
1

Week 6.1, Monday, Sept 23
Homework 3 Due Tonight: 11:59PM on Gradescope
Late Submissions: Close tomorrow night at 11:59PM on Gradescope
Practice Midterm 1: Solutions Released
Midterm Review Session: Tuesday (7:30-9:30PM) @ WALC 1018
Midterm 1: September 25 (evening)

 No PSOs this week (due to Midterm)

 Midterm review on Tuesday night
 WALC 1018 (7:30-9:30PM)

 Yes, we do have class on Wednesday
 Classes canceled on October 28th and Dec 6th

 Make up for two evening midterm exams
 We will release homework 3 solutions on

Wednesday morning
 At which point the submission server closes
 No 2 day late submissions

 90 minutes (8:00-9:30PM)
 Tuesday/Thursday PSOs: SMTH 108 (Exam Capacity =115)
 Friday PSO: MTHW 210 (Exam Capacity = 111)

 1 Page of Notes (Single-Sided)

 Standard paper (or A4) is acceptable

 Bring number 2 pencil (for scanned exam)

 Closed book, no calculators, no smartphones, no
smartwatches, no laptops etc…

 Practice Midterm Solutions Released Soon
 Advice: Try to solve each problem yourself before checking answers

 Topics:
 Induction
 Big-O
 Divide and Conquer

 Sorting, Counting Inversions, Maximum Subarray, Skyline Problem, Karatsuba
Multiplication

 Recurrences
 Deriving a Recurrence
 Unrolling
 Recursion Trees
 Master Theorem

 Greedy Algorithms

 No Dynamic Programming Required (until Midterm 2)

5

Problem 1: Non Adjacent Selection (NAS)

S is an array of size n (positive integers in arbitrary order)
Select entries in S so that

i. the sum of the selected entries is a maximum
ii. no two selected entries are adjacent in array S

Examples
[14, 6, 33, 1, 2, 8]
[1, 4, 5, 4]
[15, 14, 10, 17, 10]

6

Approaches …
Naive approach: Consider all possibilities of selecting entries
 If S[i] is chosen, the two adjacent locations cannot be chosen
 There here is an exponential number possible solutions

7

Approaches …
Naive approach: Consider all possibilities of selecting entries
 If S[i] is chosen, the two adjacent locations cannot be chosen
 There here is an exponential number possible solutions

Greedy: Create a sorted list of entries and choose entries from
this order, skipping entries causing a violation in S
Correctness?

8

Clicker Question
Greedy: Create a sorted list of entries and choose entries from
this order, skipping entries causing a violation in S

The Greedy algorithm fails to output the optimal solution on
which of the following inputs?
A. [14, 6, 33, 1, 2, 8]
B. [1, 4, 5, 4]
C. [7, 63, 64, 63, 2, 8]
D. B and C
E. All of the above

9

10

Clicker Question
Greedy: Create a sorted list of entries and choose entries from
this order, skipping entries causing a violation in S

The Greedy algorithm fails to output the optimal solution on
which of the following inputs?
A. [14, 6, 33, 1, 2, 8] (Greedy is Optimal)
B. [1, 4, 5, 4] vs [1, 4, 5, 4]
C. [7, 63, 64, 63, 2, 8] vs [7, 63, 64, 63, 2, 8]
D. B and C
E. All of the above

11

Approaches …
Naive approach: Consider all possibilities of selecting entries
 If S[i] is chosen, the two adjacent locations cannot be chosen
 There here is an exponential number possible solutions

Greedy: Create a sorted list of entries and choose entries from
this order, skipping entries causing a violation in S
 Easy to find a counterexample

Use divide and conquer? How to combine?
Recurse on arrays of size n/2 and then combine
 [1, 4, 5, 3]
 returns 4 and 5, respectively

12

Approaches …
Naive approach: Consider all possibilities of selecting entries
 If S[i] is chosen, the two adjacent locations cannot be chosen
 There here is an exponential number possible solutions

Use divide and conquer? How to combine?
Recurse on arrays of size n/2 and then combine
 Solve([1, 4, 5, 3])
 Left: Solve([1,4]) returns 4
 Right: Solve([5,3]) returns 5
 Combine? [1, 4, 5, 3]

Can build D&C algorithm, but it is complicated…

13

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve
each sub-problem independently, and combine solution to sub-
problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping sub-problems, and build up solutions to larger and
larger sub-problems.

14

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
 Dynamic programming = planning over time.
 Secretary of Defense was hostile to mathematical research.
 Bellman sought an impressive name to avoid confrontation.

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

15

Let’s try something else
S[1], S[2], S[3], S[4], … , S[n-2], S[n-1], S[n]

When is the nth element selected?
 Depends on what optimum solutions look like on elements

1 to n-1
 If optimal solution does not include S[n-1] then we can add

S[n] to the solution
 What if the optimal solution does include S[n-1]?

16

Let’s try something else
S[1], S[2], S[3], S[4], … , S[n-2], S[n-1], S[n]

When is the nth element selected?
 Depends on what optimum solutions look like on elements

1 to n-1

Let OPT(k) be the optimum solution in subarray S[1:k]
Assume we know OPT(n-2) and OPT(n-1)
Then, OPT(n) = max{OPT(n-1), OPT(n-2) + S[n]}

17

Let’s try something else
S[1], S[2], S[3], S[4], … , S[n-2], S[n-1], S[n]

Let OPT(k) be the optimum solution in subarray S[1:k]
Assume we know OPT(n-2) and OPT(n-1)
Then, OPT(n) = max{OPT(n-1), OPT(n-2) + S[n]}

Case 1: Optimal does not use S[n]

 Use optimal solution for subarray S[1:n-1] (OPT(n-1))

18

Let’s try something else
S[1], S[2], S[3], S[4], … , S[n-2], S[n-1], S[n]

Let OPT(k) be the optimum solution in subarray S[1:k]
Assume we know OPT(n-2) and OPT(n-1)
Then, OPT(n) = max{OPT(n-1), OPT(n-2) + S[n]}

Case 2: Optimal solutions includes S[n]

 Cannot use S[n-1]
 add S[n] to optimal solution on subarray S[1:n-2]

19

The DP Recurrence Relationship
OPT(n) = max{OPT(n-1), OPT(n-2) + S[n]}

OPT[1] = S[1]
OPT[2] = max{OPT(1), S[2]}
OPT[k] = max{OPT(k-1), OPT(k-2) + S[k]}, 3≤k≤n
Case 1: Optimal solution to sub-problem S[1:k] does not
include S[k]

 use optimal solution to S[1:k-1]
Case 2: Optimal solution to sub-problem S[1:k] includes S[k]

 add S[k] to optimal solution to S[1:k-2]

20

Now we have an efficient algorithm
OPT(n) = max{OPT(n-1), OPT(n-2) + S[n]}

OPT[1] = S[1]
OPT[2] = max{OPT(1), S[2]}
OPT[k] = max{OPT(k-1), OPT(k-2) + S[k]}, 3≤k≤n

Compute entries of array OPT in O(n) time in one left to
right scan (at position k, look at k-1 and k-2)

S = [14, 6, 8, 9, 7, 2]

21

Now we have an efficient algorithm

OPT[1] = S[1]
OPT[2] = max{OPT(1), S[2]}
OPT[k] = max{OPT(k-1), OPT(k-2) + S[k]}, 3≤k≤n

How do we determine the elements selected?
Once OPT[n] is known, use the entries in array OPT to

construct the answer

22

Start at n scanning left and determine elements in set T

T={}; k=n
while k ≥ 1

if OPT[k-1] ≥ OPT[k-2] + S[k] then
k = k-1 // S[k] is not selected

else
add index k to set T;
k=k-2

Return T

23

Start at n scanning left and determine elements in set T

T={}; k=n
while k ≥ 3

if OPT[k-1] ≥ OPT[k-2] + S[k]
then k = k-1 // S[k] is not selected
else add index k to set T; k=k-2

if (T contains 3 or S[1]>S[2]) then add index 1 to set T
Else add index 2 to set T
Return T

Generating the elements in the solution costs O(n) time
Note: Revisit the O(n) time iterative solution to
maximum subarray problem (it is DP)

	CS 381 – Fall 2019
	Announcements
	Midterm 1: Logistics
	Midterm 1
	Problem 1: Non Adjacent Selection (NAS)
	Approaches …
	Approaches …
	Clicker Question
	Slide Number 9
	Clicker Question
	Approaches …
	Approaches …
	Algorithmic Paradigms
	Dynamic Programming History
	Let’s try something else
	Let’s try something else
	Let’s try something else
	Let’s try something else
	The DP Recurrence Relationship
	Now we have an efficient algorithm
	Now we have an efficient algorithm
	Start at n scanning left and determine elements in set T �
	Start at n scanning left and determine elements in set T �

