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Week 6.1,  Monday, Sept 23
Homework 3 Due Tonight: 11:59PM on Gradescope
Late Submissions: Close tomorrow night at 11:59PM on Gradescope
Practice Midterm 1: Solutions Released
Midterm Review Session: Tuesday (7:30-9:30PM) @ WALC 1018
Midterm 1: September 25 (evening) 



 No PSOs this week (due to Midterm)

 Midterm review on Tuesday night
 WALC 1018 (7:30-9:30PM)

 Yes, we do have class on Wednesday
 Classes canceled on October 28th and Dec 6th

 Make up for two evening midterm exams
 We will release homework 3 solutions on 

Wednesday morning 
 At which point the submission server closes
 No 2 day late submissions



 90 minutes (8:00-9:30PM)
 Tuesday/Thursday PSOs: SMTH 108  (Exam Capacity =115)
 Friday PSO: MTHW 210                         (Exam Capacity = 111)

 1 Page of Notes (Single-Sided)

 Standard paper (or A4) is acceptable

 Bring number 2 pencil (for scanned exam)

 Closed book, no calculators, no smartphones, no 
smartwatches, no laptops etc…



 Practice Midterm Solutions Released Soon
 Advice: Try to solve each problem yourself before checking answers

 Topics: 
 Induction
 Big-O
 Divide and Conquer

 Sorting, Counting Inversions, Maximum Subarray, Skyline Problem, Karatsuba 
Multiplication

 Recurrences
 Deriving a Recurrence
 Unrolling
 Recursion Trees
 Master Theorem

 Greedy Algorithms 

 No Dynamic Programming Required (until Midterm 2)
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Problem 1: Non Adjacent Selection (NAS)

S is an array of size n (positive integers in arbitrary order)
Select entries in S so that 

i. the sum of the selected entries is a maximum 
ii. no two selected entries are adjacent in array S 

Examples
[14, 6, 33, 1, 2, 8]
[1, 4, 5, 4]
[15, 14, 10, 17, 10]
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Approaches …
Naive approach: Consider all possibilities of selecting entries
 If S[i] is chosen, the two adjacent locations cannot be chosen
 There here is an exponential number possible solutions
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Approaches …
Naive approach: Consider all possibilities of selecting entries
 If S[i] is chosen, the two adjacent locations cannot be chosen
 There here is an exponential number possible solutions

Greedy: Create a sorted list of entries and choose entries from 
this order, skipping entries causing a violation in S
Correctness?
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Clicker Question
Greedy: Create a sorted list of entries and choose entries from 
this order, skipping entries causing a violation in S

The Greedy algorithm fails to output the optimal solution on 
which of the following inputs?
A. [14, 6, 33, 1, 2, 8]
B. [1, 4, 5, 4]
C. [7, 63, 64, 63, 2, 8]
D. B and C
E. All of the above
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Clicker Question
Greedy: Create a sorted list of entries and choose entries from 
this order, skipping entries causing a violation in S

The Greedy algorithm fails to output the optimal solution on 
which of the following inputs?
A. [14, 6, 33, 1, 2, 8]    (Greedy is Optimal)
B. [1, 4, 5, 4]                  vs           [1, 4, 5, 4] 
C. [7, 63, 64, 63, 2, 8]    vs           [7, 63, 64, 63, 2, 8] 
D. B and C
E. All of the above
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Approaches …
Naive approach: Consider all possibilities of selecting entries
 If S[i] is chosen, the two adjacent locations cannot be chosen
 There here is an exponential number possible solutions

Greedy: Create a sorted list of entries and choose entries from 
this order, skipping entries causing a violation in S
 Easy to find a counterexample

Use divide and conquer? How to combine?
Recurse on arrays of size n/2 and then combine
 [1, 4, 5, 3] 
 returns 4 and 5, respectively
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Approaches …
Naive approach: Consider all possibilities of selecting entries
 If S[i] is chosen, the two adjacent locations cannot be chosen
 There here is an exponential number possible solutions

Use divide and conquer? How to combine?
Recurse on arrays of size n/2 and then combine
 Solve([1, 4, 5, 3]) 
 Left:     Solve([1,4]) returns 4
 Right:   Solve([5,3]) returns 5
 Combine? [1, 4, 5, 3]

Can build D&C algorithm, but it is complicated…
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Algorithmic Paradigms

Greedy.  Build up a solution incrementally, myopically optimizing 
some local criterion.

Divide-and-conquer.  Break up a problem into sub-problems, solve 
each sub-problem independently, and combine solution to sub-
problems to form solution to original problem. 

Dynamic programming. Break up a problem into a series of 
overlapping sub-problems, and build up solutions to larger and 
larger sub-problems.
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Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
 Dynamic programming = planning over time.
 Secretary of Defense was hostile to mathematical research.
 Bellman sought an impressive name to avoid confrontation.

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"
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Let’s try something else
S[1], S[2], S[3], S[4], … , S[n-2], S[n-1], S[n]

When is the nth element selected? 
 Depends on what optimum solutions look like on elements 

1 to n-1
 If optimal solution does not include S[n-1] then we can add 

S[n] to the solution
 What if the optimal solution does include S[n-1]?
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Let’s try something else
S[1], S[2], S[3], S[4], … , S[n-2], S[n-1], S[n]

When is the nth element selected? 
 Depends on what optimum solutions look like on elements 

1 to n-1

Let OPT(k) be the optimum solution in subarray S[1:k]
Assume we know OPT(n-2) and OPT(n-1)
Then, OPT(n) = max{OPT(n-1), OPT(n-2) + S[n]}
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Let’s try something else
S[1], S[2], S[3], S[4], … , S[n-2], S[n-1], S[n]

Let OPT(k) be the optimum solution in subarray S[1:k]
Assume we know OPT(n-2) and OPT(n-1)
Then, OPT(n) = max{OPT(n-1), OPT(n-2) + S[n]}

Case 1: Optimal does not use S[n]

 Use optimal solution for subarray S[1:n-1] (OPT(n-1))



18

Let’s try something else
S[1], S[2], S[3], S[4], … , S[n-2], S[n-1], S[n]

Let OPT(k) be the optimum solution in subarray S[1:k]
Assume we know OPT(n-2) and OPT(n-1)
Then, OPT(n) = max{OPT(n-1), OPT(n-2) + S[n]}

Case 2: Optimal solutions includes S[n] 

 Cannot use S[n-1] 
 add S[n] to optimal solution on subarray S[1:n-2]



19

The DP Recurrence Relationship
OPT(n) = max{OPT(n-1), OPT(n-2) + S[n]}

OPT[1] = S[1]
OPT[2] = max{OPT(1), S[2]}
OPT[k] = max{OPT(k-1), OPT(k-2) + S[k]}, 3≤k≤n
Case 1: Optimal solution to sub-problem S[1:k] does not 
include S[k] 

 use optimal solution to S[1:k-1]
Case 2: Optimal solution to sub-problem S[1:k] includes S[k]

 add S[k] to optimal solution to S[1:k-2]
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Now we have an efficient algorithm 
OPT(n) = max{OPT(n-1), OPT(n-2) + S[n]}

OPT[1] = S[1]
OPT[2] = max{OPT(1), S[2]}
OPT[k] = max{OPT(k-1), OPT(k-2) + S[k]}, 3≤k≤n

Compute entries of array OPT in O(n) time in one left to 
right scan (at position k, look at k-1 and k-2)

S = [14, 6, 8, 9, 7, 2]
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Now we have an efficient algorithm 

OPT[1] = S[1]
OPT[2] = max{OPT(1), S[2]}
OPT[k] = max{OPT(k-1), OPT(k-2) + S[k]}, 3≤k≤n

How do we determine the elements selected?
Once OPT[n] is known, use the entries in array OPT to 

construct the answer
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Start at n scanning left and determine elements in set T 

T={}; k=n
while k ≥ 1

if OPT[k-1] ≥ OPT[k-2] + S[k] then
k = k-1 // S[k] is not selected

else
add index k to set T; 
k=k-2

Return T
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Start at n scanning left and determine elements in set T 

T={}; k=n
while k ≥ 3

if OPT[k-1] ≥ OPT[k-2] + S[k]
then k = k-1 // S[k] is not selected
else add index k to set T; k=k-2

if  (T contains 3 or S[1]>S[2]) then add index 1 to set T
Else add index 2 to set T
Return T

Generating the elements in the solution costs O(n) time
Note: Revisit the O(n) time iterative solution to 
maximum subarray problem (it is DP)
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