
1

Week 6.3, Friday, Sept 27

Tentative Date for Final Exam: Thursday, December 12
(7-9PM STEW 130)

 No PSOs this week (due to Midterm)
 PSOs resume next week (as normal)

 Midterm grading in progress…

3

Rod Cutting Problem (15.1)
 Input is

 n, the length of a steel rod

 an array p of size n

The rod is cut into shorter rods.

 A rod of length k is sold for profit p[k], 1≤k ≤n.

Cut the rod into pieces that maximize the total profit

No cuts can be undone

Making a cut is “free”

4

Example

n=5
1 2 3 4 5

p

Making no cut has a profit of 14
Making one cut creating pieces of length 1 and 4
 profit of 3 + 13= 15
Profit of 16 is possible (two length 1 pieces + one length 3)
 profit of p(1)+p(1)+p(3)=3+3+10 = 16

3 5 10 12 14

5

There are 2n-1 ways to cut a rod of length n.

n = 4
p = [1, 5, 8, 9]

6

Can we use DP?

Does the Principle of Optimality hold?

Goal: Characterize optimal solution in terms of
solution(s) to smaller sub-problems
• DP computes the optimal solution to many optimal subproblems

• Computed results are stored in a table (entries are never
recomputed)

• A DP algorithm does not know which subsolutions will be
used in the optimum solution

7

Can we use DP?

Does the Principle of Optimality hold?
Assume we make an optimal cut creating one piece of
length k and one of length n-k.
Then, both pieces are cut in an optimal way. Why?
Otherwise we don’t have an optimal solution.

8

Can we use DP?

Does the Principle of Optimality hold?
Assume we make an optimal cut creating one piece of
length k and one of length n-k.
Then, both pieces are cut in an optimal way. Why?
Otherwise we don’t have an optimal solution.

How about overlapping subproblems?

9

Clicker Question
Let opt(n) be the profit of an optimal solution for a rod of
even length n. Which of the following claims are
necessarily true?

A. Opt(n) = p[n]
B. Opt(n) = Opt(n/2) + Opt(n/2)
C. Opt(n) = max{p[n], p[1] + Opt(n-1), p[2]+Opt(n-2)}
D. Opt(n) ≥ p[1] + Opt(n-1)
E. None of the claims are necessarily true!

10

11

Clicker Question
Let opt(n) be the profit of an optimal solution for a rod of even length
n. Which of the following claims are necessarily true?

A. Opt(n) = p[n]
 (e.g., p[n]=10, p[n-1]=9, p[1]=2)

B. Opt(n) = Opt(n/2) + Opt(n/2)
 E.g., (p[n]=2n, p[i] = i for all i < n)

C. Opt(n) = max{p[n], p[1] + Opt(n-1), p[2]+Opt(n-2)}
 E.g., (p[1]=p[2]=1, p[3] = …=p[n]=5)

D. Opt(n) ≥ p[1] + Opt(n-1)
 Equality holds if optimal solution includes rod of unit

length
E. None of the claims are necessarily true!

12

How to use DP?

 If we make an optimal cut creating a piece of length k and
one of length n-k, both pieces are cut in a optimal way.

 Let opt(n) be the profit of an optimal solution for a rod of
length n. Then,

opt(n) = max {p[n], opt(1)+ opt(n-1),
opt(2)+opt(n-2),

…
opt(n-2)+opt(2),
opt(n-1)+opt(1)}

13

Another way to look at the cuts …

opt(n) = max 1≤i≤n {p[i] + opt(n-i)}

14

Another way to look at the cuts …

opt(n) = max 1≤i≤n {p[i] + opt(n-i)}

If a piece of length i is the leftmost piece cut from the rod, it
generates a profit of p[i].
The remaining rod of length n-i is cut in an optimal way
maximizing the profit.

New recurrence:
opt(j) = max 1≤i≤j {p[i] + opt(j-i)} for 1≤j≤n

15

Total time is O(n2) and space is O(n).
See page 366 for more details.

r(j) = max 1≤i≤j {p[i] + r(j-i)} for 1≤j≤n (r stands for opt)

16

Total time is O(n2) and space is O(n).
See page 366 for more details.

r(j) = max 1≤i≤j {p[i] + r(j-i)} for 1≤j≤n (r stands for opt)

Profit of a piece of
length i

Optimum solution for
a rod of length j-i

17

Example

n=5
1 2 3 4 5

p
opt (r) 3 6 10 13 16

How to record where the cuts are made?
Use an arrays to record which index k resulted in the
maximum for opt(j)

• Needs some adjusting of indices to generate cut
positions

3 5 10 12 14

18

Dynamic Programming Problems

19

1) Non-Adjacent Selection
2) Rod Cutting
3) Weighted Selection

4) Longest Common Subsequence
5) Sequence Alignment
6) Matrix Chain Multiplication
7) 0/1 Knapsack
8) Coins in a Line

20

Steps taken when designing a DP algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal

solution in terms of optimum subsolutions
3. Compute the subsolution entries (never re-compute).
4. Construct an optimal solution from the computed

entries and other information.

Based on slides by Erik D. Demaine, Charles E.
Leiserson and Kevin WayneL15.21

Dynamic Programming
• Longest Common Subsequence
• Optimal substructure
• Overlapping subproblems
• Sequence alignment (Edit Dist.)

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Problem 4: Longest Common Subsequence (LCS)

Longest Common Subsequence (LCS)

• Given two sequences x[1 . . m] and y[1 . . n], find a
longest subsequence common to them both.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic programming

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic programming

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.25

Dynamic programming

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.26

Brute-force LCS algorithm
Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.27

Brute-force LCS algorithm
Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
= exponential time.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.28

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.29

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by | s |.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.30

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.31

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.32

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

1 2 i m

1 2 j n

x:

y:
=

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.33

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

Proof. Case x[i] = y[j]:

1 2 i m

1 2 j n

x:

y:
=

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.34

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.35

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.37

Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

	CS 381 – Fall 2019
	Announcements
	Rod Cutting Problem (15.1)
	Example
	Slide Number 5
	Can we use DP?�
	Can we use DP?�
	Can we use DP?�
	Slide Number 9
	Slide Number 10
	Slide Number 11
	 How to use DP?�
	 Another way to look at the cuts …�
	 Another way to look at the cuts …�
	Slide Number 15
	Slide Number 16
	Example
	Slide Number 18
	Dynamic Programming Problems
	Slide Number 20
	Slide Number 21
	� Problem 4: Longest Common Subsequence (LCS)�
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Brute-force LCS algorithm
	Brute-force LCS algorithm
	Towards a better algorithm
	Towards a better algorithm
	Towards a better algorithm
	Recursive formulation
	Recursive formulation
	Recursive formulation
	Proof (continued)
	Proof (continued)
	Dynamic-programming hallmark #1
	Dynamic-programming hallmark #1

