Week 5.3, Friday, Sept 20

Homework 3 Due: September 23rd, 2019 @ 11:59PM on Gradescope
Homework 2: Solutions available on Piazza
Midterm 1: September 25 (evening)
Selecting Breakpoints
Selecting Breakpoints

Selecting breakpoints.
- Road trip from Princeton to Palo Alto along fixed route.
- Refueling stations at certain points along the way.
- Fuel capacity = C.
- Goal: makes as few refueling stops as possible.

Greedy algorithm. Go as far as you can before refueling.
Selecting Breakpoints: Greedy Algorithm

Truck driver's algorithm.

Sort breakpoints so that: 0 = b_0 < b_1 < b_2 < ... < b_n = L

S ← \{0\} ← breakpoints selected
x ← 0 ← current location

while (x \neq b_n)
 let p be largest integer such that b_p \leq x + C
 if (b_p = x)
 return "no solution"
 x ← b_p
 S ← S \cup \{p\}
return S

Implementation. \(O(n \log n)\)

- Use binary search to select each breakpoint p.
Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
- Assume greedy is not optimal, and let's see what happens.
- Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0, f_1 = g_1, \ldots, f_r = g_r$ for largest possible value of r.
- Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm.

Why doesn't optimal solution drive a little further?
Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0, f_1 = g_1, \ldots, f_r = g_r$ for largest possible value of r.
- Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm.

Another optimal solution has one more breakpoint in common \Rightarrow contradiction.
4.1 Interval Partitioning
Interval Partitioning

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.
Interval Partitioning

Interval partitioning.

- Lecture \(j \) starts at \(s_j \) and finishes at \(f_j \).
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.
Def. The **depth** of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \geq depth.

Ex: Depth of schedule below = 3 \Rightarrow schedule below is optimal.

- a, b, c all contain 9:30

Q. Does there always exist a schedule equal to depth of intervals?
Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that $s_1 \leq s_2 \leq \ldots \leq s_n$.

\[d \leftarrow 0 \quad \text{number of allocated classrooms} \]

\[\text{for } j = 1 \text{ to } n \{ \]
\[\quad \text{if (lecture } j \text{ is compatible with some classroom } k) } \]
\[\quad \text{schedule lecture } j \text{ in classroom } k \]
\[\quad \text{else} \]
\[\quad \text{allocate a new classroom } d + 1 \]
\[\quad \text{schedule lecture } j \text{ in classroom } d + 1 \]
\[\quad d \leftarrow d + 1 \]
\[\}\]

Implementation. $O(n \log n)$.

- For each classroom k, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue.
 - Quickly find the classroom with earliest finish time
Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf.

- Let \(d \) = number of classrooms that the greedy algorithm allocates.
- Classroom \(d \) is opened because we needed to schedule a job, say \(j \), that is incompatible with all \(d-1 \) other classrooms.
- These \(d \) jobs (including \(j \)) each end after \(s_j \).
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than \(s_j \).
- Thus, we have \(d \) lectures overlapping at time \(s_j + \varepsilon \).
- Key observation \(\Rightarrow \) all schedules use \(\geq d \) classrooms.
Clicker Question

Consider the interval partitioning instance (below). The current schedule uses 5 classrooms. How many classrooms are required in the optimal solution?

A. 6 B. 5 C. 4 D. 3 E. ∞ suffices
Consider the interval partitioning instance (below). The current schedule uses 5 classrooms. How many classrooms are required in the optimal solution?

A. 6 B. 5 C. 4 D. 3 E. ∞ suffices
Greedy Analysis Strategies

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

- Example: Interval Scheduling, Minimizing Lateness (inversions)

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

- Example: Interval Partitioning (Depth of Schedule)

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.

- Example: Offline Caching, Dijkstra (shortest path for explored set)

Other greedy algorithms. Kruskal, Prim, Huffman, ...