
1

Week 5.2, Wed, Sept 18

Homework 3 Due: September 23rd , 2019 @ 11:59PM on Gradescope
Midterm 1: September 25 (evening)

 Due: September 23 (11:59PM) on Gradescope

 Shorter than Homework 2

 Goal: Practice Greedy Algorithms before
Midterm

 Practice Midterm Released Soon

 Topics:
 Induction
 Big-O
 Divide and Conquer

 Sorting, Counting Inversions, Maximum Subarray, Skyline Problem, Karatsuba
Multiplication

 Recurrences
 Deriving a Recurrence
 Unrolling
 Recursion Trees
 Master Theorem

 Greedy Algorithms

 No Dynamic Programming (until Midterm 2)

 90 minutes (8:00-9:30PM)
 Tuesday/Thursday PSOs (SMTH 108)
 Friday PSO (MTHW 210)

 1 Page of Notes (Single-Sided)

 Standard paper (or A4) is acceptable

 Bring number 2 pencil (for scanned exam)

 Closed book, no calculators, no smartphones, no
smartwatches, no laptops etc…

4.2 Scheduling to Minimize Lateness

6

Scheduling to Minimizing Lateness

Minimizing lateness problem.
 Single resource processes one job at a time.
 Job j requires tj units of processing time and is due at time dj.
 If j starts at time sj, it finishes at time fj = sj + tj.
 Lateness: j = max { 0, fj - dj }.
 Goal: schedule all jobs to minimize maximum lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

7

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in ascending order
of processing time tj.

 [Earliest deadline first] Consider jobs in ascending order of
deadline dj.

 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

8

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in ascending order
of processing time tj.

 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

9

Greedy template. Consider jobs in some order.
 [Shortest processing time first] Consider jobs in ascending order of

processing time tj.
 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

Which greedy algorithms outputs the optimal schedule
(minimizes the maximum lateness)?

A. Smallest Slack B. Shortest Processing Time First

C. Both D. Neither

Clicker Question

dj

tj

2

9

1

10

5

2

10

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn

t ← 0
for j = 1 to n

Assign job j to interval [t, t + tj]
sj ← t, fj ← t + tj
t ← t + tj

output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

11

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

12

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that: i < j
(i.e., di < dj) but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has one
with a pair of inverted jobs scheduled consecutively.

Proof: If (i,j) be inversion minimizing number of intermediate jobs. Suppose
for contradiction that some job k was scheduled between jobs i and j.
Case 1: dk ≤ di  (j,k) is inversion
Case 2: dk > di  (i,k) is an inversion

ijbefore swap

fi

inversion

[as before, we assume jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn]

Contradicts minimality of (i,j)

13

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such
that: i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the
number of inversions by one and does not increase the max
lateness.

Pf. Let  be the lateness before the swap, and let  ' be it
afterwards.
  'k = k for all k ≠ i, j
  'i ≤ i
 If job j is late:

ij

i j

before swap

after swap



′ j = ′ f j − d j (definition)
= fi − d j (j finishes at time fi)
≤ fi − di (i < j)
≤  i (definition)

f'j

fi

inversion

14

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.
Pf. Define S* to be an optimal schedule that has the fewest number of
inversions, and let's see what happens.
 Can assume S* has no idle time.
 If S* has no inversions, then S = S*.
 If S* has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum lateness and
strictly decreases the number of inversions

– this contradicts definition of S* ▪

Coin Changing

Greed is good. Greed is right. Greed works.
Greed clarifies, cuts through, and captures the
essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)

16

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a
method to pay amount to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest
value that does not take us past the amount to be paid.

Ex: $2.89.

Clicker Question

Goal. Given currency denominations: 1, 5, 10, 25,
100, devise a method to pay amount to customer
using fewest number of coins.

Which (if any) of the following claims is not true?

A. The optimal solution uses at most 2 dimes

B. The optimal solution uses at most 1 nickel

C. The optimal solution uses at most 3 quarters

D. The optimal solution uses at most 4 pennies

E. All of the claims above are true

17

18

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value
that does not take us past the amount to be paid.

Q. Is cashier's algorithm optimal?

Sort coins denominations by value: c1 < c2 < … < cn.

S ← φ
while (x ≠ 0) {

let k be largest integer such that ck ≤ x
if (k = 0)

return "no solution found"
x ← x - ck
S ← S ∪ {k}

}
return S

coins selected

19

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100.
Pf. (by induction on x)
 Consider optimal way to change ck ≤ x < ck+1 : greedy takes coin k.
 We claim that any optimal solution must also take coin k.

– if not, it needs enough coins of type c1, …, ck-1 to add up to x
– table below indicates no optimal solution can do this

 Problem reduces to coin-changing x - ck cents, which, by induction, is
optimally solved by greedy algorithm. ▪

1

ck

10
25
100

P ≤ 4

All optimal solutions
must satisfy

N + D ≤ 2
Q ≤ 3

5 N ≤ 1

no limit

k

1

3
4
5

2
-

Max value of coins
1, 2, …, k-1 in any OPT

4 + 5 = 9
20 + 4 = 24

4

75 + 24 = 99

20

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal
denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
 Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
 Optimal: 70, 70.

	CS 381 – Fall 2019
	Homework 3 Released
	Midterm 1
	Midterm 1: Logistics
	4.2 Scheduling to Minimize Lateness
	Scheduling to Minimizing Lateness
	Minimizing Lateness: Greedy Algorithms
	Minimizing Lateness: Greedy Algorithms
	Clicker Question
	Minimizing Lateness: Greedy Algorithm
	Minimizing Lateness: No Idle Time
	Minimizing Lateness: Inversions
	Minimizing Lateness: Inversions
	Minimizing Lateness: Analysis of Greedy Algorithm
	Coin Changing
	Coin Changing
	Clicker Question
	Coin-Changing: Greedy Algorithm
	Coin-Changing: Analysis of Greedy Algorithm
	Coin-Changing: Analysis of Greedy Algorithm

