k 7.2, Wednesday, Oct 2

N« PSOs next week (October Break)
Thursday/Friday PSOs are now ~office hours”
Look for Homework 4 tonight




nouncements

d
10 (+5 point bonus)
).23 Median: 92.5

14.4

most challenging part of exam
tant for CS381!

to judge whether a proof is rigorous/ clear
claim should be easily verifiable (or falsifiable)

o Consider changing the original ﬁroblem statement to something
false, but keeping the proot unchanged
= E.g., set T(2)=50 so that we don’t always have T(n) < 10n*
* It should be clear what part of the proof breaks down
= If this is not clear it is a good sign your proof is not rigorous/ clear



~ Grade distribution
1e the final grades, we ask questions
did this student master the

In the sense that the
ge is set or a fraction of the class must
e a certain grade.

do not have a pre-defined mapping from
bleted work scores to a final grade.

1 We use the standards given on next two slides as
- guidelines.

= Adapted from U of Washington grading
guidelines



uperior performance in all aspects with
mplifying the highest quality.

oly prepared for courses building on
duate work.

dered prepared for courses building on 381.

= B: High quality performance in some; satisfactory
performance in the remainder. Good chance of
success in courses building on 381.



fisfactory performance. Evidence of sufficient
0 succeed in courses building on 381.

ory performance in most of the course.

rmance. Not considered prepared for courses
ng on 331.

@ D+, D: Demonstrated minimal learning and low
quality performance in all aspects.

@ D-: Little evidence of learning. Poor performance in
all aspects.

= F: Complete absence of evidence of learning.



6.4 Knapsack Problem
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Knapsack Problem (Greedy)

Knapsack problem.
. Given nobjects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > 0.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

Ex: { 3,4} has value 40. -

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.
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Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1: OPT does not select item .
- OPT selects bestof {1, 2, ..., i-1}
- In this case we have OPT(i) = OPT(i-1) ©

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
OPT(i) = v.? - underestimate, could pick other items
OPT(i) = v; + OPT(i-1)? - overestimate, capacity reduced!
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!



Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1. OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

0 if i=0
OPT (i, w)={OPT(i—1, w) if w,>w
(max{OPT(i-1,w), v;+ OPT(i-1,w-w;)} otherwise

14
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Clicker Question

— W+l —

01213 Wss
W0l o o o

Y
1 1 1 1

x1 x2

2y e

2 6 2

What are the missing values in the DP table?

A.(x1=1, x2=6)
B. (X1:5, X2:7)
C. (X1:6, X2:9)
D.(x1=1, x2=1)
E. (X1:6, X2:7)



16
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Clicker Question

— W+1  ——

o|1]2]3 W=s
00 0 o

Y
1 1 1 1

(12} [O8

1 x2
L > 6 2

What are the missing values in the DP table?

A(XI:I' X2:6) OPT(i,w)= O(I)DT(i—l,W) :: \IN:SW
B. (X1=5, X2:7) max{ OPT(i—-1,w), v;+ OPT(i-Lw-w;)} otherlwise
C. (x1=6, x2=9)
D.(x1=1, x2=1)

E. (x1=6, x2=7)



Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

18



Knapsack Algorithm

W+1

ﬂ-----ﬂ-ﬂﬂ

o 8] o
{1} -1 T N N B N T
el (Lzy [o8 1 6 7 7 77|77 7
(1,2 3} o 1 6 7 7 -19 24 25 25 25 25
(1,234Y 0 1 6 7 7 22 24 28 29 29 [40
(1,23.45}) 0 1 6 7 7 18 22 28 29 34 35-

weign JIRCREE

1 1 1 OPT: {4, 3}

2 6 2 VGIU@ =22+18=40

3 18 5 OPT(5,11)= max{OPT(4,11), 28+0OPT(4,4)}

4 52 6 = OPT(4,11) - item b5 not selected
5 28 7 OPT(4,11) = 22+OPT(3,5) > item 4 selected

19



20

Knapsack Problem: Running Time

Running time. ©(n W).
- Not polynomial in input size!
- Only need log, W bits to encode each weight
- Problem can be encoded with 0(nlog, W) bits
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time
algorithm that produces a feasible solution that has value within
0.01% of optimum. [Section 11.8]



Basic Matrix Multiplication

Inputs: matrices A (m x n), B(nxr)

* Assume Ali,j] and B[i,j] are integers

Output: D = AB (m x r)

® Standard algorithm uses mnr integer multiplications

® (Faster with Strassen’s Algorithm --- Divide & Conquer)

® For this problem suppose we use standard algorithm
Observation 1: Matrix Multiplication is not commutative
® i.e. BA#AB (in fact BA might not even be well defined)
Observation 2: Matrix Multiplication is associative

® i.e. ABC = (AB)C=A(BC)




Basic Matrix Multiplication

Inputs: matrices A (m xn), B (nxr), C (r x k)

Observation 2: Matrix Multiplication is associative
* i.c. ABC = (AB)C=A(BC)

® Option 1: Compute D=(AB) (m x r) then DC
Total Multiplications: mnr + mrk

® Option 2: Compute D =(BC) (n x k) then AD
Total Multiplications: nrk + mnk

Suppose m=100, n=100, r=500 and k=5
® Option 1 - 5.25 million integer multiplications
® Option 2 —= 0.3 million integer multiplications




Given matrices A, A,, ..., A, , place parenthesis
minimizing the total number of multiplications.

(A1 A) Ag) (ALA;)

Notation: Matrix A; isa P;_q by p; matrix

= The product A;A; 1 is well defined p;_; by p;;1 matrix
= The product A; 41 ... Ay is a p; by py, matrix
Thus, A;(Aj+1 ... Ay) is well defined p;_4 by p,, matrix
= The product A1 45 ... Aj_q is a pg by p;_1 matrix
Thus, (4145 ... A;_1)A; is well defined py by p; matrix




Given matrices A, A,, ..., A, place parenthesis
minimizing the total number of multiplications.

(A1 A) Ag) (ALA;)

Observation: Exponentially many ways to place parenthesis!
— Brute force solutions will not work!

éDynamic Programming?




Given matrices A, A,, ..., A, place parenthesis
minimizing the total number of multiplications.

(A1 A) Ag) (ALA;)

1. An optimal solution to matrix chain contains optimal

subsolutions.

2. Fill an nXn table m where m([i,j] = minimum number of

multiplications for generating A; XA, X... XA,

m[1,]]= min {m[Lk] + m[k+1,;] + p;  Xp, Xp;}
with i<j and i<k<j

(A XA % AR (A X XA XA




	CS 381 – Fall 2019
	Announcements
	Grade distribution 
	Slide Number 4
	Slide Number 5
	6.4  Knapsack Problem
	Knapsack Problem (Greedy)
	Dynamic Programming:  False Start
	Dynamic Programming:  Adding a New Variable
	Clicker Question
	Slide Number 16
	Clicker Question
	Knapsack Problem:  Bottom-Up
	Knapsack Algorithm
	Knapsack Problem:  Running Time
	Basic Matrix Multiplication
	Basic Matrix Multiplication
	Given matrices A1, A2, …, An, place parenthesis minimizing the total number of multiplications.�
	Given matrices A1, A2, …, An, place parenthesis minimizing the total number of multiplications.�
	Given matrices A1, A2, …, An, place parenthesis minimizing the total number of multiplications.�

