

s week (due to Midterm)

sses canceled on October 28t and Dec 6th

> up for two evening midterm exams

vork 3 solutions released on Piazza

1ssion server is closed for homework 3

y PSOs: SMTH 108 (Exam Capacity =115)
2 (Exam Capacity = 111)

tes (Single-Sided)
:__o paper (or A4) is accptable
umber 2 pencil (for scanned exam)

5 Closed book, no calculators, no smartphones, no
__ smartwatches, no laptops etc...

Viidterm |

No namic rogramming Required (until Midterm 2)

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at Sj, finishes at fj, and has weight or value v
. Two jobs compatible if they don't overlap.
. Goal: find maximum weight subset of mutually compatible jobs.

j .

> lime

Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.
Solution: Sort requests by finish time (ascending order)

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 b

weight = 1 a

v

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

1

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests 1,2, .., j.

. Case 1. OPT selects job j.
- collect profit v,
- can't use incompatible jobs { p(j) +1,p(j)+2, ..., j-1}
- must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j) \
optimal substructure
. Case 2: OPT does not select job j. /
- must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

| ; if j=0
OPT(J):{max {v;+OPT(p(})). OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

T(n) = T(n-1+T(p(n))»+O(1)
T(1) =1

Reminder: p(n) = largest index i < n such
that job i is compatible with job n.

10

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence (F, > 1.6").

5 T(n) = T(n-1)+T(n-2)+1
= T =1

p(1) =0, p(j) = j-2

Key Insight: Do we really need
to repeat this computation?

14

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

15

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
. Sort by finish time: O(n log n).
. Computing p(-): O(n log n) via binary search.

. M-Compute-0Opt(j): each invocation takes O(1) time and either
- (i) returns an existing value M[j]
- (ii) fills in one new entry M[j] and makes two recursive calls
. Progress measure ® = # nonempty entries of M[].
- initially ® = 0, throughout ® <n.
- (ii) increases ® by 1 = at most 2n recursive calls.

. Overall running time of M-Compute-Opt(n) is O(n).

Remark. O(n) if jobs are pre-sorted by start and finish times.

16

17

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

Run M-Compute-0Opt(n)
Run Find-Solution(n)

Find-Solution(j) {

it g =0)
output nothing

else if (v; + M[pAQ)]1 > MJ-11)
print j
Find-Solution(p(}))

else
Find-Solution(j-1)

. # of recursive calls <n = O(n).

18

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Practice Midterm

Recall the weighted interval scheduling problem in which we are given a
list of n meeting requests J1 = [s1, f1],...,Jn = [sn, fn] with positive
weights wl, ..., wn >0 where meeting request Ji starts at time si and
finishes at time fi > si . We are given a single conference room and our
goal is to find the maximum weight schedule with no conflicts (recall
that requests Ji and Jk conflict if they overlap).

Part A: Does the greedy strategy (sort by weight) work?

weight = 999 b c

weight = 1000 a

v

19

Practice Midterm

Recall the weighted interval scheduling problem in which we are given a
list of n meeting requests J, = [sy, f1l,....,J, =[S, f,] with positive
weights wy, ..., w, > O where meeting request J; starts at time s; and
finishes at time f, > s, . We are given a single conference room and our
goal is to find the maximum weight schedule with no conflicts (recall
that requests J; and J, conflict if they overlap).

Part B: Suppose fi< f, < .. <f andw;> ..>w,?

job i.,; finishes before j,.; and
therefore has higher weight

1 |

Iret

Y B
r

why not replace job j..q
with JOb ir.+1?

Greedy: iy i i

v

OPT: jl jZ oo jr

Practice Midterm

T(1), T(2), T(3), T(4) < 11 and T(n) = 7T(n/2)+T(n/5) + n3
Use induction to prove T(n) <= 10n3

Bases Cases? Trivially true for n< 5.

Inductive Hypothesis: T(k) <= 10k3 whenever k < n

Inductive Step:

T(n) = 7T(n/2)+T(n/5) + n3 <= 10*7*(n3 /8)+ 10*n3/125 + n3 (IH)
<= 10n3 (by algebra)

21

	CS 381 – Fall 2019
	Announcements
	Midterm 1: Logistics
	Midterm 1
	6.1 Weighted Interval Scheduling
	Weighted Interval Scheduling
	Unweighted Interval Scheduling (will cover in Greedy paradigms)
	Weighted Interval Scheduling
	Dynamic Programming: Binary Choice
	Weighted Interval Scheduling: Brute Force
	Weighted Interval Scheduling: Brute Force
	Weighted Interval Scheduling: Memoization
	Weighted Interval Scheduling: Running Time
	Weighted Interval Scheduling: Finding a Solution
	Weighted Interval Scheduling: Bottom-Up
	Practice Midterm
	Practice Midterm
	Practice Midterm

