
1

Week 6.1, Wed, Sept 25
Practice Midterm 1: Solutions Released
Midterm 1: September 25 (tonight)

 No PSOs this week (due to Midterm)

 Yes, we do have class today
 Classes canceled on October 28th and Dec 6th

 Make up for two evening midterm exams
 Homework 3 solutions released on Piazza

 Submission server is closed for homework 3

 90 minutes (8:00-9:30PM)
 Tuesday/Thursday PSOs: SMTH 108 (Exam Capacity =115)
 Friday PSO: MTHW 210 (Exam Capacity = 111)

 1 Page of Handwritten Notes (Single-Sided)

 Standard paper (or A4) is acceptable

 Bring number 2 pencil (for scanned exam)

 Closed book, no calculators, no smartphones, no
smartwatches, no laptops etc…

 Practice Midterm Solutions
 Advice: Try to solve each problem yourself before checking answers

 Topics:
 Induction
 Big-O
 Divide and Conquer

 Sorting, Counting Inversions, Maximum Subarray, Skyline Problem, Karatsuba
Multiplication

 Recurrences
 Deriving a Recurrence
 Unrolling
 Recursion Trees
 Master Theorem

 Greedy Algorithms

 No Dynamic Programming Required (until Midterm 2)

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.
 Job j starts at sj, finishes at fj, and has weight or value vj .
 Two jobs compatible if they don't overlap.
 Goal: find maximum weight subset of mutually compatible jobs.

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

7

Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.
• Solution: Sort requests by finish time (ascending order)

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time

0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j.

 Case 1: OPT selects job j.
– collect profit vj

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)

 Case 2: OPT does not select job j.
– must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., j-1

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

optimal substructure

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

T(n) = T(n-1)+T(p(n))+O(1)
T(1) = 1

Reminder: p(n) = largest index i < n such
that job i is compatible with job n.

14

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence (Fn > 1.6n).

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

T(n) = T(n-1)+T(n-2)+1
T(1) = 1

3

3

Key Insight: Do we really need
to repeat this computation?

15

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

16

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
 Sort by finish time: O(n log n).
 Computing p(⋅) : O(n log n) via binary search.

 M-Compute-Opt(j): each invocation takes O(1) time and either
– (i) returns an existing value M[j]
– (ii) fills in one new entry M[j] and makes two recursive calls

 Progress measure Φ = # nonempty entries of M[].
– initially Φ = 0, throughout Φ ≤ n.
– (ii) increases Φ by 1 ⇒ at most 2n recursive calls.

 Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

17

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

 # of recursive calls ≤ n ⇒ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}

18

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])
}

Practice Midterm

Recall the weighted interval scheduling problem in which we are given a
list of n meeting requests J1 = [s1, f1], . . . , Jn = [sn, fn] with positive
weights w1, . . . , wn > 0 where meeting request Ji starts at time si and
finishes at time fi > si . We are given a single conference room and our
goal is to find the maximum weight schedule with no conflicts (recall
that requests Ji and Jk conflict if they overlap).

Part A: Does the greedy strategy (sort by weight) work?

19

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1000

c

Practice Midterm

Recall the weighted interval scheduling problem in which we are given a
list of n meeting requests J1 = [s1, f1], . . . , Jn = [sn, fn] with positive
weights w1, . . . , wn > 0 where meeting request Ji starts at time si and
finishes at time fi > si . We are given a single conference room and our
goal is to find the maximum weight schedule with no conflicts (recall
that requests Ji and Jk conflict if they overlap).

Part B: Suppose f1< f2 < … < fn and w1 > … > wn?

20

…

…j1 j2 jr

i1 i2 ir

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1 and
therefore has higher weight

…

… . . .ir+1

Practice Midterm

T(1), T(2), T(3), T(4) < 11 and T(n) = 7T(n/2)+T(n/5) + n3

Use induction to prove T(n) <= 10n3

Bases Cases? Trivially true for n< 5.

Inductive Hypothesis: T(k) <= 10k3 whenever k < n

Inductive Step:

T(n) = 7T(n/2)+T(n/5) + n3 <= 10*7*(n3 /8)+ 10*n3/125 + n3 (IH)
<= 10n3 (by algebra)

21

	CS 381 – Fall 2019
	Announcements
	Midterm 1: Logistics
	Midterm 1
	6.1 Weighted Interval Scheduling
	Weighted Interval Scheduling
	Unweighted Interval Scheduling (will cover in Greedy paradigms)
	Weighted Interval Scheduling
	Dynamic Programming: Binary Choice
	Weighted Interval Scheduling: Brute Force
	Weighted Interval Scheduling: Brute Force
	Weighted Interval Scheduling: Memoization
	Weighted Interval Scheduling: Running Time
	Weighted Interval Scheduling: Finding a Solution
	Weighted Interval Scheduling: Bottom-Up
	Practice Midterm
	Practice Midterm
	Practice Midterm

