CS 381 – FALL 2019

Week 5.2, Wed, Sept 18

Homework 3 Due: September 23rd , 2019 @ 11:59PM on Gradescope Midterm 1: September 25 (evening)

Homework 3 Released

■ Due: September 23 (11:59PM) on Gradescope

Shorter than Homework 2

 Goal: Practice Greedy Algorithms before Midterm

Midterm 1

Practice Midterm Released Soon

Topics:

- Induction
- Big-O
- Divide and Conquer
 - Sorting, Counting Inversions, Maximum Subarray, Skyline Problem, Karatsuba Multiplication
- Recurrences
 - Deriving a Recurrence
 - Unrolling
 - Recursion Trees
 - Master Theorem
- Greedy Algorithms

No Dynamic Programming (until Midterm 2)

Midterm 1: Logistics

90 minutes (8:00-9:30PM)
Tuesday/Thursday PSOs (SMTH 108)
Friday PSO (MTHW 210)

- 1 Page of Notes (Single-Sided)
- Standard paper (or A4) is acceptable
- Bring number 2 pencil (for scanned exam)
- Closed book, no calculators, no smartphones, no smartwatches, no laptops etc...

4.2 Scheduling to Minimize Lateness

Scheduling to Minimizing Lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_j units of processing time and is due at time d_j.
- If j starts at time s_j , it finishes at time $f_j = s_j + t_j$.
- Lateness: $\ell_j = \max \{0, f_j d_j\}$.
- Goal: schedule all jobs to minimize maximum lateness L = max ℓ_j .

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_j.
- $\hfill \$ [Earliest deadline first] Consider jobs in ascending order of deadline $d_j.$
- [Smallest slack] Consider jobs in ascending order of slack $d_j t_j$.

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_j .

[Smallest slack] Consider jobs in ascending order of slack d_j - t_j.

counterexample

Clicker Question

Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time ${\rm t}_{\rm j}.$
- [Smallest slack] Consider jobs in ascending order of slack $d_j t_j$.

Which greedy algorithms outputs the optimal schedule (minimizes the maximum lateness)?

A. Smallest SlackB. Shortest Processing Time FirstC. BothD. Neither

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

	d = 4			d :	= 6				d =	: 12	
0	1	2	3	4	5	6	7	8	9	10	11
	d = 4		d :	= 6		d =	12				
0	1	2	3	4	5	6	7	8	9	10	11

Observation. The greedy schedule has no idle time.

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that: i < j (i.e., $d_i < d_j$) but j scheduled before i.

[as before, we assume jobs are numbered so that $d_1 \ \leq \ d_2 \ \leq \ ... \ \leq \ d_n$]

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Proof: If (i,j) be inversion *minimizing number of intermediate jobs*. Suppose for contradiction that some job k was scheduled between jobs i and j.

Case 1: $d_k \le d_i \rightarrow (j,k)$ is inversion **Case 2:** $d_k > d_i \rightarrow (i,k)$ is an inversion Contradicts minimality of (i,j)

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that: i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ be it afterwards.

$\ell'_j = f'_j - d_j$	(definition)
$= f_i - d_j$	$(j \text{ finishes at time } f_i)$
$\leq f_i - d_i$	(i < j)
$\leq \ell_i$	(definition)
	$\ell'_{j} = f'_{j} - d_{j}$ $= f_{i} - d_{j}$ $\leq f_{i} - d_{i}$ $\leq \ell_{i}$

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. Define S* to be an optimal schedule that has the fewest number of inversions, and let's see what happens.

- Can assume S* has no idle time.
- If S* has no inversions, then S = S*.
- If S* has an inversion, let i-j be an adjacent inversion.
 - swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions
 - this contradicts definition of S* •

Coin Changing

Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Ex: \$2.89.

Clicker Question

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins.

Which (if any) of the following claims is not true?

- A. The optimal solution uses at most 2 dimes
- B. The optimal solution uses at most 1 nickel
- C. The optimal solution uses at most 3 quarters
- D. The optimal solution uses at most 4 pennies
- E. All of the claims above are true

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: c_1 < c_2 < ... < c_n.

coins selected

\checkmark

S \leftarrow \phi

while (x \neq 0) {

let k be largest integer such that c_k \leq x

if (k = 0)

return "no solution found"

x \leftarrow x - c_k

S \leftarrow S \cup \{k\}

}

return S
```

Q. Is cashier's algorithm optimal?

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100. Pf. (by induction on x)

- Consider optimal way to change $c_k \le x < c_{k+1}$: greedy takes coin k.
- We claim that any optimal solution must also take coin k.
 - if not, it needs enough coins of type $c_1, ..., c_{k-1}$ to add up to x
 - table below indicates no optimal solution can do this
- Problem reduces to coin-changing x c_k cents, which, by induction, is optimally solved by greedy algorithm.

k	c _k	All optimal solutions must satisfy	Max value of coins 1, 2,, k-1 in any OPT
1	1	$P \leq 4$	-
2	5	$N \leq 1$	4
3	10	N + D \leq 2	4 + 5 = 9
4	25	$\mathbf{Q} \leq 3$	20 + 4 = 24
5	100	no limit	75 + 24 = 99

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

- Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
- Optimal: 70, 70.

