
1

Week 7.2, Wednesday, Oct 2

No PSOs next week (October Break)
Thursday/Friday PSOs are now ``office hours”
Look for Homework 4 tonight

 Midterm Graded
 Possible Points: 110 (+5 point bonus)
 Max: 113 Mean: 89.23 Median: 92.5
 Std Dev: 14.44

 No Curve Until the End of the Year
 Gradescope vs. Blackboard Scores
 Proofs: most challenging part of exam

 Important for CS381!
 How to judge whether a proof is rigorous/clear
 Each claim should be easily verifiable (or falsifiable)
 Consider changing the original problem statement to something

false, but keeping the proof unchanged
 E.g., set T(2)=50 so that we don’t always have T(n) ≤ 10𝑛𝑛2
 It should be clear what part of the proof breaks down
 If this is not clear it is a good sign your proof is not rigorous/clear

3

 To determine the final grades, we ask questions
like “How well did this student master the
material?”

 Grading is not curved in the sense that the
average is set or a fraction of the class must
receive a certain grade.
 We do not have a pre-defined mapping from

completed work scores to a final grade.
 We use the standards given on next two slides as

guidelines.
 Adapted from U of Washington grading

guidelines

4

 A+, A: Superior performance in all aspects with
work exemplifying the highest quality.
Unquestionably prepared for courses building on
381 and for graduate work.

 A-: Superior performance in most aspects; high
quality work in the remainder. Prepared for courses
building on 381 and graduate work.

 B+: High quality performance in all or most aspects.
Considered prepared for courses building on 381.

 B: High quality performance in some; satisfactory
performance in the remainder. Good chance of
success in courses building on 381.

5

 B-: Satisfactory performance. Evidence of sufficient
learning to succeed in courses building on 381.

 C+: Satisfactory performance in most of the course.
Evidence of sufficient learning to succeed in courses
building on 381 with effort.

 C: Evidence of learning but generally marginal
performance. Not considered prepared for courses
building on 381.

 D+, D: Demonstrated minimal learning and low
quality performance in all aspects.

 D-: Little evidence of learning. Poor performance in
all aspects.

 F: Complete absence of evidence of learning.

6.4 Knapsack Problem

12

Knapsack Problem (Greedy)

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not
optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2
W = 4-2
= 2

ratio

1

3

3.6

3.66..

4

13

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

 Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 }
– In this case we have OPT(i) = OPT(i-1) 

 Case 2: OPT selects item i.
– accepting item i does not immediately imply that we will have to

reject other items
OPT(i) = vi?  underestimate, could pick other items
OPT(i) = vi + OPT(i-1)?  overestimate, capacity reduced!

– without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

14

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

 Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } using weight limit w

 Case 2: OPT selects item i.
– new weight limit = w – wi
– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

OPT(i, w) =
0 if i = 0

OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w − wi){ } otherwise






 

15

Clicker Question

n + 1
1

Value

1

Weight

6 2

Item

1
2

φ

{ 1, 2 }

{ 1 }

0

0

0

0

1

0

1

1

2

0

x1

1

3

0

x2

1

W + 1

W = 3

What are the missing values in the DP table?

A. (x1=1, x2=6)
B. (x1=5, x2=7)
C. (x1=6, x2=9)
D. (x1=1, x2=1)
E. (x1=6, x2=7)

16

17

Clicker Question

n + 1
1

Value

1

Weight

6 2

Item

1
2

φ

{ 1, 2 }

{ 1 }

0

0

0

0

1

0

1

1

2

0

x1

1

3

0

x2

1

W + 1

W = 3

What are the missing values in the DP table?

A. (x1=1, x2=6)
B. (x1=5, x2=7)
C. (x1=6, x2=9)
D. (x1=1, x2=1)
E. (x1=6, x2=7)

OPT(i, w) =
0 if i = 0

OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w − wi){ } otherwise






 

18

Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

19

Knapsack Algorithm

n + 1

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

35

11

0

7

25

40

1

40

W + 1

W = 11

OPT: { 4, 3 }
value = 22 + 18 = 40

OPT(5,11)= max{OPT(4,11), 28+OPT(4,4)}
= OPT(4,11)  item 5 not selected

OPT(4,11) = 22+OPT(3,5)  item 4 selected

20

Knapsack Problem: Running Time

Running time. Θ(n W).
 Not polynomial in input size!

