ek 7.1, Monday, Sept 30

‘ent ative Date for Final Exam: Thursday, December 12

(7-9PM STEW 130)

Announcements

15.3

-

ALGORITHMS

smmmms | DyNamic Programming

g » Longest Common Subsequence
\\ |+ Optimal substructure
5.“‘\ \‘ Overlapping subproblems

“ancin e Sequence alignment (Edit Dist.)

Based on slides by Erik D. Demaine, Charles E.
Leiserson and Kevin Wayne /

e

Problem 4: Longest Common Subsequence (LCS)

LLongest Common Subsequence (LCS)

« Given two sequences x[1 .. m]and y[1 .. n], find a

longest subsequence common to them both.

k Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Dynamic programming

Example: Longest Common Subsequence (LCS)
 Given two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not l(thel1

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson N L15.hS . 99%

Dynamic programming

Example: Longest Common Subsequence (LCS)
 Given two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not l(thel1

x A B C B D A B

v B D C A B A

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson N L15.|§ , o%g

Dynamic programming

Example: Longest Common Subsequence (LCS)
» Given two sequences x[1 .. m|and y[1 .. n], find
a longest subsequence common to them both.

\ (‘a11 not l‘tqe

x A B C B D A B
BCBA =
N

.
v E D C A B A XY

functional notation,
but not a function

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson N L15.h7 . 99%

Brute-force LCS algorithm

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson N L15.|§ . o%g

Brute-force LCS algorithm

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].

Analysis
» Checking = O(n) time per subsequence.

» 2™ subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

Worst-case running time = O(n2™M)

= exponential time.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson N L15.|? . 09(%

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'1|9 , 99/5

Towards a better algorithm
Simplification:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s|.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson N L15.1h1 , 99/5

Clicker Question

Longest Common Subsequence (LCS)
* Input: two sequences x[1 .. m]and y[1..n]
 Output: length of longest common subsequence

Let OPT(k) be longest subsequence common to both x[1 . . k] and
y[1..n],

Which statement iIs true?

A. OPT(k)= OPT(k — 1) + 1 if x[k] =y[n]
B. OPT(k)= OPT(k — 1) If X[Kk] # y[n]
C. Both A and B are true

D. Neither claim is true

E. Don’t pick this choice it is incorrect! ©

Clicker Question

et OPT(K) be the (length of) longest subsequence common to both
X[1..k]landy[l..n],

Which statement iIs true?

A. OPT(k)= OPT(k —1) + 1 if x[k] =y[n]

Counterexample: x="aa”, y="bbba” =»Opt(2) =1 and Opt(1) =1
Opt(2) + Opt(1) + 1

B. OPT(k)= OPT(k — 1) If x[k] # y[n]

Counterexample: x="bb”, y="bba” =»Opt(2) = 2 and Opt(1) =1
Opt(2) # Opt(1)

C. Both A and B are true

D. Neither claim is true

E. Don’t pick this choice it is incorrect! ©

Stuck?

Let OPT(k) be (length of) longest subsequence common to both
X[1..k]landy[l..n]

We can try to develop a recurrence for Opt(k) but we will fail!
Why? There are not enough sub-problems to develop a
recurrence...

(Sub-problems always try to match x|1 . . i] with all of y[1 .. n])

Solution: Introduce more sub-problems!

Let OPT(i,)) be (length of) longest subsequence common to both
X[1..1]andy[1l..]]

Stuck?

Let OPT(1,)) be (length of) longest subsequence common to both
X[1..1]andy[1l..]]

Case 1: x[1]=Y][]]
= OPT(1,)) = 1+OPT(i-1,]-1)

Case 2: X[1]# y[j]
=>OPT(1,)) = max{OPT(i-1,)), OPT(i,J-1)}

Base Cases: OPT(0,))=0 and OPT(1,0)=0

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s|.

Strategy: Consider prefixes of x and .

e Define OPTIi,] = |LCS(X[1..1],y[1..]])]
e Then, OPT[m, n] = | LCS(X, y) |.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson leS'lh? , 99@%

e

Recursive formulation
Theorem.

OPTIi, j] =
{OPT[i—l, ji-1]+ 1

It x[1] = yll.

max{OPT[i-1, j], OPT[i, j-1]} otherwise.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'1|§ . o%g

[N

Recursive formulation

Theorem.
OPTIl, j] =
{OPT[i—l, 1]+ 1 It x[1] = y[],
max{OPT[i-1, j], OPT[i, j-1]} otherwise.
Proof. Case x[I] = y[J]
” 1 2 - m

1 2 - J n

v N

K Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'1h9 . og{g

- N

Recursive formulation
Theorem.

OPT[i-1, j-1] + 1 It x[i] = y[il,
OPTLL 11 = {max{OPT[i—l, jl, OPTIi, j-11} otherwise.

Proof. Casex[l] y[J]

Lbk ‘J_LI
v 11 M 1]

Letz[1l..k]=LCS(x[1..1],y[1..]]). Then, z[Kk] =
x[1], or else z could be extended. Thus, z[1 .. k-=1]1is
Common Substring of x[1 .. 1-1]and y[1 ..]-1].

k Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'2h0 . o%g

Proof (continued)

Claim: z[1..k=1] =LCS(x[1..i1-1],y[1..]J-1]).
Suppose w iIs a longer CS of x[1 . . I-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x|1 .. 1] and y[1l..]]

with [w || z[k] | > k. Contradiction, proving the
claim.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson leS'zhl , 99@%

BN

Proof (continued)
Claim1:z[1..k=1] =LCS(x[1..i1-1],y[1..]-1]).
Suppose w iIs a longer CS of x[1 .. I-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x|1 .. 1] and y[1l..]]
with [w || z[k] | > k. Contradiction, proving the
claim.

Thus, If x[1] = y[j], we have OPT][I-1, J-1] = k-1,
which implies that OPTIi, || = OPT[i1-1, |-1] + 1.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson I\IL15.2|12 , 99%

- N

Recursive formulation
Theorem.

OPT[i-1, j-1] + 1 It x[i] = y[il,
OPTLL 11 = {max{OPT[i—l, jl, OPTIi, j-11} otherwise.

Proof. Case X[1] + y[11:

Lbk ‘J_LI
v 11 M 1]

Letz[1l..k]=LCS(x[1..1],y[1..]]).Ifz[Kk] # y][]]
then z[1 . . k] 1Isa Common Substring of x[1 . . i] and

y[1..)-1].

k Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson I\IL15.2|§ . 09{%

Proof (continued)
Claim3:z[1..k] =LCS(x[1..1],Vy[1..]-1]).
Suppose w Is a longer CS of x[1 . . i] and
y[1..]-1], thatis, |w|> k. Then w is a common
subsequence of x[1 .. 1] and y[1 .. |] with

|w | > k. Contradiction, proving the claim.
Thus, OPTII, |-1] = k, which implies that OPT [,
j] = OPT [i, j-1]. Similarly, if z[k] = y[j], then z[K]
+ X[1] and
7= LCS(x[1..1-1], y[1..]]). It follows that
OPT [i, j] = max{OPT[i-1, j], OPTIi, j-1] }

k Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson ,\,L15-2,f1 , 99%

e

Finding the LCS
Base Case: OPT][0,j] =OPT][1,0]=0

OPTII, J] =

OPT[I-1, J-1] + 1 It X[1] = y[j],
{ max{OPT[i-1, j], OPT[i, j-1]} otherwise.

Step 1: Fill in the DP table and compute OPT[i, j] for all i < m and j < n using above

recurrence

Step 2: Backtrack to construct a common subsequence z of length k=OPT[m,n]

* If OPT[m,n]=OPT[m-1, n—1] + 1 then set z[k] = x[m] and recurse with x[1,...,m-1],
y[1,....,n-1]

* If OPT[m,n]= OPT[m-1, n] then recurse with x[1,... m-1], y[1,...,n]

* If OPT[m,n]= OPT[m, n-1] then recurse with x[1,... m], y[1,...,n-1]

&

Dynamic-programming hallmark #1
D

© Optimal substructure

An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

BN

Dynamic-programming hallmark #1

o0

(D

Optimal substructure

An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

N

If z = LCS(X, y), then any prefix of z Is
an LCS of a prefix of x and a prefix of .

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.27 90/
November 72005

6.4 Knapsack Problem

29

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > 0.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

1 1 1
2 6 2
3 18 5
W =
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

11

30

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > 0.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

Ex: {3,4}has value 40. [
1 1 1 1
w=11 2 6 2 3
3 18 S 3.6
4 22 6 3.66..
S 28 7 4

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

31

Knapsack Problem (Greedy)

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > 0.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

Ex: {3,4}has value 40. [
1 1 1 1
W= 141'7 2 6 2 3
3 18 S 3.6
4 22 6 3.66.

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

32

Knapsack Problem (Greedy)

Knapsack problem.
. Given nobjects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > 0.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

1 1 1 1
W= 11-7
= 4 2
3
4

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

33

Knapsack Problem (Greedy)

Knapsack problem.
. Given nobjects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > 0.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

Exi (3,4} has value 40 -

4-2

2 ----
-

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

34

Knapsack Problem (Greedy)

Knapsack problem.
. Given nobjects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > 0.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

Ex: { 3,4} has value 40. -

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

35

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1. OPT does not select item i.
- OPT selects bestof {1, 2, ..., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have
to reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

	CS 381 – Fall 2019
	Announcements
	Slide Number 3
	� Problem 4: Longest Common Subsequence (LCS)�
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Brute-force LCS algorithm
	Brute-force LCS algorithm
	Towards a better algorithm
	Towards a better algorithm
	Clicker Question
	Slide Number 13
	Clicker Question
	Stuck?
	Stuck?
	Towards a better algorithm
	Recursive formulation
	Recursive formulation
	Recursive formulation
	Proof (continued)
	Proof (continued)
	Recursive formulation
	Proof (continued)
	Finding the LCS	
	Dynamic-programming hallmark #1
	Dynamic-programming hallmark #1
	6.4 Knapsack Problem
	Knapsack Problem
	Knapsack Problem
	Knapsack Problem (Greedy)
	Knapsack Problem (Greedy)
	Knapsack Problem (Greedy)
	Knapsack Problem (Greedy)
	Dynamic Programming: False Start

