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Week 8.3,  Friday, Oct 11

Homework 4 Due: October 14th @ 11:59PM (Gradescope)
Reminder: You must include a collaborator/resource (CR) statement 
for every problem.
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Chapter 3

Graphs

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.



3.1  Basic Definitions and Applications
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Undirected Graphs

Undirected graph.  G = (V, E)
 V = nodes.
 E = edges between pairs of nodes.
 Captures pairwise relationship between objects.
 Graph size parameters:  n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11



Transportation Networks (Planes, Trains, Highways etc…)
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World Wide Web

Web graph.
 Node:  web page.
 Edge:  hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com



Social Network
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9-11 Terrorist Network

Social network graph.
 Node:  people.
 Edge:  relationship between two people.

Reference:  Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

http://www.firstmonday.org/issues/issue7_4/krebs
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Ecological Food Web

Food web graph.
 Node = species. 
 Edge = from prey to predator.

Reference:  http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff
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Graph Representation:  Adjacency Matrix

Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is an edge.
 Two representations of each edge.
 Space proportional to n2.
 Checking if (u, v) is an edge takes Θ(1) time. 
 Identifying all edges takes Θ(n2) time.

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0
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Graph Representation:  Adjacency List

Adjacency list.  Node indexed array of lists.
 Two representations of each edge.
 Space proportional to m + n.
 Checking if (u, v) is an edge takes O(deg(u)) time.
 Identifying all edges takes Θ(m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7
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Paths and Connectivity

Def.  A path in an undirected graph G = (V, E) is a sequence P of nodes 
v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is 
joined by an edge in E.

Def.  A path is simple if all nodes are distinct (e.g., 1,2,5,6 below)

Def.  An undirected graph is connected if for every pair of 
nodes u and v, there is a path between u and v.
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Cycles

Def.  A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the 
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

1

2 3

7

8
4 5

6
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Trees

Def.  An undirected graph is a tree if it is connected and does not 
contain a cycle.

Theorem.  Let G be an undirected graph on n nodes. Any two of the 
following statements imply the third.
 G is connected.
 G does not contain a cycle.
 G has n-1 edges.
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Rooted Trees

Rooted tree.  Given a tree T, choose a root node r and orient each edge 
away from r.

Importance.  Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v
(leaf node)

root r



Binary Tree

Def. A rooted tree in which each node has at most 2 children

Def. Height of a tree is the number of edges in the longest path from 
root to leaf. 

Thm. Number of nodes in binary tree of 
height h is 𝑛𝑛 ≤ 2ℎ+1 − 1 (= 20 + 21 + 22 + ⋯+ 2ℎ).

Balanced Binary Tree. Height ℎ = 𝑂𝑂(log𝑛𝑛)
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1 2
3 7

8

4 5 6

root r

5

4

2

1

6

3

7 8

Height: 6



iClicker Quiz

Let G=(V,E) be an simple undirected graph. Which of 
the following claims are false?

A. If |E|> n-1 then G contains a cycle

B. If |E|=n-1 then G is a tree

C. If |E| =  n(n+1)/2 then G is connected

D. If G is represented as an adjacency matrix then 
we can test whether or not a particular edge (u,v) 
exists in time O(1)

E. We can store G using O(m+n) space using 
adjacency list representation.
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iClicker Quiz

Let G=(V,E) be an simple undirected graph. Which of the 
following claims are false?

A. If |E|> n-1 then G contains a cycle

B. If |E|=n-1 then G is a tree

C. If |E| =  n(n+1)/2 then G is connected
(G=Kn is complete graph & contains all possible edges)

D. If G is represented as an adjacency matrix then we 
can test whether or not a particular edge (u,v) exists in 
time O(1)

E. We can store G using O(m+n) space using adjacency 
list representation.

20

2

3

4
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3.2  Graph Traversal
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Connectivity

s-t connectivity problem.  Given two node s and t, is there a path 
between s and t?

s-t shortest path problem.  Given two node s and t, what is the length 
of the shortest path between s and t?

Applications.
 Navigation (Google Maps).
 Maze traversal.
 Kevin Bacon number (or Erdős Number).
 Fewest number of hops in a communication network.



Breadth First Search: BFS(v, G=(V,E))

Input: Start node v, graph G (adjacency list) with n node V={1,…,n}
Output: Array Level[u] = distance from v to u
For each node u in V

Explored[u]=0
Level[u] = ∞ // No vu path found yet

Q.Enqueue(v)          // Queue Q (First In, First Out)
Level[v]=0
while(Q is not empty)

u = Q.Dequeue()
if (Explored[u] = 0)

Explored[u]=1
foreach node w in u.AdjList

if (Level[w] = ∞) 
Q.Enqueue(w)
Level[w] = Level[u]+1

end if    
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1

2 3

4 5

6

v=1
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(0,∞)

(0,∞)

(0,∞)

(0,∞)

(0,∞)

(0,∞)
Explored Level
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Breadth First Search

BFS intuition.  Explore outward from s in all possible directions, adding 
nodes one "layer" at a time.

s L1 L2 L n-1BFS algorithm.
 L0 = { s }.
 L1 = all neighbors of L0.
 L2 = all nodes that do not belong to L0 or L1, and that 

have an edge to a node in L1.
 Li+1 = all nodes that do not belong to an earlier layer, 

and that have an edge to a node in Li.

Theorem.  For each i, Li consists of all nodes at distance 
exactly i from s. There is a path from s to t iff t appears 
in some layer.



Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of 
G. Then the level of x and y differ by at most 1.
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Breadth First Search

L0

L1

L2

L3

1

2 3

7

8
4 5

61

2 3

7 84 5
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Theorem.  The above implementation of BFS runs in O(m + n) time if 
the graph is given by its adjacency representation.

46

Breadth First Search:  Analysis

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

Pf.
 Easy to prove O(n2) running time:

– at most n lists L[i]
– each node occurs on at most one list; for loop runs ≤ n times
– when we consider node u, there are ≤ n incident edges (u, v),

and we spend O(1) processing each edge

 Actually runs in O(m + n) time:
– when we consider node u, there are deg(u) incident edges (u,v)
– total time processing edges is Σu∈V deg(u) = 2m     ▪
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Connected Component

Connected component.  Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.
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Flood Fill

Flood fill.  Given lime green pixel in an image, change color of entire 
blob of neighboring lime pixels to blue.
 Node:  pixel.
 Edge:  two neighboring lime pixels.
 Blob:  connected component of lime pixels.

recolor lime green blob to blue
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Flood Fill

Flood fill.  Given lime green pixel in an image, change color of entire 
blob of neighboring lime pixels to blue.
 Node:  pixel.
 Edge:  two neighboring lime pixels.
 Blob:  connected component of lime pixels.

recolor lime green blob to blue



Breadth First Search

50

What problems can BFS solve?
 Check if an undirected graph is connected
 Determine connected components in an 

undirected graph 
 Identify shortest path from source node to 

a destination node
 Is G a tree? (Does G have a cycle)
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Finding connected components 

Sedgewick-Wayne 251 text
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Connected Component

Connected component.  Find all nodes reachable from s.

s

u v

R

it's safe to add v

Theorem.  Upon termination, R is the connected 
component containing s.
 BFS = explore in order of distance from s.
 DFS = explore in a different way.



Challenge Puzzle

Suppose the shortest path from u to v has length t > n/2. Show that 
there exists some node 𝐰𝐰 ≠ 𝒖𝒖,𝒗𝒗 s.t. deleting w from G disconnects u 
and v.

Hint: Consider the BFS tree!

Solution: Run BFS(u) to obtain levels L0,L1,…

Observation 1: v is in level Lt

Observation 2: |L0|+…+|Lt| <= n 

Observation 3: Must have some 0 < k < t with |Lk|=1 by observation 2
Otherwise |L0|+|Lt|+(|L1|+…+|Lt-1|) ≥ 2 + 2 𝑡𝑡 − 1 > 𝑛𝑛

Observation 4: Removing level Lk disconnects u and v
(BFS tree property  if i < k < j then no edge connects Li and Lj)

53



54

Depth First Search (22.3+22.5; 251 text)

 DFS performs a recursive exploration of a graph
DFS follows a path until it is forced to back up –

“backtracking” 
 DFS operates on an adjacency list representation
 Most uses of DFS result in O(n+m) time
 DFS be used on directed and undirected graphs
 Undirected graph
DFS partitions the edges into tree and back edges
Assigns numbers to the vertices during exploration (e.g. 

DFS number, discovery number, finish number)
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