eek 6.3, Friday, Sept 27

‘ent ative Date for Final Exam: Thursday, December 12

(7-9PM STEW 130)




Announcements

 this week (due to Midterm)

= PSOs resume next week (as normal)

idterm grading in progress...




. N
Rod Cutting Problem (15.1)

® Input is
® n, the length of a steel rod \

® an array p of size n

The rod is cut into shorter rods.

® A rod of length k is sold for profit p[k], 1<k <n.

Cut the rod 1into pieces that maximize the total proﬁt
® No cuts can be undone

° Making a cut is “free”




Making no cut has a profit of 14

Making one cut creating pieces of length 1 and 4

® profit of 3 + 13= 15

Profit of 16 is possible (two length 1 pieces + one length 3)
® profit of p(1)+p(1)+p(3)=3+3+10 = 16

/




There are 2™! ways to cut a rod of length n.

U ) Bl BRI e e
(a) (b) ()

o1 s I g T i
e e e
(e) () (2

n =4

p=11,5,8,9]




Can we use DP?

Does the Principle of Optimality hold?

Goal: Characterize optimal solution in terms of
solution(s) to smaller sub-problems
e DP computes the optimal solution to many optimal subproblems
e Computed results are stored in a table (entries are never
recomputed)
e A DP algorithm does not know which subsolutions will be

used in the optimum solution




Can we use DP?

Does the Principle of Optimality hold?

Assume we make an optimal cut creating one piece of

length k and one of length n-k.
Then, both pieces are cut in an optimal way. Why?

Otherwise we don’t have an optimal solution.




Can we use DP?

Does the Principle of Optimality hold?

Assume we make an optimal cut creating one piece of

length k and one of length n-k.
Then, both pieces are cut in an optimal way. Why?

Otherwise we don’t have an optimal solution.

How about overlapping subproblems?




- N

Clicker Question

Let opt(n) be the profit of an optimal solution for a rod of
even length n. Which of the following claims are

necessarily true?

pt(n) = p[n]

pt(n) = Opt(n/2) + Opt(n/2)

pt(n) = max {p[n], p[1] + Opt(n-1), p[2]+Opt(n-2)}
pt(n) = p[1] + Opt(n-1)

None of the claims are necessarily true!

O O O O

m o a % »







. N
Clicker Question

Let opt(n) be the profit of an optimal solution for a rod of even length
n. Which of the following claims are necessarily true?

A. Opt(n) = pln]
* (e.g,pn]=10, p[n-1]=9, p[1]=2)
B. Opt(n) = Opt(n/2) + Opt(n/2)
* E.g,(p[n]=2n, p[i] = iforalli<n)
C. Opt(n) = max{p[n], p[1] + Opt(n-1), p[2]+Opt(n-2)}
o E.g, (p[II=p[2=1, p[3] = ...=p[n]=5)
D. Opt(n) = p[l] + Opt(n—l)
* Equality holds if optimal solution includes rod of unit

length

E. None of the claims are necessarily true!

& /




Ve

How to use DP?

® If we make an optimal cut creating a piece of length k and

one of length n-k, both pieces are cut in a optimal way.

® Let opt(n) be the profit of an optimal solution for a rod of
length n. Then,

opt(n) = max {p[n], opt(1)+ opt(n-1),
opt(2)+opt(n-2),

opt(n-2)+opt(2),
opt(n-1)topt(1)}




e
Another way to look at the cuts ...

opt(n) = max 4., {p[1] T opt(n-1);




: N
Another way to look at the cuts ...

opt(n) = max 4., {p[1] T opt(n-1);

If a piece of length i is the leftmost piece cut from the rod, it
generates a profit of p[i].

The remaining rod of length n-iis cut in an optimal way

maximizing the profit.

New recurrence:

opt(j) = max . {p[i] + opt(j-i)} for 15j<n




e

r(j) = max I<i<i {pli] t r(j-1)} for 15j<n (r stands for opt)

BOTTOM-UP-CUT-ROD(p, 1)

|
2
3

4
5
6
7
3

let 7[0..n] be a new array
ri0] =0
for j = 1ton
g = —00
for; = 1to
q = max(q, pli] +r[j —1])
rljl = ¢
return 7]

Total time is O(n?) and space is O(n).
See page 366 for more details.

BN




e

BN

r(j) = max I<i<i {pli] t r(j-1)} for 15j<n (r stands for opt)

BOTTOM-UP-CUT-ROD (p, n)

|
2
3

4
5
6
7
3

let 7[0..n] be a new array
r[0] =0

for Jj = 1 ton Profit of a piece of
g = —0o0 length i
fori = 1to;

g = max(q, pli] +r[j —i])

rlj] = q
return 7]

Optimum solution for

a rod of length j-i

Total time is O(n?) and space is O(n).

See page 366 for more details.




n=>5
P
opt (r)

Example

How to record where the cuts are made?
Use an arrays to record which index k resulted in the
maximum for opt(j)

* Needs some adjusting of indices to generate cut

positions




EXTENDED-BOTTOM-UP-CUT-ROD(p.n)

let r[0..n] and 5[0 ..n]| be new arrays

r[0] =0

for j = 1ton
g = —0o0
fori = 1to

ifq{p[f]+r"—f]
= pli] +rlj —1]

shl—!

rljl = q

return r and s

PRINT-CUT-ROD-SOLUTION( p, n)

(r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p,n)
while n > 0

print s [#]
n=n-—snj




D)
2)
3)

Dynamic Programming Problems

Non-Adjacent Selection

Rod Cutting
Weighted Selection

%)
>)
6)
7)
8)

Longest Common Subsequence
Sequence Alignment

Matrix Chain Multiplication
0/1 Knapsack

Coins in a Line




Steps taken when designing a DP algorithm

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal
solution in terms of optimum subsolutions

3. Compute the subsolution entries (never re-compute).

4. Construct an optimal solution from the computed

entries and other information.




A e | DYNamic Programming

v QEisGC DS AR
g » Longest Common Subsequence
\\ |+ Optimal substructure
5.“‘\ \‘  Overlapping subproblems

“ancin e Sequence alignment (Edit Dist.)

Based on slides by Erik D. Demaine, Charles E.
\15'21 Leiserson and Kevin Wayne /




- N

Problem 4: Longest Common Subsequence (LCS)

LLongest Common Subsequence (LCS)

« Given two sequences x[1 .. m]and y[1 .. n], find a
longest subsequence common to them both.

k Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22 9%

Novambar 7 2
TNUV UTTIvOl ',L




Dynamic programming

Example: Longest Common Subsequence (LCS)
 Given two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not l(thel1

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson I\IL15.2|§ , 99%




Dynamic programming

Example: Longest Common Subsequence (LCS)
 Given two sequences x[1 .. m]and y[1 .. n], find

a longest subsequence common to them both.
\ (£a11 not l(thel1

x A B C B D A B

v B D C A B A

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson ,\,L15-2,f1 . o%g




Dynamic programming

Example: Longest Common Subsequence (LCS)
» Given two sequences x[1 .. m|and y[1 .. n], find
a longest subsequence common to them both.

\ (‘a11 not l‘tqe

x A B C B D A B
BCBA =
N

.
v E D C A B A XY

functional notation,
but not a function

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'2|15 , 99%




Brute-force LCS algorithm

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'2h6 , o%g




Brute-force LCS algorithm

Check every subsequence of x[1 .. m] to see
If It 1s also a subsequence of y[1 .. n].

Analysis
» Checking = O(n) time per subsequence.

» 2™ subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

Worst-case running time = O(n2™M)

= exponential time.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'2h7 . 09(%




Towards a better algorithm
Simplification:
1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'2|§ , 99/5




Towards a better algorithm
Simplification:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s|.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'2|? , 99/5




Towards a better algorithm
Simplification:
1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s|.

Strategy: Consider prefixes of x and .

* Definec[i, J] = |LCS(x[1..1],y[1..]]) |

* Then, c[m, n] = [LCS(x, y)|.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'3|9 . 99%




e

Recursive formulation
Theorem.

Cli. i1 = {C[i—l, -1]1+1

It x[1] = y[l,

max{c[i-1, j], c[i, j-1]} otherwise.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'3h1 , o%g




[ N

Recursive formulation
Theorem.

o c[i-1, j-1] + 1 if x[i] = y[jl,
cli, )] = { max{c[i-1, j], c[i, j-1]} otherwise.
Proof. Case x[i] =y| j]

1 2 m

K Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'3h2 , og{g




Recursive formulation
Theorem.

o c[i-1, j-1] + 1 if x[i] = y[jl.
cli, )] = { max{c[i-1, j], c[i, j-1]} otherwise.

Proof. Case x[1] = y[]l:
1 2 i m

v N

Letz[1..k] =LCS(x[1..1],y[1..]]), wherecli, |]
= k. Then, z[k] = x[1], or else z could be extended.
Thus, z[1 .. k=1]1sCSof x[1..i1-1]and y[1 .. ]-1].

k Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson I\IL15.3|§ , o%g




Proof (continued)

Claim: z[1..k=1] =LCS(x[1..i1-1],y[1..]J-1]).
Suppose w iIs a longer CS of x[1 . . I-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x|1 .. 1] and y[1l..]]

with [w || z[k] | > k. Contradiction, proving the
claim.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'3|f1 . 99@%




Proof (continued)

Claim: z[1..k=1] =LCS(x[1..i1-1],y[1..]J-1]).
Suppose w iIs a longer CS of x[1 . . I-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x|1 .. 1] and y[1l..]]

with [w || z[k] | > k. Contradiction, proving the
claim.
Thus, c[i-1, ]-1] = k=1, which implies that c[i, |]
=c[i-1, ]-1] + 1.

Other cases are similar.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson |\|L15'3|15 . 99%




Dynamic-programming hallmark #1
D

© Optimal substructure

An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

BN




Dynamic-programming hallmark #1

o0

(D

Optimal substructure

An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

N

If z = LCS(X, y), then any prefix of z Is
an LCS of a prefix of x and a prefix of .

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L15.37 90/
November 72005




	CS 381 – Fall 2019
	Announcements
	Rod Cutting Problem (15.1)
	Example
	Slide Number 5
	Can we use DP?�
	Can we use DP?�
	Can we use DP?�
	Slide Number 9
	Slide Number 10
	Slide Number 11
	   How to use DP?�
	  Another way to look at the cuts …�
	  Another way to look at the cuts …�
	Slide Number 15
	Slide Number 16
	Example
	Slide Number 18
	Dynamic Programming Problems
	Slide Number 20
	Slide Number 21
	�  Problem 4: Longest Common Subsequence (LCS)�
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Brute-force LCS algorithm
	Brute-force LCS algorithm
	Towards a better algorithm
	Towards a better algorithm
	Towards a better algorithm
	Recursive formulation
	Recursive formulation
	Recursive formulation
	Proof (continued)
	Proof (continued)
	Dynamic-programming hallmark #1
	Dynamic-programming hallmark #1

