Homework 3 Due: September 23rd, 2019 @ 11:59PM on Gradescope
Midterm 1: September 25 (evening)
Homework 3 Released

- Due: September 23 (11:59PM) on Gradescope
- Shorter than Homework 2
- **Goal:** Practice Greedy Algorithms before Midterm
Practice Midterm Released Soon

Topics:
- Induction
- Big-O
- Divide and Conquer
 - Sorting, Counting Inversions, Maximum Subarray, Skyline Problem, Karatsuba Multiplication
- Recurrences
 - Deriving a Recurrence
 - Unrolling
 - Recursion Trees
 - Master Theorem
- Greedy Algorithms

No Dynamic Programming (until Midterm 2)
Midterm 1: Logistics

- 90 minutes (8:00-9:30PM)
 - Tuesday/Thursday PSOs (SMTH 108)
 - Friday PSO (MTHW 210)

- 1 Page of Notes (Single-Sided)

- Standard paper (or A4) is acceptable

- Bring number 2 pencil (for scanned exam)

- Closed book, no calculators, no smartphones, no smartwatches, no laptops etc...
4.2 Scheduling to Minimize Lateness
Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_j units of processing time and is due at time d_j.
- If j starts at time s_j, it finishes at time $f_j = s_j + t_j$.
- Lateness: $\ell_j = \max \{ 0, f_j - d_j \}$.
- Goal: schedule all jobs to minimize maximum lateness $L = \max \ell_j$.

Ex:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$d_3 = 9$</th>
<th>$d_2 = 8$</th>
<th>$d_6 = 15$</th>
<th>$d_1 = 6$</th>
<th>$d_5 = 14$</th>
<th>$d_4 = 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

lateness = 0 lateness = 2 max lateness = 6
Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_j.

- [Earliest deadline first] Consider jobs in ascending order of deadline d_j.

- [Smallest slack] Consider jobs in ascending order of slack $d_j - t_j$.
Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_j.

\[
\begin{array}{c|c|c}
1 & 2 \\
\hline
\ell_j & 1 & 10 \\
\hline
d_j & 100 & 10 \\
\end{array}
\]

counterexample

- [Smallest slack] Consider jobs in ascending order of slack $d_j - t_j$.

\[
\begin{array}{c|c|c}
1 & 2 \\
\hline
\ell_j & 1 & 10 \\
\hline
d_j & 2 & 10 \\
\end{array}
\]

counterexample
Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_j.
- [Smallest slack] Consider jobs in ascending order of slack $d_j - t_j$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>d_j</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Which greedy algorithms outputs the optimal schedule (minimizes the maximum lateness)?

A. Smallest Slack
B. Shortest Processing Time First
C. Both
D. Neither
Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $d_1 = 6$
- $d_2 = 8$
- $d_3 = 9$
- $d_4 = 9$
- $d_5 = 14$
- $d_6 = 15$

Max lateness = 1

Sort n jobs by deadline so that $d_1 \leq d_2 \leq \ldots \leq d_n$

$t \leftarrow 0$

for $j = 1$ to n

- Assign job j to interval $[t, t + t_j]$
- $s_j \leftarrow t$
- $f_j \leftarrow t + t_j$
- $t \leftarrow t + t_j$

output intervals $[s_j, f_j]$
Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.
Minimizing Lateness: Inversions

Def. Given a schedule S, an **inversion** is a pair of jobs i and j such that: $i < j$ (i.e., $d_i < d_j$) but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Proof: If (i,j) be inversion minimizing number of intermediate jobs. Suppose for contradiction that some job k was scheduled between jobs i and j.

- **Case 1:** $d_k \leq d_i \implies (j,k)$ is inversion
- **Case 2:** $d_k > d_i \implies (i,k)$ is an inversion

Contradicts minimality of (i,j)
Minimizing Lateness: Inversions

Def. Given a schedule S, an **inversion** is a pair of jobs i and j such that: i < j but j scheduled before i.

Claim. Swapping two consecutive, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ' be it afterwards.

- ℓ'_k = ℓ_k for all k ≠ i, j
- ℓ'_i ≤ ℓ_i
- If job j is late:

\[
\begin{align*}
\ell'_j &= f'_j - d_j \quad \text{(definition)} \\
&= f_i - d_j \quad \text{ (j finishes at time } f_i) \\
&\leq f_i - d_i \quad \text{ (i < j)} \\
&\leq \ell_i \quad \text{(definition)}
\end{align*}
\]
Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. Define S^* to be an optimal schedule that has the fewest number of inversions, and let's see what happens.

- Can assume S^* has no idle time.
- If S^* has no inversions, then $S = S^*$.
- If S^* has an inversion, let $i-j$ be an adjacent inversion.
 - swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions
 - this contradicts definition of S^* □
Coin Changing

Greed is good. Greed is right. Greed works. Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.

- Gordon Gecko (Michael Douglas)
Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Ex: $2.89.
Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins.

Which (if any) of the following claims is not true?

A. The optimal solution uses at most 2 dimes
B. The optimal solution uses at most 1 nickel
C. The optimal solution uses at most 3 quarters
D. The optimal solution uses at most 4 pennies
E. All of the claims above are true
Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Sort coins denominations by value: $c_1 < c_2 < \ldots < c_n$.

coins selected
/
S ← φ
while (x ≠ 0) {
 let k be largest integer such that $c_k \leq x$
 if (k = 0)
 return "no solution found"
 x ← x - c_k
 S ← S ∪ {k}
}
return S

Q. Is cashier's algorithm optimal?
Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100.

Pf. (by induction on x)

- Consider optimal way to change \(c_k \leq x < c_{k+1} \): greedy takes coin \(k \).
- We claim that any optimal solution must also take coin \(k \).
 - if not, it needs enough coins of type \(c_1, \ldots, c_{k-1} \) to add up to \(x \)
 - table below indicates no optimal solution can do this
- Problem reduces to coin-changing \(x - c_k \) cents, which, by induction, is optimally solved by greedy algorithm.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(c_k)</th>
<th>All optimal solutions must satisfy</th>
<th>Max value of coins 1, 2, ..., (k-1) in any OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(P \leq 4)</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>(N \leq 1)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>(N + D \leq 2)</td>
<td>(4 + 5 = 9)</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>(Q \leq 3)</td>
<td>(20 + 4 = 24)</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>no limit</td>
<td>(75 + 24 = 99)</td>
</tr>
</tbody>
</table>
Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
- Greedy: 100, 34, 1, 1, 1, 1, 1.
- Optimal: 70, 70.