
1

Week 7.1, Monday, Sept 30

Tentative Date for Final Exam: Thursday, December 12
(7-9PM STEW 130)

 Midterm grading in progress…

Based on slides by Erik D. Demaine, Charles E.
Leiserson and Kevin WayneL15.3

Dynamic Programming
• Longest Common Subsequence
• Optimal substructure
• Overlapping subproblems
• Sequence alignment (Edit Dist.)

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

Problem 4: Longest Common Subsequence (LCS)

Longest Common Subsequence (LCS)

• Given two sequences x[1 . . m] and y[1 . . n], find a
longest subsequence common to them both.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

Dynamic programming

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

Dynamic programming

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

Dynamic programming

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Brute-force LCS algorithm
Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Brute-force LCS algorithm
Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
= exponential time.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by | s |.

Clicker Question

12

Longest Common Subsequence (LCS)
• Input: two sequences x[1 . . m] and y[1 . . n]
• Output: length of longest common subsequence

Let OPT(k) be longest subsequence common to both x[1 . . k] and
y[1 . . n],

Which statement is true?

A. OPT(k)= 𝑂𝑂𝑂𝑂𝑂𝑂 𝑘𝑘 − 1 + 1 if x[k] = y[n]
B. OPT(k)= 𝑂𝑂𝑂𝑂𝑂𝑂 𝑘𝑘 − 1 if x[k] ≠ y[n]
C. Both A and B are true
D. Neither claim is true
E. Don’t pick this choice it is incorrect!

13

Clicker Question

14

Let OPT(k) be the (length of) longest subsequence common to both
x[1 . . k] and y[1 . . n],

Which statement is true?

A. OPT(k)= 𝑂𝑂𝑂𝑂𝑂𝑂 𝑘𝑘 − 1 + 1 if x[k] = y[n]
Counterexample: x=“aa”, y=“bbba” Opt(2) = 1 and Opt(1) = 1

Opt(2) ≠ Opt 1 + 1
B. OPT(k)= 𝑂𝑂𝑂𝑂𝑂𝑂 𝑘𝑘 − 1 if x[k] ≠ y[n]
Counterexample: x=“bb”, y=“bba” Opt(2) = 2 and Opt(1) = 1

Opt(2) ≠ Opt 1
C. Both A and B are true
D. Neither claim is true
E. Don’t pick this choice it is incorrect!

Stuck?

15

Let OPT(k) be (length of) longest subsequence common to both
x[1 . . k] and y[1 . . n]

We can try to develop a recurrence for Opt(k) but we will fail!

Why? There are not enough sub-problems to develop a
recurrence…

(Sub-problems always try to match x[1 . . i] with all of y[1 . . n])

Solution: Introduce more sub-problems!

Let OPT(i,j) be (length of) longest subsequence common to both
x[1 . . i] and y[1 . . j]

Stuck?

16

Let OPT(i,j) be (length of) longest subsequence common to both
x[1 . . i] and y[1 . . j]

Case 1: x[i]=y[j]
 OPT(i,j) = 1+OPT(i-1,j-1)

Case 2: x[i]≠ 𝑦𝑦[j]
OPT(i,j) = max{OPT(i-1,j), OPT(i,j-1)}

Base Cases: OPT(0,j)=0 and OPT(i,0)=0

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define OPT[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, OPT[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive formulation
Theorem.
OPT[i, j] =

OPT[i–1, j–1] + 1 if x[i] = y[j],
max{OPT[i–1, j], OPT[i, j–1]} otherwise.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive formulation
Theorem.

Proof. Case x[i] = y[j]:

1 2 i m

1 2 j n

x:

y:
=

OPT[i, j] =

OPT[i–1, j–1] + 1 if x[i] = y[j],
max{OPT[i–1, j], OPT[i, j–1]} otherwise.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursive formulation
Theorem.

OPT[i, j] =
OPT[i–1, j–1] + 1 if x[i] = y[j],

max{OPT[i–1, j], OPT[i, j–1]} otherwise.

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]). Then, z[k] =
x[i], or else z could be extended. Thus, z[1 . . k–1] is
Common Substring of x[1 . . i–1] and y[1 . . j–1].

Proof. Case x[i] = y[j]:

1 2 i m

1 2 j n

x:

y:
=

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Proof (continued)
Claim 1: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, if x[i] = y[j], we have OPT[i–1, j–1] = k–1,
which implies that OPT[i, j] = OPT[i–1, j–1] + 1.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Recursive formulation
Theorem.

OPT[i, j] =
OPT[i–1, j–1] + 1 if x[i] = y[j],

max{OPT[i–1, j], OPT[i, j–1]} otherwise.

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]). If z[k] ≠ y[j]
then z[1 . . k] is a Common Substring of x[1 . . i] and
y[1 . . j–1].

Proof. Case x[i] ≠ y[j]:

1 2 i m

1 2 j n

x:

y:
=

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Proof (continued)
Claim 3: z[1 . . k] = LCS(x[1 . . i], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i] and
y[1 . . j–1], that is, |w | > k. Then w is a common

subsequence of x[1 . . i] and y[1 . . j] with
|w | > k. Contradiction, proving the claim.

Thus, OPT[i, j–1] = k, which implies that OPT [i,
j] = OPT [i, j–1]. Similarly, if z[k] = y[j], then z[k]
≠ x[i] and
z= LCS(x[1 . . i-1], y[1 . . j]). It follows that

OPT [i, j] = max{OPT[i–1, j], OPT[i, j–1]}

Finding the LCS

25

Base Case: OPT[0,j] =OPT[i,0]= 0

OPT[i, j] =
OPT[i–1, j–1] + 1 if x[i] = y[j],
max{OPT[i–1, j], OPT[i, j–1]} otherwise.

Step 1: Fill in the DP table and compute OPT[i, j] for all 𝑖𝑖 ≤ 𝑚𝑚 and j ≤ 𝑛𝑛 using above
recurrence
Step 2: Backtrack to construct a common subsequence z of length k=OPT[m,n]
• If OPT[m,n]=OPT[m-1, n–1] + 1 then set z[k] = x[m] and recurse with x[1,…,m-1],

y[1,….,n-1]
• If OPT[m,n]= OPT[m-1, n] then recurse with x[1,…,m-1], y[1,…,n]
• If OPT[m,n]= OPT[m, n-1] then recurse with x[1,…,m], y[1,…,n-1]

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.27

Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

6.4 Knapsack Problem

29

Knapsack Problem

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not
optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2

W = 11

30

Knapsack Problem

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not
optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2W = 11

ratio

1

3

3.6

3.66..

4

31

Knapsack Problem (Greedy)

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not
optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2
W = 11-7

= 4

ratio

1

3

3.6

3.66..

4

32

Knapsack Problem (Greedy)

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not
optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2
W = 11-7

= 4

ratio

1

3

3.6

3.66..

4

33

Knapsack Problem (Greedy)

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not
optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2
W = 4-2
= 2

ratio

1

3

3.6

3.66..

4

34

Knapsack Problem (Greedy)

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not
optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2
W = 4-2
= 2

ratio

1

3

3.6

3.66..

4

35

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

 Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 }

 Case 2: OPT selects item i.
– accepting item i does not immediately imply that we will have

to reject other items
– without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

	CS 381 – Fall 2019
	Announcements
	Slide Number 3
	� Problem 4: Longest Common Subsequence (LCS)�
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Brute-force LCS algorithm
	Brute-force LCS algorithm
	Towards a better algorithm
	Towards a better algorithm
	Clicker Question
	Slide Number 13
	Clicker Question
	Stuck?
	Stuck?
	Towards a better algorithm
	Recursive formulation
	Recursive formulation
	Recursive formulation
	Proof (continued)
	Proof (continued)
	Recursive formulation
	Proof (continued)
	Finding the LCS	
	Dynamic-programming hallmark #1
	Dynamic-programming hallmark #1
	6.4 Knapsack Problem
	Knapsack Problem
	Knapsack Problem
	Knapsack Problem (Greedy)
	Knapsack Problem (Greedy)
	Knapsack Problem (Greedy)
	Knapsack Problem (Greedy)
	Dynamic Programming: False Start

