CS 381 – FALL 2019

Week 8.3, Friday, Oct 11

Homework 4 Due: October 14th @ 11:59PM (Gradescope) Reminder: You <u>must</u> include a collaborator/resource (CR) statement for every problem.

Graphs

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

3.1 Basic Definitions and Applications

Undirected Graphs

Undirected graph. G = (V, E)

- V = nodes.
- E = edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.


```
V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11
```

Transportation Networks (Planes, Trains, Highways etc...)

World Wide Web

Web graph.

- Node: web page.
- Edge: hyperlink from one page to another.

Social Network

9-11 Terrorist Network

Social network graph.

- Node: people.
- Edge: relationship between two people.

Reference: Valdis Krebs, <u>http://www.firstmonday.org/issues/issue7_4/krebs</u>

Ecological Food Web

Food web graph.

- Node = species.
- Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- . Two representations of each edge.
- Space proportional to n².
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- . Identifying all edges takes $\Theta(n^2)$ time.

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- . Two representations of each edge.
- Space proportional to m + n.

degree = number of neighbors of u

- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes $\Theta(m + n)$ time.

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct (e.g., 1,2,5,6 below)

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

Def. A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle *C* = 1-2-4-5-3-1

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

Binary Tree

Def. A rooted tree in which each node has at most 2 children

Def. Height of a tree is the number of edges in the longest path from root to leaf.

Thm. Number of nodes in binary tree of height h is $n \le 2^{h+1} - 1$ (= $2^0 + 2^1 + 2^2 + \dots + 2^h$).

Balanced Binary Tree. Height $h = O(\log n)$

iClicker Quiz

Let G=(V,E) be an simple undirected graph. Which of the following claims are <u>false</u>?

- A. If |E| > n-1 then G contains a cycle
- **B.** If |E|=n-1 then G is a tree
- C. If |E| = n(n+1)/2 then G is connected

D. If G is represented as an adjacency matrix then we can test whether or not a particular edge (u,v) exists in time O(1)

E. We can store G using O(m+n) space using adjacency list representation.

iClicker Quiz

Let G=(V,E) be an simple undirected graph. Which of the following claims are <u>false</u>?

- A. If |E| > n-1 then G contains a cycle
- **B**. If |E|=n-1 then G is a tree

C. If |E| = n(n+1)/2 then G is connected (G=Kn is complete graph & contains all possible edges)

D. If G is represented as an adjacency matrix then we can test whether or not a particular edge (u,v) exists in time O(1)

E. We can store G using O(m+n) space using adjacency list representation.

3.2 Graph Traversal

Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.

- Navigation (Google Maps).
- Maze traversal.
- Kevin Bacon number (or Erdős Number).
- Fewest number of hops in a communication network.

Breadth First Search: BFS(v, G=(V,E))

```
Input: Start node v, graph G (adjacency list) with n node V={1,...,n}
Output: Array Level[u] = distance from v to u
                                                                       v=1
 For each node u in V
   Explored[u]=0
   Level[u] = \infty // No v\rightarrowu path found yet
                                                                   2
 Q.Enqueue(v) // Queue Q (First In, First Out)
 Level[v]=0
                                                                        5
 while(Q is not empty)
                                                             4
   u = Q.Dequeue()
   if (Explored[u] = 0)
                                                                        6
     Explored[u]=1
     foreach node w in u.AdjList
       if (Level[w] = \infty)
           Q.Enqueue(w)
           Level[w] = Level[u]+1
   end if
```

3

Breadth First Search: **BFS**(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n} **Output:** Array Level[u] = distance from v to u Explored Level *****(0,∞)***** For each node u in V Explored[u]=0 (0,∞) Level[u] = ∞ // No v \rightarrow u path found yet $(0,\infty)$ 3 2 \rightarrow Q.**Enqueue**(v) // Queue Q (First In, First Out) Level[v]=0 5 while(Q is not empty) $(0,\infty)$ (0,∞) u = Q.Dequeue()if (Explored[u] = 0) 6 Explored[u]=1 (0,∞) foreach node w in u.AdjList if (Level[w] = ∞) Q.Enqueue(w)Level[w] = Level[u]+1 end if

Breadth First Search: BFS(v, G=(V,E))

Breadth First Search: BFS(v, G=(V,E))

```
Input: Start node v, graph G (adjacency list) with n node V={1,...,n}
Output: Array Level[u] = distance from v to u
                                                               Explored
                                                                           Level
                                                                       (1,0)*
 For each node u in V
   Explored[u]=0
                                                                              (0,1)
   Level[u] = \infty // No v\rightarrowu path found yet
                                                            (1,1)
                                                                              3
                                                                    2
 Q.Enqueue(v) // Queue Q (First In, First Out)
 Level[v]=0
                                                      (0,2)
                                                                         5
 while(Q is not empty)
                                                                            (0,2)
   u = Q.Dequeue()
   if (Explored[u] = 0)
                                                                         6
     Explored[u]=1
                                                                        (0,∞)
 → foreach node w in u.AdjList
                                                        QUEUE Q
       if (Level[w] = \infty)
                                                                      4
                                                                             3
           Q.Enqueue(w)
           Level[w] = Level[u]+1
   end if
```

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n} **Output:** Array Level[u] = distance from v to u Explored Level ★ (1, 0) For each node u in V Explored[u]=0 (0,1)Level[u] = ∞ // No v \rightarrow u path found yet (1,1)3 2 Q.**Enqueue**(v) // Queue Q (First In, First Out) Level[v]=0 5 \rightarrow while(Q is not empty) (0,2)4 (0,2) \rightarrow u = Q.**Dequeue**() if (Explored[u] = 0) 6 Explored[u]=1 (0,∞) foreach node w in u.AdjList QUEUE Q if (Level[w] = ∞) 3 4 Q.Enqueue(w)Level[w] = Level[u]+1 end if

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n} **Output:** Array Level[u] = distance from v to u Explored Level (1, **0**)***** For each node u in V Explored[u]=0 (1,1)Level[u] = ∞ // No v \rightarrow u path found yet (1,1)3 2 Q.**Enqueue**(v) // Queue Q (First In, First Out) Level[v]=0 5 \rightarrow while(Q is not empty) (0,2)4 (0,2) \rightarrow u = Q.**Dequeue**() if (Explored[u] = 0) 6 Explored[u]=1 (0,∞) -> foreach node w in u.AdjList QUEUE Q if (Level[w] = ∞) 5 Q.Enqueue(w)Level[w] = Level[u]+1 end if

Breadth First Search: BFS(v, G=(V,E))

Breadth First Search: BFS(v, G=(V,E))

Breadth First Search: BFS(v, G=(V,E))

Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,...,n} **Output:** Array Level[u] = distance from v to u Explored Level (1, **0**)***** For each node u in V Explored[u]=0 (1,1)Level[u] = ∞ // No v \rightarrow u path found yet (1,1)3 2 Q.**Enqueue**(v) // Queue Q (First In, First Out) Level[v]=0 5 \rightarrow while(Q is not empty) (1,2)4 (1,2) \rightarrow u = Q.**Dequeue**() if (Explored[u] = 0) 6 Explored[u]=1 (0,∞) -> foreach node w in u.AdjList QUEUE Q if (Level[w] = ∞) Q.Enqueue(w)Level[w] = Level[u]+1 end if

Breadth First Search: BFS(v, G=(V,E))

Breadth First Search: BFS(v, G=(V,E))

Breadth First Search: BFS(v, G=(V,E))

Breadth First Search: BFS(v, G=(V,E))

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

- L₀ = { s }.
- L_1 = all neighbors of L_0 .
- L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the graph is given by its adjacency representation.

Pf.

- Easy to prove O(n²) running time:
 - at most n lists L[i]
 - each node occurs on at most one list; for loop runs \leq n times
 - when we consider node u, there are \leq n incident edges (u, v), and we spend O(1) processing each edge
- Actually runs in O(m + n) time:
 - when we consider node u, there are deg(u) incident edges (u,v)
 - total time processing edges is $\Sigma_{u \in V} \deg(u) = 2m$

each edge (u, v) is counted exactly twice in sum: once in deg(u) and once in deg(v)

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels.
- Blob: connected component of lime pixels.

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels.
- Blob: connected component of lime pixels.

Breadth First Search

What problems can BFS solve?

- . Check if an undirected graph is connected
- Determine connected components in an
- undirected graph Identify shortest path from source node to a destination node
- Is G a tree? (Does G have a cycle)

Finding connected components

Def. A connected component is a maximal set of connected vertices.

v	lall
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	1
8	1
9	2
10	2
11	2
12	2
	V 0 1 2 3 4 5 6 7 8 9 10 11 12

Sedgewick-Wayne 251 text

Connected Component

Connected component. Find all nodes reachable from s.

```
R will consist of nodes to which s has a path Initially R=\{s\} While there is an edge (u,v) where u\in R and v\not\in R Add v to R Endwhile
```


it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- DFS = explore in a different way.

Challenge Puzzle

Suppose the shortest path from u to v has length t > n/2. Show that there exists some node $w \neq u, v$ s.t. deleting w from G disconnects u and v.

Hint: Consider the BFS tree!

Solution: Run BFS(u) to obtain levels $L_0, L_1, ...$

Observation 1: v is in level L_t

Observation 2: $|L_0| + ... + |L_t| <= n$

Observation 3: Must have some 0 < k < t with $|L_k|=1$ by observation 2 Otherwise $|L_0|+|L_t|+(|L_1|+...+|L_{t-1}|) \ge 2 + 2(t-1) > n$

Observation 4: Removing level L_k disconnects u and v (BFS tree property \rightarrow if i < k < j then no edge connects L_i and L_j)

Depth First Search (22.3+22.5; 251 text)

- DFS performs a recursive exploration of a graph
 - DFS follows a path until it is forced to back up "backtracking"
- DFS operates on an adjacency list representation
- Most uses of DFS result in O(n+m) time
- DFS be used on directed and undirected graphs
- Undirected graph
 - DFS partitions the edges into tree and back edges
 - Assigns numbers to the vertices during exploration (e.g. DFS number, discovery number, finish number)