
1

Week 6.3,  Friday, Sept 27

Tentative Date for Final Exam: Thursday, December 12  
(7-9PM STEW 130)



 No PSOs this week (due to Midterm)
 PSOs resume next week (as normal)

 Midterm grading in progress…
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Rod Cutting Problem (15.1)
 Input is 

 n, the length of a steel rod

 an array p of size n

The rod is cut into shorter rods.

 A rod of length k is sold for profit p[k], 1≤k ≤n.

Cut the rod into pieces that maximize the total profit

No cuts can be undone

Making a cut is “free”
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Example

n=5
1      2      3       4      5

p

Making no cut has a profit of 14
Making one cut creating pieces of length 1 and 4
 profit of 3 + 13= 15
Profit of 16 is possible (two length 1 pieces + one length 3)
 profit of p(1)+p(1)+p(3)=3+3+10 = 16

3 5 10 12 14
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There are 2n-1 ways to cut a rod of length n. 

n = 4
p = [ 1, 5, 8, 9]
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Can we use DP?

Does the Principle of Optimality hold?

Goal: Characterize optimal solution in terms of 
solution(s) to smaller sub-problems
• DP computes the optimal solution to many optimal subproblems

• Computed results are stored in a table (entries are never 
recomputed)

• A DP algorithm does not know which subsolutions will be 
used in the optimum solution
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Can we use DP?

Does the Principle of Optimality hold?
Assume we make an optimal cut creating one piece of 
length k and one of length n-k.  
Then, both pieces are cut in an optimal way.  Why? 
Otherwise we don’t have an optimal solution.



8

Can we use DP?

Does the Principle of Optimality hold?
Assume we make an optimal cut creating one piece of 
length k and one of length n-k.  
Then, both pieces are cut in an optimal way.  Why? 
Otherwise we don’t have an optimal solution.

How about overlapping subproblems?
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Clicker Question
Let opt(n) be the  profit of an optimal solution for a rod of 
even length n. Which of the following claims are 
necessarily true?

A. Opt(n) = p[n]
B. Opt(n) = Opt(n/2) + Opt(n/2)
C. Opt(n) = max{p[n], p[1] + Opt(n-1), p[2]+Opt(n-2)}
D. Opt(n) ≥ p[1] + Opt(n-1)
E. None of the claims are necessarily true!
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Clicker Question
Let opt(n) be the  profit of an optimal solution for a rod of even length 
n. Which of the following claims are necessarily true?

A. Opt(n) = p[n]  
 (e.g., p[n]=10, p[n-1]=9, p[1]=2)

B. Opt(n) = Opt(n/2) + Opt(n/2)
 E.g., (p[n]=2n, p[i] = i for all i < n)

C. Opt(n) = max{p[n], p[1] + Opt(n-1), p[2]+Opt(n-2)}
 E.g., (p[1]=p[2]=1, p[3] = …=p[n]=5)

D. Opt(n) ≥ p[1] + Opt(n-1)
 Equality holds if optimal solution includes rod of unit 

length
E. None of the claims are necessarily true!
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How to use DP?

 If we make an optimal cut creating a piece of length k and 
one of length n-k, both pieces are cut in a optimal way. 

 Let opt(n) be the  profit of an optimal solution for a rod of 
length n. Then,  

opt(n) = max {p[n],  opt(1)+ opt(n-1), 
opt(2)+opt(n-2), 

… 
opt(n-2)+opt(2), 
opt(n-1)+opt(1)}
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Another way to look at the cuts …

opt(n) = max 1≤i≤n {p[i] + opt(n-i)}
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Another way to look at the cuts …

opt(n) = max 1≤i≤n {p[i] + opt(n-i)}

If a piece of length i is the leftmost piece cut from the rod, it 
generates a profit of p[i].
The remaining rod of length n-i is cut in an optimal way 
maximizing the profit.

New recurrence: 
opt(j) = max 1≤i≤j {p[i] + opt(j-i)} for 1≤j≤n
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Total time is O(n2) and space is O(n).
See page 366 for more details.

r(j) = max 1≤i≤j {p[i] + r(j-i)} for 1≤j≤n  (r stands for opt)
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Total time is O(n2) and space is O(n).
See page 366 for more details.

r(j) = max 1≤i≤j {p[i] + r(j-i)} for 1≤j≤n  (r stands for opt)

Profit of a piece of 
length i

Optimum solution for 
a rod of length j-i
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Example

n=5
1      2     3     4   5

p
opt (r) 3 6 10 13 16

How to record where the cuts are made?
Use an arrays to record which index k resulted in the 
maximum for opt(j)

• Needs some adjusting of indices to generate cut 
positions

3 5 10 12 14



18



Dynamic Programming Problems
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1) Non-Adjacent Selection
2) Rod Cutting
3) Weighted Selection

4) Longest Common Subsequence
5) Sequence Alignment
6) Matrix Chain Multiplication
7) 0/1 Knapsack
8) Coins in a Line
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Steps taken when designing a DP algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal 

solution in terms of optimum subsolutions
3. Compute the subsolution entries (never re-compute).
4. Construct an optimal solution from the computed 

entries and other information.



Based on slides by Erik D. Demaine, Charles E. 
Leiserson and Kevin WayneL15.21

Dynamic Programming
• Longest Common Subsequence
• Optimal substructure
• Overlapping subproblems
• Sequence alignment (Edit Dist.)
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Problem 4: Longest Common Subsequence (LCS)

Longest Common Subsequence (LCS)

• Given two sequences x[1 . . m] and y[1 . . n], find a 
longest subsequence common to them both.
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Dynamic programming

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both.
“a” not “the”
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Dynamic programming

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”
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Dynamic programming

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA = 
LCS(x, y)

functional notation, 
but not a function
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Brute-force LCS algorithm
Check every subsequence of x[1 . . m] to see 
if it is also a subsequence of y[1 . . n].
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Brute-force LCS algorithm
Check every subsequence of x[1 . . m] to see 
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of 

length m determines a distinct subsequence 
of x).

Worst-case running time = O(n2m)
= exponential time.
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Towards a better algorithm
Simplification:
1. Look at the length of a longest-common 

subsequence.  
2. Extend the algorithm to find the LCS itself.



November 7, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.29

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common 

subsequence.  
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by | s |.
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Towards a better algorithm
Simplification:
1. Look at the length of a longest-common 

subsequence.  
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.
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Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.
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Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof.  Case x[i] = y[ j]:


1 2 i m


1 2 j n

x:

y:
=
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Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j] 
= k.  Then, z[k] = x[i], or else z could be extended.  
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

Proof.  Case x[i] = y[ j]:


1 2 i m


1 2 j n

x:

y:
=
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Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).  

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1.  Then, cut and 
paste: w || z[k] (w concatenated with z[k]) is a 
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the 
claim.
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Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).  

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1.  Then, cut and 
paste: w || z[k] (w concatenated with z[k]) is a 
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the 
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j] 
= c[i–1, j–1] + 1.
Other cases are similar.
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Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems.
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Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is 
an LCS of a prefix of x and a prefix of y.
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