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Week 7.2,  Wednesday, Oct 2

No PSOs next week (October Break)
Thursday/Friday PSOs are now ``office hours”
Look for Homework 4 tonight



 Midterm Graded
 Possible Points: 110 (+5 point bonus)
 Max: 113     Mean: 89.23   Median: 92.5 
 Std Dev: 14.44

 No Curve Until the End of the Year
 Gradescope vs. Blackboard Scores
 Proofs: most challenging part of exam

 Important for CS381!
 How to judge whether a proof is rigorous/clear
 Each claim should be easily verifiable (or falsifiable)
 Consider changing the original problem statement to something 

false, but keeping the proof unchanged
 E.g., set T(2)=50 so that we don’t always have T(n) ≤ 10𝑛𝑛2
 It should be clear what part of the proof breaks down
 If this is not clear it is a good sign your proof is not rigorous/clear
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 To determine the final grades, we ask questions 
like “How well did this student master the 
material?”

 Grading is not curved in the sense that the 
average is set or a fraction of the class must 
receive a certain grade. 
 We do not have a pre-defined mapping from 

completed work scores to a final grade. 
 We use the standards given on next two slides as 

guidelines. 
 Adapted from U of Washington grading 

guidelines 
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 A+, A:  Superior performance in all aspects with 
work exemplifying the highest quality. 
Unquestionably prepared for courses building on 
381 and for graduate work.

 A-: Superior performance in most aspects; high 
quality work in the remainder. Prepared for courses 
building on 381 and graduate work.

 B+: High quality performance in all or most aspects. 
Considered prepared for courses building on 381.

 B: High quality performance in some; satisfactory 
performance in the remainder. Good chance of 
success in courses building on 381.
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 B-: Satisfactory performance. Evidence of sufficient 
learning to succeed in courses building on 381.

 C+: Satisfactory performance in most of the course. 
Evidence of sufficient learning to succeed in courses 
building on 381 with effort.

 C:  Evidence of learning but generally marginal 
performance. Not considered prepared for courses 
building on 381.

 D+, D: Demonstrated minimal learning and low 
quality performance in all aspects. 

 D-: Little evidence of learning. Poor performance in 
all aspects. 

 F: Complete absence of evidence of learning. 



6.4  Knapsack Problem
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Knapsack Problem (Greedy)

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35  ⇒ greedy not 
optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2
W = 4-2
= 2  

ratio

1

3

3.6

3.66..

4
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Dynamic Programming:  False Start

Def.  OPT(i) = max profit subset of items 1, …, i.

 Case 1:  OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } 
– In this case we have OPT(i) = OPT(i-1) 

 Case 2:  OPT selects item i.
– accepting item i does not immediately imply that we will have to 

reject other items
OPT(i) = vi?                     underestimate, could pick other items
OPT(i) = vi + OPT(i-1)?    overestimate, capacity reduced!

– without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion.  Need more sub-problems!



14

Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

 Case 1:  OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } using weight limit w 

 Case 2:  OPT selects item i.
– new weight limit = w – wi
– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

  

 

OPT(i, w) =
0 if  i = 0

OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w − wi ){ } otherwise

 

 
 

  
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Clicker Question

n + 1
1

Value

1

Weight

6 2

Item

1
2

φ

{ 1, 2 }

{ 1 }

0

0

0

0

1

0

1

1

2

0

x1

1

3

0

x2

1

W + 1

W = 3

What are the missing values in the DP table?

A. (x1=1,  x2=6)
B. (x1=5,  x2=7)
C. (x1=6,  x2=9)
D. (x1=1,  x2=1)
E. (x1=6,  x2=7)
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Clicker Question

n + 1
1

Value

1

Weight

6 2

Item

1
2

φ

{ 1, 2 }

{ 1 }

0

0

0

0

1

0

1

1

2

0

x1

1

3

0

x2

1

W + 1

W = 3

What are the missing values in the DP table?

A. (x1=1,  x2=6)
B. (x1=5,  x2=7)
C. (x1=6,  x2=9)   
D. (x1=1,  x2=1)
E. (x1=6,  x2=7)

  

 

OPT(i, w) =
0 if  i = 0

OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w − wi ){ } otherwise

 

 
 

  
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Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Knapsack Problem:  Bottom-Up

Knapsack.  Fill up an n-by-W array.
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Knapsack Algorithm

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

35

11

0

7

25

40

1

40

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40

OPT(5,11)= max{OPT(4,11), 28+OPT(4,4)}
= OPT(4,11)  item 5 not selected

OPT(4,11) = 22+OPT(3,5)  item 4 selected



20

Knapsack Problem:  Running Time

Running time.  Θ(n W).
 Not polynomial in input size!  

– Only need log2𝑊𝑊 bits to encode each weight
– Problem can be encoded with 𝑂𝑂 𝑛𝑛 log2𝑊𝑊 bits

 "Pseudo-polynomial."
 Decision version of Knapsack is NP-complete.  [Chapter 8]

Knapsack approximation algorithm.  There exists a poly-time 
algorithm that produces a feasible solution that has value within 
0.01% of optimum.  [Section 11.8]
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Basic Matrix Multiplication

 Inputs: matrices A (m x n), B (n x r)
 Assume A[i,j] and B[i,j] are integers

 Output: D = AB (m x r)
 Standard algorithm uses mnr integer multiplications
 (Faster with Strassen’s Algorithm --- Divide & Conquer)
 For this problem suppose we use standard algorithm

 Observation 1: Matrix Multiplication is not commutative
 i.e. BA≠AB (in fact BA might not even be well defined)

 Observation 2: Matrix Multiplication is associative
 i.e. ABC = (AB)C=A(BC)
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Basic Matrix Multiplication

 Inputs: matrices A (m x n), B (n x r), C (r x k)
 Observation 2: Matrix Multiplication is associative
 i.e. ABC = (AB)C=A(BC)

 Option 1: Compute D=(AB) (m x r) then DC
 Total Multiplications: mnr + mrk

 Option 2: Compute D =(BC)  (n x k) then AD
 Total Multiplications: nrk + mnk

 Suppose m=100, n=100, r=500 and k=5
 Option 1  5.25 million integer multiplications
 Option 2  0.3  million integer multiplications
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Notation: Matrix 𝐴𝐴𝑖𝑖 is a  𝑝𝑝𝑖𝑖−1 by 𝑝𝑝𝑖𝑖 matrix

The product 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖+1 is well defined 𝑝𝑝𝑖𝑖−1 by 𝑝𝑝𝑖𝑖+1 matrix 
The product 𝐴𝐴𝑖𝑖+1 …𝐴𝐴𝑛𝑛 is a 𝑝𝑝𝑖𝑖 by 𝑝𝑝𝑛𝑛 matrix

Thus, 𝐴𝐴𝑖𝑖(𝐴𝐴𝑖𝑖+1 …𝐴𝐴𝑛𝑛) is well defined 𝑝𝑝𝑖𝑖−1 by 𝑝𝑝𝑛𝑛 matrix 
The product 𝐴𝐴1𝐴𝐴2 …𝐴𝐴𝑖𝑖−1 is a 𝑝𝑝0 by 𝑝𝑝𝑖𝑖−1 matrix

Thus, (𝐴𝐴1𝐴𝐴2 …𝐴𝐴𝑖𝑖−1)𝐴𝐴𝑖𝑖 is well defined 𝑝𝑝0 by 𝑝𝑝𝑖𝑖 matrix

Given matrices A1, A2, …, An, place parenthesis 
minimizing the total number of multiplications.

(( A1 A2) A3)  ( A4 A5)  
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Observation: Exponentially many ways to place parenthesis!

Brute force solutions will not work!

Dynamic Programming?

Given matrices A1, A2, …, An, place parenthesis 
minimizing the total number of multiplications.

(( A1 A2) A3)  ( A4 A5)  
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1. An optimal solution to matrix chain contains optimal 
subsolutions.

2. Fill an n×n table m where m[i,j] = minimum number of 
multiplications for generating  Ai ×Ai+1×… ×Aj

m[i,j]= min {m[i,k] + m[k+1,j] + pi-1×pk×pj} 
with i<j and i≤k<j

(Ai ×Ai+1×… Ak )×(Ak+1×… ×Aj-1× Aj)

Given matrices A1, A2, …, An, place parenthesis 
minimizing the total number of multiplications.

(( A1 A2) A3)  ( A4 A5)  
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