– Only need log2𝑊𝑊 bits to encode each weight
– Problem can be encoded with 𝑂𝑂 𝑛𝑛 log2𝑊𝑊 bits

 "Pseudo-polynomial."
 Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time
algorithm that produces a feasible solution that has value within
0.01% of optimum. [Section 11.8]

22

Basic Matrix Multiplication

 Inputs: matrices A (m x n), B (n x r)
 Assume A[i,j] and B[i,j] are integers

 Output: D = AB (m x r)
 Standard algorithm uses mnr integer multiplications
 (Faster with Strassen’s Algorithm --- Divide & Conquer)
 For this problem suppose we use standard algorithm

 Observation 1: Matrix Multiplication is not commutative
 i.e. BA≠AB (in fact BA might not even be well defined)

 Observation 2: Matrix Multiplication is associative
 i.e. ABC = (AB)C=A(BC)

23

Basic Matrix Multiplication

 Inputs: matrices A (m x n), B (n x r), C (r x k)
 Observation 2: Matrix Multiplication is associative
 i.e. ABC = (AB)C=A(BC)

 Option 1: Compute D=(AB) (m x r) then DC
 Total Multiplications: mnr + mrk

 Option 2: Compute D =(BC) (n x k) then AD
 Total Multiplications: nrk + mnk

 Suppose m=100, n=100, r=500 and k=5
 Option 1  5.25 million integer multiplications
 Option 2  0.3 million integer multiplications

24

Notation: Matrix 𝐴𝐴𝑖𝑖 is a 𝑝𝑝𝑖𝑖−1 by 𝑝𝑝𝑖𝑖 matrix

The product 𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖+1 is well defined 𝑝𝑝𝑖𝑖−1 by 𝑝𝑝𝑖𝑖+1 matrix
The product 𝐴𝐴𝑖𝑖+1 …𝐴𝐴𝑛𝑛 is a 𝑝𝑝𝑖𝑖 by 𝑝𝑝𝑛𝑛 matrix

Thus, 𝐴𝐴𝑖𝑖(𝐴𝐴𝑖𝑖+1 …𝐴𝐴𝑛𝑛) is well defined 𝑝𝑝𝑖𝑖−1 by 𝑝𝑝𝑛𝑛 matrix
The product 𝐴𝐴1𝐴𝐴2 …𝐴𝐴𝑖𝑖−1 is a 𝑝𝑝0 by 𝑝𝑝𝑖𝑖−1 matrix

Thus, (𝐴𝐴1𝐴𝐴2 …𝐴𝐴𝑖𝑖−1)𝐴𝐴𝑖𝑖 is well defined 𝑝𝑝0 by 𝑝𝑝𝑖𝑖 matrix

Given matrices A1, A2, …, An, place parenthesis
minimizing the total number of multiplications.

((A1 A2) A3) (A4 A5)

25

Observation: Exponentially many ways to place parenthesis!

Brute force solutions will not work!

Dynamic Programming?

Given matrices A1, A2, …, An, place parenthesis
minimizing the total number of multiplications.

((A1 A2) A3) (A4 A5)

26

1. An optimal solution to matrix chain contains optimal
subsolutions.

2. Fill an n×n table m where m[i,j] = minimum number of
multiplications for generating Ai ×Ai+1×… ×Aj

m[i,j]= min {m[i,k] + m[k+1,j] + pi-1×pk×pj}
with i<j and i≤k<j

(Ai ×Ai+1×… Ak)×(Ak+1×… ×Aj-1× Aj)

Given matrices A1, A2, …, An, place parenthesis
minimizing the total number of multiplications.

((A1 A2) A3) (A4 A5)

	CS 381 – Fall 2019
	Announcements
	Grade distribution
	Slide Number 4
	Slide Number 5
	6.4 Knapsack Problem
	Knapsack Problem (Greedy)
	Dynamic Programming: False Start
	Dynamic Programming: Adding a New Variable
	Clicker Question
	Slide Number 16
	Clicker Question
	Knapsack Problem: Bottom-Up
	Knapsack Algorithm
	Knapsack Problem: Running Time
	Basic Matrix Multiplication
	Basic Matrix Multiplication
	Given matrices A1, A2, …, An, place parenthesis minimizing the total number of multiplications.�
	Given matrices A1, A2, …, An, place parenthesis minimizing the total number of multiplications.�
	Given matrices A1, A2, …, An, place parenthesis minimizing the total number of multiplications.�

