
1

Week 6.1, Wed, Sept 25
Practice Midterm 1: Solutions Released
Midterm 1: September 25 (tonight)

 No PSOs this week (due to Midterm)

 Yes, we do have class today 
 Classes canceled on October 28th and Dec 6th

 Make up for two evening midterm exams
 Homework 3 solutions released on Piazza

 Submission server is closed for homework 3

 90 minutes (8:00-9:30PM)
 Tuesday/Thursday PSOs: SMTH 108 (Exam Capacity =115)
 Friday PSO: MTHW 210 (Exam Capacity = 111)

 1 Page of Handwritten Notes (Single-Sided)

 Standard paper (or A4) is acceptable

 Bring number 2 pencil (for scanned exam)

 Closed book, no calculators, no smartphones, no
smartwatches, no laptops etc…

 Practice Midterm Solutions
 Advice: Try to solve each problem yourself before checking answers

 Topics:
 Induction
 Big-O
 Divide and Conquer

 Sorting, Counting Inversions, Maximum Subarray, Skyline Problem, Karatsuba
Multiplication

 Recurrences
 Deriving a Recurrence
 Unrolling
 Recursion Trees
 Master Theorem

 Greedy Algorithms

 No Dynamic Programming Required (until Midterm 2)

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.
 Job j starts at sj, finishes at fj, and has weight or value vj .
 Two jobs compatible if they don't overlap.
 Goal: find maximum weight subset of mutually compatible jobs.

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

7

Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.
• Solution: Sort requests by finish time (ascending order)

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time

0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j.

 Case 1: OPT selects job j.
– collect profit vj

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)

 Case 2: OPT does not select job j.
– must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., j-1

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise




optimal substructure

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

T(n) = T(n-1)+T(p(n))+O(1)
T(1) = 1

Reminder: p(n) = largest index i < n such
that job i is compatible with job n.

14

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence (Fn > 1.6n).

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

T(n) = T(n-1)+T(n-2)+1
T(1) = 1

3

3

Key Insight: Do we really need
to repeat this computation?

15

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

16

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
 Sort by finish time: O(n log n).
 Computing p(⋅) : O(n log n) via binary search.

 M-Compute-Opt(j): each invocation takes O(1) time and either
– (i) returns an existing value M[j]
– (ii) fills in one new entry M[j] and makes two recursive calls

 Progress measure Φ = # nonempty entries of M[].
– initially Φ = 0, throughout Φ ≤ n.
– (ii) increases Φ by 1 ⇒ at most 2n recursive calls.

 Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

17

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

 # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}

18

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])
}

Practice Midterm

Recall the weighted interval scheduling problem in which we are given a
list of n meeting requests J1 = [s1, f1], . . . , Jn = [sn, fn] with positive
weights w1, . . . , wn > 0 where meeting request Ji starts at time si and
finishes at time fi > si . We are given a single conference room and our
goal is to find the maximum weight schedule with no conflicts (recall
that requests Ji and Jk conflict if they overlap).

Part A: Does the greedy strategy (sort by weight) work?

19

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1000

c

Practice Midterm

Recall the weighted interval scheduling problem in which we are given a
list of n meeting requests J1 = [s1, f1], . . . , Jn = [sn, fn] with positive
weights w1, . . . , wn > 0 where meeting request Ji starts at time si and
finishes at time fi > si . We are given a single conference room and our
goal is to find the maximum weight schedule with no conflicts (recall
that requests Ji and Jk conflict if they overlap).

Part B: Suppose f1< f2 < … < fn and w1 > … > wn?

20

…

…j1 j2 jr

i1 i2 ir

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1 and
therefore has higher weight

…

… . . .ir+1

Practice Midterm

T(1), T(2), T(3), T(4) < 11 and T(n) = 7T(n/2)+T(n/5) + n3

Use induction to prove T(n) <= 10n3

Bases Cases? Trivially true for n< 5.

Inductive Hypothesis: T(k) <= 10k3 whenever k < n

Inductive Step:

T(n) = 7T(n/2)+T(n/5) + n3 <= 10*7*(n3 /8)+ 10*n3/125 + n3 (IH)
<= 10n3 (by algebra)

21

	CS 381 – Fall 2019
	Announcements
	Midterm 1: Logistics
	Midterm 1
	6.1 Weighted Interval Scheduling
	Weighted Interval Scheduling
	Unweighted Interval Scheduling (will cover in Greedy paradigms)
	Weighted Interval Scheduling
	Dynamic Programming: Binary Choice
	Weighted Interval Scheduling: Brute Force
	Weighted Interval Scheduling: Brute Force
	Weighted Interval Scheduling: Memoization
	Weighted Interval Scheduling: Running Time
	Weighted Interval Scheduling: Finding a Solution
	Weighted Interval Scheduling: Bottom-Up
	Practice Midterm
	Practice Midterm
	Practice Midterm

