which vertices are explored 



6

Generic version of  DFS
DFS(v)    

mark vertex v visited     
for each vertex w adjacent to v        
if w is unvisited        

DFS(w)        
add edge(v,w) to tree T         

DFS is invoked at least once with an unvisited vertex 
Book-keeping collects information:
 Vertices have a discovery and a finish time (d(v) resp. f(v)) 
 Discovery time is also called the DFS number 

 Vertices are white, gray, and black during exploration in 
text



7

Vertex u has discovery time d(u) and  finish time f(u)



8

Generic version of  DFS
Global Counter c = 1
DFS(v)    

mark vertex v visited (set d(v)=c and update c=c+1)     
for each vertex w adjacent to v        

if w is unvisited        
DFS(w)        
add edge(v,w) to tree T

set f(v) = c and update c=c+1         
DFS is invoked at least once with an unvisited vertex 
Book-keeping collects information:
 Vertices have a discovery and a finish time (d(v) resp. f(v)) 
 Discovery time is also called the DFS number 

 Vertices are white, gray, and black during exploration in text



9

Generic version of  DFS
Global Counter c = 1
DFS(v)    

mark vertex v visited 
(set d(v)=c and update c=c+1)     
for each vertex w adjacent to v        
if w is unvisited        

DFS(w)        
add edge(v,w) to tree T

set f(v) = c and update c=c+1  
(Optional: Label All Nodes)
For each vertex v

if v is unvisited
DFS(v)     



10

Properties of DFS numbers
For any two vertices u and v, one of the following must hold:
1. intervals [d(u), f(u)] and [d(v), f(v)] are disjoint; 

vertex u is discovered and finished before v
2. [d(u), f(u)] contains [d(v), f(v)]; v is a descendent of u 
3. [d(v), f(v)] contains [d(u), f(u)];  u is a descendent of v

Not possible: two 
intervals overlap 
without containment:



11

O(n+m) time algorithms using DFS 
• Finding the biconnected components in an undirected

graph
• Finding the strongly connected components in a 

directed graph



12

Clicker Question

Suppose we run DFS(v) starting at node 0 to  assign discovery numbers (d(u)) 

and finish numbers (f(u)) to each node in G (see below) 

Which of the following claims must be false?

A. d(0) < f(0)       B.  f(2) > d(4)      C.  f(0) > f(9)      D.  f(5) > f(2)     E. d(2) < d(10)

No further information about order of

adjacency lists e.g. we could have

AdjList(0) = 1,3,9 or

AdjList(0) = 9,3,1



13



14

Clicker Question

Suppose we run DFS(v) starting at node 0 to  assign discovery numbers (d(u)) 

and finish numbers (f(u)) to each node in G (see below) 

Which of the following claims must be false?

A. d(0) < f(0)       B.  f(2) > d(4)      C.  f(0) > f(9)      D.  f(5) > f(2)     E. d(2) < d(10)



15

Biconnectivity in undirected, connected graphs

Vertex v is an articulation point if its  removal results in a 
graph with more than one connected component.

If v is an articulation point, then there exist distinct vertices w 
and x such that v is in every path from w to x.



16

Biconnectivity
articulation point = removal disconnects the graph

A graph is biconnected if it contains no articulation points

• In a biconnected graph, there exist at least two vertex-
disjoint paths between any pair of vertices

• The biconnected components are the largest subgraphs
that are biconnected (partitions the edges, not the 
vertices)

• Connectivity definition can be generalized to k-connected 
graphs 



17

Brute-Force algorithm
• Delete a vertex and test for connectivity; repeat n times
• O(n (n+m)) time to find all articulation points and the 

biconnected components

articulation point



18

Biconnected component algorithm using DFS
Consider a DFS tree of an undirected graph G.  
• The root is an articulation point if it has two or more children.
• A vertex v (other than the root) is an articulation point if and 

only if  
• v is not a leaf in the DFS tree and 
• some subtree rooted at a child of v has no back edge to a 

proper ancestor of v
Leaves cannot be
articulation points

Node v=2 has 2 children: 3 & 5
- Subtree rooted at 3 has back edge (3,1) 
- Subtree rooted at 5 has back edge (4,1) 
- Node v=2 is not an articulation point

Articulation points!



19

Idea During DFS keep track on how “far back up in the tree” one can 
get from each vertex by following tree and back edges.

Let low [v] keep track of how “far back up the tree” one can 
get from a descendent of v (via back edges)
• low[v] is initialized to d[v] 
• When encountering a back edge (w,v), 

low[w] = min {low[w], d[v]} v

w
Low[w]=d(v)

Low[x]=d(v) x



20

When vertex w is completely explored, w’s DFS parent 
v updates its low information: 

if low [w] < d[v] then low[v] = min {low[v], low[w]}
if low [w] ≥ d[v] and v is not the root then

v is an articulation point
v

w

v

w low(w)=d(v)≥d(v) 
 v is articulation point

low(w)=d(u)<d(v) 
 low(v) ≤ low(w)



22

a

j

ie

c

b

g

d h

f

a

b e

c

d

g

f

h

i

j

1 [1]

2 [1]

3 [1]

8 [8]

4 [3]

5 [3]

6 [3]

7 [1]

9 [8]

10 [8]

Articulation points: a, c, e
Separate Check for Root: a 

d(v)[low(v)]



24

Strongly Connected Components (22.5)

Let G be a directed graph.
 G is strongly connected if there exists a path between 

any pair of vertices.
 If G is not strongly connected, decompose G into strongly 

connected components:
 sets of vertices in which any two vertices are mutually 

reachable 
 each vertex set cannot be enlarged by adding more 

vertices without destroying this property.



A

E

H

B

F
D

I

G

C

J

K

Directed Graph G 



A

E

H

B

F
D

I

G

C

J

K

Strongly connected 
components of G 



31

Determine the strongly connected components (stcc) in 
O(n+m) time

Perform 2 DFS’s
On what graphs?

• GT is the transpose of G generated by reversing the 
direction of every edge

• GT and G have the same strongly connected 
components

Record discovery and finish times  



32

Sketch of algorithm finding the stcc

1. call DFS on G to compute f[u] for each vertex u
A. Sort nodes in decreasing order of f[u]
B. (Only requires time O(n) since 1 ≤ f u ≤ 2𝑛𝑛)

2. find GT, the transpose of G
3. call DFS on GT

• consider the vertices in order of decreasing f[u]
4. the second DFS generates one or more tree

• the vertices in each tree form one strongly 
connected component



33

Why does the algorithm find the stcc?
Not obvious. 

Create the following “reduced” graph R=(VR,ER)
• Shrink every stcc into a single vertex.
• Put edges not in a stcc into graph R and remove 

duplicate edges.

Graph R is a dag
There must exist at least one “vertex” that has no incoming 
edges and at least one vertex with no outgoing edges.



A

E

H

B

F
D

I

G

C

J

K

DFS on G starts at A and restarts at 
vertex C

DFS on GT starts at vertex 
C  and finds the first stcc

R

DFS on GT re-starts at 
vertex A and finds the 
second stcc



35

Main Idea - Summary
Second DFS on GT 

• we start with the component C whose f(C) is the biggest 
(actually we start with x in C where f(x) is the biggest). 

• No edges go from inside C to any other component.
• The tree rooted at x contains exactly the vertices in C and 

we generated one strongly connected component.
Repeat the argument for the next sink in graph R until all 
strongly connected components have been generated.

Hence, the strongly connected components can be found in 
O(n+m) time by doing two DFS’s.



36

Let U be a set of vertices of directed graph G
• d(U) is the smallest discovery time of any vertex in U
• f(U) is the largest finishing time of any vertex in U

Assume C and C′ are two strongly connected components 
of G.

Claim 1:  If there is an edge (u, v) in G with u in C and v 
in C′, then f(C) > f(C′).
Claim 2:  If there is an edge (v,u) in the transpose of G with 
v in C’ and u in C, then f(C’) < f(C).


	CS 381 – Fall 2019
	Depth First Search (22.3+22.5; 251 text)�
	Depth First  Search 
	Slide Number 5
	Generic  version of  DFS�
	Slide Number 7
	Generic  version of  DFS�
	Generic  version of  DFS�
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 22
	Strongly Connected Components (22.5)
	Slide Number 25
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36

