CS 381 – FALL 2019

Week 9.1, Monday, Oct 14

Homework 4 Due Tonight! October 14th @ 11:59PM (Gradescope) Reminder: You <u>must</u> include a collaborator/resource (CR) statement for every problem. Homework 5: Planning to released on Wednesday (October 16th)

Depth First Search (22.3+22.5; 251 text)

- DFS performs a recursive exploration of a graph
 - DFS follows a path until it is forced to back up "backtracking"
- DFS operates on an adjacency list representation
- Most uses of DFS result in O(n+m) time
- DFS be used on directed and undirected graphs
- Undirected graph
 - DFS partitions the edges into tree and back edges
 - Assigns numbers to the vertices during exploration (e.g. DFS number, discovery number, finish number)

Depth First Search

- DFS can be used to solve
 - Determine *connected components* in an undirected graph (easy)
 - Test for stronger forms of connectivity: is the graph still connected if any edge/vertex is removed? *Bi-connected and bridge-connected*.
 - Determine *strongly connected components* in a directed graph
 - Test for *planarity* of a graph (can the graph be drawn without edges crossing?)

DFS in an undirected graph

DFS partitions edges into tree edges and back edges; One often puts a direction on tree and back edges indicating who explored whom

numbers indicate the order in which vertices are explored

Generic version of DFS

```
DFS(v)
  mark vertex v visited
  for each vertex w adjacent to v
    if w is unvisited
    DFS(w)
    add edge(v,w) to tree T
```

DFS is invoked at least once with an unvisited vertex Book-keeping collects information:

- Vertices have a discovery and a finish time (d(v) resp. f(v))
 - Discovery time is also called the DFS number
- Vertices are white, gray, and black during exploration in text

Vertex u has discovery time d(u) and finish time f(u)

7

Generic version of DFS

```
Global Counter c = 1
DFS(v)
    mark vertex v visited (set d(v)=c and update c=c+1)
    for each vertex w adjacent to v
       if w is unvisited
          DFS(w)
           add edge(v,w) to tree T
    set f(v) = c and update c=c+1
DFS is invoked at least once with an unvisited vertex
Book-keeping collects information:
• Vertices have a discovery and a finish time (d(v) resp. f(v))
```

- Discovery time is also called the DFS number
- Vertices are white, gray, and black during exploration in text

Generic version of DFS

```
Global Counter c = 1
DFS(v)
    mark vertex v visited
    (set d(v)=c and update c=c+1)
    for each vertex w adjacent to v
     if w is unvisited
        DFS(w)
        add edge(v,w) to tree T
    set f(v) = c and update c=c+1
(Optional: Label All Nodes)
For each vertex v
    if v is unvisited
       DFS(v)
```

Properties of DFS numbers

For any two vertices u and v, one of the following must hold:

- intervals [d(u), f(u)] and [d(v), f(v)] are disjoint;
 vertex u is discovered and finished before v
- 2. [d(u), f(u)] contains [d(v), f(v)]; v is a descendent of u
- 3. [d(v), f(v)] contains [d(u), f(u)]; u is a descendent of v

Not possible: two intervals overlap without containment:

Overlapping intervals, where **u** is encountered before **v** has finished but finishes after **v**, cannot occur.

O(n+m) time algorithms using DFS

- Finding the **biconnected components** in an *undirected* graph
- Finding the **strongly connected components** in a *directed* graph

Clicker Question

Suppose we run DFS(v) starting at node 0 to assign discovery numbers (d(u))and finish numbers (f(u)) to each node in G (see below)

No further information about order of adjacency lists e.g. we could have AdjList(0) = 1,3,9 or AdjList(0) = 9,3,1

Which of the following claims must be false?

A. $d(0) \le f(0)$ B. $f(2) \ge d(4)$ C. $f(0) \ge f(9)$ D. $f(5) \ge f(2)$ E. $d(2) \le d(10)$

Clicker Question

Suppose we run DFS(v) starting at node 0 to assign discovery numbers (d(u))

and finish numbers (f(u)) to each node in G (see below)

Which of the following claims must be false?

A. $d(0) \le f(0)$ B. $f(2) \ge d(4)$ C. $f(0) \ge f(9)$ D. $f(5) \ge f(2)$ E. $d(2) \le d(10)$

Biconnectivity in undirected, connected graphs

Vertex v is an **articulation point** if its removal results in a graph with more than one connected component.

If v is an articulation point, then there exist distinct vertices w and x such that v is in every path from w to x.

Biconnectivity

articulation point = removal disconnects the graph

A graph is **biconnected** if it contains no articulation points

- In a biconnected graph, there exist at least two vertexdisjoint paths between any pair of vertices
- The biconnected components are the largest subgraphs that are biconnected (partitions the edges, not the vertices)
- Connectivity definition can be generalized to *k*-connected graphs

Brute-Force algorithm

- Delete a vertex and test for connectivity; repeat n times
- O(n (n+m)) time to find all articulation points and the biconnected components

Biconnected component algorithm using DFS

Consider a DFS tree of an undirected graph G.

- The root is an articulation point if it has two or more children.
- A vertex v (other than the root) is an articulation point if and only if
 - v is not a leaf in the DFS tree and
 - some subtree rooted at a child of *v* has no back edge to a proper ancestor of v $\frac{1}{2}$ $\frac{8}{9}$

Node v=2 has 2 children: 3 & 5

- Subtree rooted at 3 has back edge (3,1)
- Subtree rooted at 5 has back edge (4,1)
- Node v=2 is not an articulation point

Idea During DFS keep track on how "far back up in the tree" one can get from each vertex by following tree and back edges.

Let low [v] keep track of how "far back up the tree" one can get from a descendent of v (via back edges)

- low[v] is initialized to d[v]
- When encountering a back edge (w,v), low[w] = min {low[w], d[v]}

When vertex w is completely explored, w's DFS parent v updates its low information:

if low[w] < d[v] then $low[v] = min \{low[v], low[w]\}$ if low $[w] \ge d[v]$ and v is not the root then v is an articulation point \mathbf{V} $low(w)=d(u) \le d(v)$ \mathbf{V} $\rightarrow low(v) \le low(w)$ W \mathbf{W} $low(w)=d(v)\ge d(v)$ \rightarrow v is articulation point

Articulation points: a, c, e Separate Check for Root: a

Strongly Connected Components (22.5)

Let G be a directed graph.

- G is **strongly connected** if there exists a path between any pair of vertices.
- If G is not strongly connected, decompose G into *strongly* connected components:
 - sets of vertices in which any two vertices are *mutually reachable*
 - each vertex set cannot be enlarged by adding more vertices without destroying this property.

Determine the strongly connected components (stcc) in O(n+m) time

Perform 2 DFS's On what graphs?

- G^T is the transpose of G generated by reversing the direction of every edge
- G^T and G have the same strongly connected components

Record discovery and finish times

Sketch of algorithm finding the stcc

- 1. call DFS on G to compute f[u] for each vertex u
 - A. Sort nodes in decreasing order of f[u]
 - B. (Only requires time O(n) since $1 \le f[u] \le 2n$)
- 2. find G^{T} , the transpose of G
- 3. call DFS on G^{T}
 - consider the vertices in order of **decreasing f[u]**
- 4. the second DFS generates one or more tree
 - the vertices in each tree form one strongly connected component

Why does the algorithm find the stcc? Not obvious.

Create the following "reduced" graph $R = (V_R, E_R)$

- Shrink every stcc into a single vertex.
- Put edges not in a stcc into graph R and remove duplicate edges.

Graph R is a dag

There must exist at least one "vertex" that has no incoming edges and at least one vertex with no outgoing edges.

Main Idea - Summary Second DFS on G^T

- we start with the component C whose f(C) is the biggest (actually we start with x in C where f(x) is the biggest).
- No edges go from inside C to any other component.
- The tree rooted at x contains exactly the vertices in C and we generated one strongly connected component.
 Repeat the argument for the next sink in graph R until all strongly connected components have been generated.

Hence, the strongly connected components can be found in O(n+m) time by doing two DFS's.

Let U be a set of vertices of directed graph G

- d(U) is the smallest discovery time of any vertex in U
- f(U) is the largest finishing time of any vertex in U

Assume C and C' are two strongly connected components of G.

Claim 1: If there is an edge (u, v) in G with u in C and v in C', then f(C) > f(C'). **Claim 2**: If there is an edge (v,u) in the *transpose* of G with v in C' and u in C, then f(C') < f(C).