for irery problem.




JON KLEINBERG - EVA TARDOS

PEARSON

e —

Addison
Wesley




3.1 Basic Definitions and Applications




Undirected Graphs

Undirected graph. 6 = (V, E)
. V = nodes.
. E = edges between pairs of nodes.
. Captures pairwise relationship between objects.
. Graph size parameters: n= |V|, m = |E|.

v={123,4,56,7,8}

() (D
. E={1-2,1-3,2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5,5-6 }
(2—3,

n=28
OanOBNO



Transportation Networks (Planes, Trains, Highways etc...)

. .
g

/" Bakticsea . Estonia

h Latvia
3 Morth Sea

Nu nited
Kingdom

De-nn_::'urk”" Lithuania e~
b i

g -

‘,_..-~*‘P6l-an d Belar
- ’t
/ .F‘r ague *.
- — Czechia 4
Paris (ORY) X Slovakia : &
= = Molde ~
Hungary “
LY

~_ Romania :
R '\\\ 1-?\-: ne N \
9 Yyreherar
l‘urlisl'. Medite \

Download from S [ 14146680
Dreamstime.com

Michael Brown | Dreamstime.com

This watermarked comp image s for previewing purposas only,




Web graph.
. Node: web page.
. Edge: hyperlink from one page to another.

netscape.com

—

novell.com

World Wide Web

cnn.com

chnsi.com

timewarner.com

J
sorpranos.com

hbo.com <~




Social Network




| |
Ahmed Ressam

»
Haydar Abu Doha

[}
Mehdi Khammoun

L]
Essoussi Laaroussi

L] n

Mohamed Bensakhria Tarek Mazroufi
[

Lased Ben Heni

[
Seifallah ben Hassine

a
Essid Sami Ben Khemais

L
F=hid =l Shakri

n
Abdelghani Mzoadi

-
Madijid Sahoune

[
Samir Kishk

[ ]
Fayez ARmed

Wi'ail Alshehri

Wialeed Alshehri

- Satam Sugami
Motrand Alshehi*

L
= Nabil al-Marabh
Raed Hijazi

=
Saeed Alghamdi*

L]
Ahmead Alnami

n
Mohammed Belfas

n
Must=fa Ahrmed al-Hisawi

Abdul Aziz Al-Omari*

9-11 Terrorist Network

Social network graph.
- Node: people.
. Edge:

n
Abu Zubeida

L
Jean- Marc Grandwisir 1
Mizar Trabelsi

[
Abu Walid .
Djsmal Eeghal

|} n
Kamel Dacudi-~ Jerome Courtaillier

|
Abu Gatads

L a
Zacarizs Moussaoui Danvid Courtaillier

L]
Imad Eddin Barakat Yarkas

™ Flight AA #77 . Crashed into Pentagon
W Flight UA #93 - Crashed in Pennsylvania
Flight UA #175 - Crat 0 WTC South

he oc of

u
Ramzi Bin al- Shibh

| ] m
Agus Budiman Mounir Bl Motassadeg

=
Ahmed-Ehalil lbrahim Samir Al-Ani

- u
Zakariya Essabar Mamduh Mahmud Salim

Moh=mad At » Marmoun Darkazanli
Said Bahaji

u
X Ziad Jarrah
Maryran - Shehbi

L2 -
Latfi Raissi Eandar Alhaz mi

[
Ahmed Al H i -
e B A Hani-Hanjour Rayed Mohammed Abdullah
=
" S3iar Alhazmit
i |
Ahmed Alghgmi Fai=zal Al 3l mi

n
Majed Maged

|
Hamza Alghamdi— g

Hawaat Alhaz mi
L]
Khalid Al-Mihdhar

L ]
i Osama Avadallah
- Abdussattar Shaikh
Moharmed Abdi

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

relationship between two people.


http://www.firstmonday.org/issues/issue7_4/krebs

Ecological Food Web

Food web graph.
- Node = species.
. Edge = from prey to predator.

northen copperbelly bl He-g il IFISh

water shake

o

leapard fraq e, shrew

spotted salamander

n algae (magnified)

cattails

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff



http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

10

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with A, = 1if (u, v) is an edge.
. Two representations of each edge.
. Space proportional to n2.
. Checking if (u, v) is an edge takes ©(1) time.
. Identifying all edges takes ®(n?) time.

o o 12345678
1101100000

. 210111000
(2) (3) 31171001011
' 401001000
o‘o o 5101110100
6/00001000

7100100001

e 800100010




1

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
. Two representations of each edge.
. Space proportional fo m + n. /
. Checking if (u, v) is an edge takes O(deg(u)) time.
. Identifying all edges takes ®(m + n) time.

degree = number of neighbors of u

®
A A A y
w Ol n w w
®
(6}
®
~
[
0o

wmeHH»—-N
®

0o N o0 O A W N -




12

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, Vo, ..., Vi1, Vi With the property that each consecutive pair v;, v,,; is
joined by an edge in E.

Def. A path is simple if all nodes are distinct (e.g., 1,2,5,6 below)

Def. Anundirected graph is connected if for every pair of
nodes u and v, there is a path between u and v.



13

Cycles

Def. A cycleis apath vy, v, ..., Vi1, Vi in which v; = v, k> 2, and the
first k-1 nodes are all distinct.

o ¢

cycle € = 1-2-4-5-3-1




14

Trees

Def. Anundirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

. G is connected.

. G does not contain a cycle.

. G has n-1 edges.



15

Rooted Trees

Rooted free. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

) OBNOIOIONNO

child of v
(leaf node)
a tree the same tree, rooted at 1



Binary Tree

Def. A rooted tree in which each node has at most 2 children

Def. Height of a free is the number of edges in the longest path from
root to leaf.

root r Height: 6

Thm. Number of nodes in binary tree of
height hisn < 2" —1 (=204 214+ 22+ ...+ 2h),

Balanced Binary Tree. Height h = O(logn)

17



iIClicker Quiz

Let G=(V,E) be an simple undirected graph. Which of
the following claims are false?

A. If |E|> n-1 then G contains a cycle

B. If |E|=n-1then G is a tree

C. If |E| = n(n+1)/2 then G is connected

D. If G is represented as an adjacency matrix then
we can test whether or not a particular edge (u,v)
exists in time O(1)

E. We can store G using O(m+n) space using
adjacency list representation.

18



19



iIClicker Quiz

Let G=(V,E) be an simple undirected graph. Which of the

following claims are false? e
A. If |E|> n-1then G contains a cycle @ e

B. If |E|=n-1then G is a tree 0
C. If |E| = n(n+1)/2 then G is connected

(6=Kn is complete graph & contains all possible edges)

D. If G is represented as an adjacency matrix then we
can test whether or not a particular edge (u,v) exists in

time O(1)

E. We can store G using O(m+n) space using adjacency
list representation.

20



3.2 Graph Traversal




23

Connectivity

s-t connectivity problem. Given two node s and t, is there a path
between s and t?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and t?

Applications.
. Navigation (Google Maps).
. Maze traversal.
. Kevin Bacon number (or Erdés Number).
. Fewest number of hops in a communication network.



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}
Output: Array Level[u] = distance from v to u
For each node uinV

Explored[u]=0 Q
Level[u] = oo // No v>u path found yet ‘
Q.Enqueue(v) // Queue Q (First In, First Out) e'a

Level[v]=0 ‘
while(Q is not empty) ° e
u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1 e
foreach node w in u.AdjList
if (Level[w] = )
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

24



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}
Output: Array Level[u] = distance from v o u Explored Level
For each node uin V 0, 07
Explored[u]=0
Level[u] = oo // No v>u path found yet
—> Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0 ‘
while(Q is not empty) (0, ) ° e 0
u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
foreach node w in u.AdjList
if (Level[w] = »)
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

25



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (0,0

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0 ‘
—> while(Q is not empty) (0, ) ° (O
—> u = Q.Dequeue()
—> if (Explored[u] = O)
—> Explored[u]=1
foreach node w in u.AdjList
if (Level[w] = »)
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

26



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (1,0

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0 ‘
while(Q is not empty) (0, ) ° e 0
u = Q.Dequeue()
if (Explored[u] = 0)
—> Explored[u]=1
—> foreach node w in u.AdjList
if (Level[w] = »)
—> Q.Enqueue(w)
—> Level[w] = Level[u]+1
end if

27



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (1,0

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0 ‘
while(Q is not empty) (0, ) ° e 0
u = Q.Dequeue()
if (Explored[u] = 0)
—> Explored[u]=1
—> foreach node w in u.AdjList
if (Level[w] = »)
—> Q.Enqueue(w)
—> Level[w] = Level[u]+1
end if

28



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (1,0

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0 ‘
while(Q is not empty) (0, ) ° e 0
u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
—> foreach node w in u.AdjList
—> if (Level[w] = »)
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

29



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (1,0

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0 ‘
while(Q is not empty) (0, ) ° e 0
u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
—> foreach node w in u.AdjList
if (Level[w] = »)
—>  Q.Enqueue(w)
—> Level[w] = Level[u]+1
end if

30



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (1,0

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0 ‘
—> while(Q is not empty) (0, ) ° e 0
—> u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
foreach node w in u.AdjList
if (Level[w] = »)
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

31



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
For each node uin V (1,0)
Explored[u]=0

Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty) (W@) °

u = Q.Dequeue()

if (Explored[u] = 0)

Explored[u]=1
—> foreach node w in u.AdjList
if (Level[w] = «)
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

32



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (L, 0y

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
—> while(Q is not empty) (0,2)
—> u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
foreach node w in u.AdjList
if (Level[w] = »)
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

33



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (L, 0y

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
—> while(Q is not empty) (0,2)
—> u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
—> foreach node w in u.AdjList
if (Level[w] = »)
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

34



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (L, 0y

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
—> while(Q is not empty) (0,2)
—> u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
foreach node w in u.AdjList
if (Level[w] = »)
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

35



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (L, 0y

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
—> while(Q is not empty) (1,2)
—> u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
—> foreach node w in u.AdjList
if (Level[w] = ») QUEVE Q
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

36



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (L, 0y

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
—> while(Q is not empty) (1,2)
—> u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
foreach node w in u.AdjList
if (Level[w] = ») QUEVE Q
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

37



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (L, 0y

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
—> while(Q is not empty) (1,2)
—> u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
—> foreach node w in u.AdjList
if (Level[w] = ») QUEVE Q
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

38



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (L, 0y

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
—> while(Q is not empty) (1,2)
—> u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
—> foreach node w in u.AdjList
if (Level[w] = ») QUEVE Q
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

39



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (L, 0y

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
—> while(Q is not empty) (1,2)
—> u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
—> foreach node w in u.AdjList
if (Level[w] = ») QUEVE Q
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

40



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}

Output: Array Level[u] = distance from v o u Explored Level
— (L, 0y

For each node uinV
Explored[u]=0
Level[u] = oo // No v>u path found yet
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
—> while(Q is not empty) (1,2)
—> u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1
—> foreach node w in u.AdjList
if (Level[w] = ») QUEVE Q
Q.Enqueue(w)
Level[w] = Level[u]+1
end if

41



Breadth First Search: BFS(v, 6=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n}
Output: Array Level[u] = distance from v o u Explored Level
For each node uinV — @0y
Explored[u]=0
Level[u] = o // No v>u path found yet (1,1)
Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
—> while(Q is not empty) (1,2)
u = Q.Dequeue()
if (Explored[u] = 0)
Explored[u]=1

(1,1)

foreach node w in u.AdjList (1.3)
if (Level[w] = o) QUEUE Q
Q.Enqueue(w)
Level[w] = Level[u]+1 Done!

end if

42



Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

BFS algorithm. S < Ly ; L. — e*¢  Lu
- Log={s}.
. L, = all neighbors of L,.
. L, = all nodes that do not belong to L, or L;, and that
have an edge to a node in L;.
. L1 = all nodes that do not belong to an earlier layer,
and that have an edge to a node in L,.

_
—_—

Theorem. For each i, L; consists of all nodes at distance
exactly i from s. There is a path from s to t iff + appears
in some layer.

43



Breadth First Search

Property. Let T be a BFS tree of 6 = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.




Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
. Easy to prove O(n?) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < n times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

. Actually runs in O(m + n) time:
- when we consider node u, there are deg(u) incident edges (u,v)
- total time processing edges is ¥,_, deg(u) = 2m =

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

46



47

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containingnode 1={1,2,3,4,5,6,7,8}.



Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire

blob of neighboring lime pixels to blue.
. Node: pixel.
. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob to blue

_

enon Tux Paint

A= o ot
aint | Stamp RainbowSparkles
T . o

Lines Shapes Mirrar " Flip
Abc —

Text m Blur ' Blocks
g4 /5 o\
Undo  Redo Negative| Fade
DN -0
Eraser = New Chalk * Drip
ggen Eve Thick " Thin

Coo3 ()
ﬂ Blue!

A ‘T

48



Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.

. Node: pixel.

. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob to blue

8 oo Tux Paint
fTools) Magid
A= o "
et
aint ' Stamp RalnbawSpérkles
bk ° ¢
Lines 'Shapes Mirrar Flip
o
Abc =
Text \Magic Blur ' Blocks
&\ /& v 2 e
Undo  Redo Negative' Fade
0\ rom ¢
Eraser ' New Chalk  Drip
pen ave Thick " Thin
rint a Fill
é Vd =

Colord [ SR e
W Click in the picture to fill that area with color.

49



Breadth First Search

What Eroblems can BFS solve?

Check if an undirected graph is connected

. Determine connected components in an

undirected graph

. Identify shortest path from source node to

a destination node

. Is G a tree? (Does G have a cycle)

50



Finding connected components

Def. A connected component is a maximal set of connected vertices.

v id[]
0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 1
8 1
9 2
10 2
3 connected components 11 J
12 2

Sedgewick-Wayne 251 text

51



Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v ¢R
Add v to R

Endwhile

it's safe to add v

Theorem. Upon termination, R is the connected
component containing s.

. BFS = explore in order of distance from s.

. DFS =explore in a different way.

52



Challenge Puzzle

Suppose the shortest path from u to v has length t > n/2. Show that
there exists some node w # u, v s.t. deleting w from G disconnects u
and v.

Hint: Consider the BFS tree!

Solution: Run BFS(u) to obtain levels Lg,L;,...

Observation 1: visinlevel L,

Observation 2: |Ly|+..+|L;| <= n

Observation 3: Must have some O < k < t with [L,|=1 by observation 2
Otherwise |Lol"‘lL1-|+(|L1|+...+|L1-_1|) > 2+ Z(t — 1) >n

Observation 4: Removing level L, disconnects uand v
(BFS tree property > if i < k< j then no edge connects L;and L))

53



BN
Depth First Search (22.3+22.5; 251 text)

DES performs a recursive exploration of a graph

* DFES follows a path until it is forced to back up —
“backtracking”

DES operates on an adjacency list representation
Most uses of DES result in O(n+m) time

DFS be used on directed and undirected graphs
Undirected graph

® DFS partitions the edges into tree and back edges

® Assigns numbers to the vertices during exploration (e.g.

DFS number, discovery number, finish number)




	CS 381 – Fall 2019
	Chapter 3��Graphs
	3.1  Basic Definitions and Applications
	Undirected Graphs
	Transportation Networks (Planes, Trains, Highways etc…)
	World Wide Web
	Social Network
	9-11 Terrorist Network
	Ecological Food Web
	Graph Representation:  Adjacency Matrix
	Graph Representation:  Adjacency List
	Paths and Connectivity
	Cycles
	Trees
	Rooted Trees
	Binary Tree
	iClicker Quiz
	Slide Number 19
	iClicker Quiz
	3.2  Graph Traversal
	Connectivity
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search
	Breadth First Search
	Breadth First Search:  Analysis
	Connected Component
	Flood Fill
	Flood Fill
	Breadth First Search
	Finding connected components 
	Connected Component
	Challenge Puzzle
	Depth First Search (22.3+22.5; 251 text)�

