
1

Week 8.3, Friday, Oct 11

Homework 4 Due: October 14th @ 11:59PM (Gradescope)
Reminder: You must include a collaborator/resource (CR) statement
for every problem.

2

Chapter 3

Graphs

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

3.1 Basic Definitions and Applications

4

Undirected Graphs

Undirected graph. G = (V, E)
 V = nodes.
 E = edges between pairs of nodes.
 Captures pairwise relationship between objects.
 Graph size parameters: n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11

Transportation Networks (Planes, Trains, Highways etc…)

5

6

World Wide Web

Web graph.
 Node: web page.
 Edge: hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com

Social Network

7

8

9-11 Terrorist Network

Social network graph.
 Node: people.
 Edge: relationship between two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

http://www.firstmonday.org/issues/issue7_4/krebs

9

Ecological Food Web

Food web graph.
 Node = species.
 Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

10

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.
 Two representations of each edge.
 Space proportional to n2.
 Checking if (u, v) is an edge takes Θ(1) time.
 Identifying all edges takes Θ(n2) time.

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

11

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
 Two representations of each edge.
 Space proportional to m + n.
 Checking if (u, v) is an edge takes O(deg(u)) time.
 Identifying all edges takes Θ(m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

12

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is
joined by an edge in E.

Def. A path is simple if all nodes are distinct (e.g., 1,2,5,6 below)

Def. An undirected graph is connected if for every pair of
nodes u and v, there is a path between u and v.

13

Cycles

Def. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

1

2 3

7

8
4 5

6

14

Trees

Def. An undirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.
 G is connected.
 G does not contain a cycle.
 G has n-1 edges.

15

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v
(leaf node)

root r

Binary Tree

Def. A rooted tree in which each node has at most 2 children

Def. Height of a tree is the number of edges in the longest path from
root to leaf.

Thm. Number of nodes in binary tree of
height h is 𝑛𝑛 ≤ 2ℎ+1 − 1 (= 20 + 21 + 22 + ⋯+ 2ℎ).

Balanced Binary Tree. Height ℎ = 𝑂𝑂(log𝑛𝑛)

17

1 2
3 7

8

4 5 6

root r

5

4

2

1

6

3

7 8

Height: 6

iClicker Quiz

Let G=(V,E) be an simple undirected graph. Which of
the following claims are false?

A. If |E|> n-1 then G contains a cycle

B. If |E|=n-1 then G is a tree

C. If |E| = n(n+1)/2 then G is connected

D. If G is represented as an adjacency matrix then
we can test whether or not a particular edge (u,v)
exists in time O(1)

E. We can store G using O(m+n) space using
adjacency list representation.

18

19

iClicker Quiz

Let G=(V,E) be an simple undirected graph. Which of the
following claims are false?

A. If |E|> n-1 then G contains a cycle

B. If |E|=n-1 then G is a tree

C. If |E| = n(n+1)/2 then G is connected
(G=Kn is complete graph & contains all possible edges)

D. If G is represented as an adjacency matrix then we
can test whether or not a particular edge (u,v) exists in
time O(1)

E. We can store G using O(m+n) space using adjacency
list representation.

20

2

3

4

1

3.2 Graph Traversal

23

Connectivity

s-t connectivity problem. Given two node s and t, is there a path
between s and t?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and t?

Applications.
 Navigation (Google Maps).
 Maze traversal.
 Kevin Bacon number (or Erdős Number).
 Fewest number of hops in a communication network.

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

24

1

2 3

4 5

6

v=1

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

25

1

2 3

4 5

6

(0,∞)

(0,∞)

(0,∞)

(0,∞)

(0,∞)

(0,∞)
Explored Level

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

26

1

2 3

4 5

6

(0,∞)

(0,∞)

(0,∞)

(0,∞)

(0,∞)

(0,𝟎𝟎)
Explored Level

v

QUEUE Q

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

27

1

2 3

4 5

6

(0,∞)

(0,∞)

(0,∞)

(0,∞)

(0,∞)

(1,𝟎𝟎)
Explored Level

QUEUE Q

2

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

28

1

2 3

4 5

6

(0,1)

(0,∞)

(0,∞)

(0,∞)

(0,∞)

(1,𝟎𝟎)
Explored Level

QUEUE Q

2

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

29

1

2 3

4 5

6

(0,1)

(0,∞)

(0,∞)

(0,∞)

(0,∞)

(1,𝟎𝟎)
Explored Level

QUEUE Q

23

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

30

1

2 3

4 5

6

(0,1)

(0,∞)

(0,∞)

(0,∞)

(0,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q

23

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

31

1

2 3

4 5

6

(0,1)

(0,∞)

(0,∞)

(0,∞)

(0,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q

23

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

32

1

2 3

4 5

6

(1,1)

(0,∞)

(0,∞)

(0,∞)

(0,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q
345

(0,2)
(0,2)

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

33

1

2 3

4 5

6

(1,1)

(0,2)

(0,∞)

(0,2)

(0,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q
345

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

34

1

2 3

4 5

6

(1,1)

(0,2)

(0,∞)

(0,2)

(1,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q
45

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

35

1

2 3

4 5

6

(1,1)

(0,2)

(0,∞)

(0,2)

(1,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q
45

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

36

1

2 3

4 5

6

(1,1)

(1,2)

(0,∞)

(0,2)

(1,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q
5

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

37

1

2 3

4 5

6

(1,1)

(1,2)

(0,∞)

(0,2)

(1,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q
5

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

38

1

2 3

4 5

6

(1,1)

(1,2)

(0,∞)

(1,2)

(1,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

39

1

2 3

4 5

6

(1,1)

(1,2)

(0,∞)

(1,2)

(1,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q
6

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

40

1

2 3

4 5

6

(1,1)

(1,2)

(0,3)

(1,2)

(1,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q
6

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

41

1

2 3

4 5

6

(1,1)

(1,2)

(0,3)

(1,2)

(1,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q
6

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v) // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞)
Q.Enqueue(w)
Level[w] = Level[u]+1

end if

42

1

2 3

4 5

6

(1,1)

(1,2)

(1,3)

(1,2)

(1,1)

(1,𝟎𝟎)
Explored Level

QUEUE Q

Done!

43

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

s L1 L2 L n-1BFS algorithm.
 L0 = { s }.
 L1 = all neighbors of L0.
 L2 = all nodes that do not belong to L0 or L1, and that

have an edge to a node in L1.
 Li+1 = all nodes that do not belong to an earlier layer,

and that have an edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance
exactly i from s. There is a path from s to t iff t appears
in some layer.

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

44

Breadth First Search

L0

L1

L2

L3

1

2 3

7

8
4 5

61

2 3

7 84 5

6

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

46

Breadth First Search: Analysis

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

Pf.
 Easy to prove O(n2) running time:

– at most n lists L[i]
– each node occurs on at most one list; for loop runs ≤ n times
– when we consider node u, there are ≤ n incident edges (u, v),

and we spend O(1) processing each edge

 Actually runs in O(m + n) time:
– when we consider node u, there are deg(u) incident edges (u,v)
– total time processing edges is Σu∈V deg(u) = 2m ▪

47

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

48

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.
 Node: pixel.
 Edge: two neighboring lime pixels.
 Blob: connected component of lime pixels.

recolor lime green blob to blue

49

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.
 Node: pixel.
 Edge: two neighboring lime pixels.
 Blob: connected component of lime pixels.

recolor lime green blob to blue

Breadth First Search

50

What problems can BFS solve?
 Check if an undirected graph is connected
 Determine connected components in an

undirected graph
 Identify shortest path from source node to

a destination node
 Is G a tree? (Does G have a cycle)

51

Finding connected components

Sedgewick-Wayne 251 text

52

Connected Component

Connected component. Find all nodes reachable from s.

s

u v

R

it's safe to add v

Theorem. Upon termination, R is the connected
component containing s.
 BFS = explore in order of distance from s.
 DFS = explore in a different way.

Challenge Puzzle

Suppose the shortest path from u to v has length t > n/2. Show that
there exists some node 𝐰𝐰 ≠ 𝒖𝒖,𝒗𝒗 s.t. deleting w from G disconnects u
and v.

Hint: Consider the BFS tree!

Solution: Run BFS(u) to obtain levels L0,L1,…

Observation 1: v is in level Lt

Observation 2: |L0|+…+|Lt| <= n

Observation 3: Must have some 0 < k < t with |Lk|=1 by observation 2
Otherwise |L0|+|Lt|+(|L1|+…+|Lt-1|) ≥ 2 + 2 𝑡𝑡 − 1 > 𝑛𝑛

Observation 4: Removing level Lk disconnects u and v
(BFS tree property  if i < k < j then no edge connects Li and Lj)

53

54

Depth First Search (22.3+22.5; 251 text)

 DFS performs a recursive exploration of a graph
DFS follows a path until it is forced to back up –

“backtracking”
 DFS operates on an adjacency list representation
 Most uses of DFS result in O(n+m) time
 DFS be used on directed and undirected graphs
 Undirected graph
DFS partitions the edges into tree and back edges
Assigns numbers to the vertices during exploration (e.g.

DFS number, discovery number, finish number)

	CS 381 – Fall 2019
	Chapter 3��Graphs
	3.1 Basic Definitions and Applications
	Undirected Graphs
	Transportation Networks (Planes, Trains, Highways etc…)
	World Wide Web
	Social Network
	9-11 Terrorist Network
	Ecological Food Web
	Graph Representation: Adjacency Matrix
	Graph Representation: Adjacency List
	Paths and Connectivity
	Cycles
	Trees
	Rooted Trees
	Binary Tree
	iClicker Quiz
	Slide Number 19
	iClicker Quiz
	3.2 Graph Traversal
	Connectivity
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search: BFS(v, G=(V,E))
	Breadth First Search
	Breadth First Search
	Breadth First Search: Analysis
	Connected Component
	Flood Fill
	Flood Fill
	Breadth First Search
	Finding connected components
	Connected Component
	Challenge Puzzle
	Depth First Search (22.3+22.5; 251 text)�

