
1

Week 5.3, Friday, Sept 20

Homework 3 Due: September 23rd , 2019 @ 11:59PM on Gradescope
Homework 2: Solutions available on Piazza
Midterm 1: September 25 (evening)

Selecting Breakpoints

3

Selecting Breakpoints

Selecting breakpoints.
 Road trip from Princeton to Palo Alto along fixed route.
 Refueling stations at certain points along the way.
 Fuel capacity = C.
 Goal: makes as few refueling stops as possible.

Greedy algorithm. Go as far as you can before refueling.

Princeton Palo Alto

1

C

C

2

C

3

C

4

C

5

C

6

C

7

4

Truck driver's algorithm.

Implementation. O(n log n)
 Use binary search to select each breakpoint p.

Selecting Breakpoints: Greedy Algorithm

Sort breakpoints so that: 0 = b0 < b1 < b2 < ... < bn = L

S ← {0}
x ← 0

while (x ≠ bn)
let p be largest integer such that bp ≤ x + C
if (bp = x)

return "no solution"
x ← bp
S ← S ∪ {p}

return S

breakpoints selected
current location

5

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let 0 = g0 < g1 < . . . < gp = L denote set of breakpoints chosen by greedy.
 Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints in an optimal

solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.
 Note: gr+1 > fr+1 by greedy choice of algorithm.

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr
why doesn't optimal solution
drive a little further?

gr+1

fr+1

6

Selecting Breakpoints: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let 0 = g0 < g1 < . . . < gp = L denote set of breakpoints chosen by greedy.
 Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints in an optimal

solution with f0 = g0, f1= g1 , . . . , fr = gr for largest possible value of r.
 Note: gr+1 > fr+1 by greedy choice of algorithm.

another optimal solution has
one more breakpoint in common
⇒ contradiction

. . .

Greedy:

OPT:

g0 g1 g2

f0 f1 f2 fq

gr

fr

gr+1

4.1 Interval Partitioning

8

Interval Partitioning

Interval partitioning.
 Lecture j starts at sj and finishes at fj.
 Goal: find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4

9

Interval Partitioning

Interval partitioning.
 Lecture j starts at sj and finishes at fj.
 Goal: find minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

1

2

3

10

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that
contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = 3 ⇒ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Time

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

1

2

3

11

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time:
assign lecture to any compatible classroom.

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn.
d ← 0

for j = 1 to n {
if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k
else

allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d ← d + 1

}

number of allocated classrooms

Implementation. O(n log n).
 For each classroom k, maintain the finish time of the last job added.
 Keep the classrooms in a priority queue.

– Quickly find the classroom with earliest finish time

12

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible
lectures in the same classroom.

Theorem. Greedy algorithm is optimal.
Pf.
 Let d = number of classrooms that the greedy algorithm allocates.
 Classroom d is opened because we needed to schedule a job, say j,

that is incompatible with all d-1 other classrooms.
 These d jobs (including j) each end after sj.
 Since we sorted by start time, all these incompatibilities

are caused by lectures that start no later than sj.
 Thus, we have d lectures overlapping at time sj + ε.
 Key observation ⇒ all schedules use ≥ d classrooms. ▪

13

Clicker Question

Consider the interval partitioning instance (below). The current
schedule uses 5 classrooms. How many classrooms are required in the
optimal solution?

A. 6 B. 5 C. 4 D. 3 E. ∞ suffices

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4

5

14

15

Clicker Question

Consider the interval partitioning instance (below). The current
schedule uses 5 classrooms. How many classrooms are required in the
optimal solution?

A. 6 B. 5 C. 4 D. 3 E. ∞ suffices

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4

5

j

16

Greedy Analysis Strategies

Exchange argument. Gradually transform any solution to the one found
by the greedy algorithm without hurting its quality.

Example: Interval Scheduling, Minimizing Lateness (inversions)

Structural. Discover a simple "structural" bound asserting that every
possible solution must have a certain value. Then show that your
algorithm always achieves this bound.

Example: Interval Partitioning (Depth of Schedule)

Greedy algorithm stays ahead. Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's.

Example: Offline Caching, Dijkstra (shortest path for explored set)

Other greedy algorithms. Kruskal, Prim, Huffman, …

	CS 381 – Fall 2019
	Selecting Breakpoints
	Selecting Breakpoints
	Selecting Breakpoints: Greedy Algorithm
	Selecting Breakpoints: Correctness
	Selecting Breakpoints: Correctness
	4.1 Interval Partitioning
	Interval Partitioning
	Interval Partitioning
	Interval Partitioning: Lower Bound on Optimal Solution
	Interval Partitioning: Greedy Algorithm
	Interval Partitioning: Greedy Analysis
	Clicker Question
	Slide Number 14
	Clicker Question
	Greedy Analysis Strategies

