
1

Week 4.3, Friday, Sept 13

Homework 2 Due: September 16th, 2019 @ 11:59PM on Gradescope
September 16: Guest Lecture (Prof. Hambrusch)
Office Hours: Monday (9/16) at 2:30PM Friday (today) at 4:30 PM

 Must include collaborator/resource statement
 No credit for solutions that don’t include CR

statement
 Must type solutions (expectation to use math

notation 𝑛𝑛 vs n^(1/2))
 Only allowed to scan hand drawn graphs/diagrams
 No credit if the entire solution is a scan of your

handwritten homework
 Remember to select the appropriate pages for

each problem on Gradescope

Majority Element Problem

Input: Array A[1…n] of numbers (not sorted)
Output:

x ---- if x=A[i] for more than n/2 array elements
“N/A” ---- if no majority element exists

Example 1:
Input: A = [1 7 2 9 7 2 7]
Output: “N/A”

Example 2:
Input: A = [1 7 2 7 7 2 7]
Output: 7

Observation: If A does contain a majority element x then x=Median(A)

3

Correction: Sorted Majority problem

Suppose A is an array of size n containing increasingly sorted entries.
We can determine whether A has a majority element in what time (check
best bound)

A.O(1) Impossible
B.O(log n) Binary Search
C.O(log2 n)
D.O(n)
E.O(n log n)

Majority Element Problem

Input: Array A[1…n] of numbers (not sorted)
Output:

x ---- if x=A[i] for more than n/2 array elements
“N/A” ---- if no majority element exists

Solution 1: Sort array, find median x and binary search 𝑂𝑂 𝑛𝑛 log𝑛𝑛
• i := unique location s.t. A[i]≠ x but A[i+1]= x (first occurrence of x)
• j:= unique location s.t. A[j]≠ x but A[j-1]= x (last occurrence of x)
• Return

N/A 𝑗𝑗 − 𝑖𝑖 − 1 ≤
𝑛𝑛
2

𝒙𝒙 = 𝐴𝐴
𝑛𝑛
2 𝑗𝑗 − 𝑖𝑖 − 1 >

𝑛𝑛
2

Example:
Input: A = [1 2 7 7 7 7 8]
Output: 7

5

Median j-1i+1

Majority Element Problem

Input: Array A[1…n] of numbers (not sorted)
Output:

x ---- if x=A[i] for more than n/2 array elements
“N/A” ---- if no majority element exists

Solution 2: Find Median and Scan Array to Count Matches
• X= Median(A)
• Count = 0
• For i = 1 to n

• If X=A[i] then Count= Count + 1;
• Return

N/A 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 ≤
𝑛𝑛
2

𝒙𝒙 = 𝐴𝐴
𝑛𝑛
2 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 >

𝑛𝑛
2

Running time: O(n) + O(n) = O(n)

6

median

Scan array

7

Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

4.1 Interval Scheduling

9

Interval Scheduling

Interval scheduling.
 Job j starts at sj and finishes at fj.
 Two jobs compatible if they don't overlap.
 Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

10

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

 [Earliest start time] Consider jobs in ascending order of sj.

 [Earliest finish time] Consider jobs in ascending order of fj.

 [Shortest interval] Consider jobs in ascending order of fj - sj.

 [Fewest conflicts] For each job j, count the number of
conflicting jobs cj. Schedule in ascending order of cj.

11

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

C3=4C2=4C1=3 C4=3
C5=4
C8=4
C10=4

C7=4
C9=4
C11=4

C6=2
counterexample for fewest conflicts

Clicker Question

[Fewest conflicts] For each job j, count the number of
conflicting jobs cj. Schedule in ascending order of cj.

12

1.

2.

3.

Fewest conflicts fails to produce the
optimal solution on which of the
following inputs?

A. Inputs 1 and 2

B. Inputs 2 and 3

C. Succeeds on all inputs

D. Fails on all inputs

E. Input 1 only

Clicker Question

[Fewest conflicts] For each job j, count the number of
conflicting jobs cj. Schedule in ascending order of cj.

13

1.

2.

3.

Fewest conflicts fails to produce the
optimal solution on which of the
following inputs?

A. Inputs 1 and 2

B. Inputs 2 and 3

C. Succeeds on all inputs

D. Fails on all inputs

E. Input 1 only

14

Greedy algorithm. Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).
 Remember job j* that was added last to A.
 Job j is compatible with A if sj ≥ fj*.

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

A ← φ
for j = 1 to n {

if (job j compatible with A)
A ← A ∪ {j}

}
return A

set of jobs selected

Interval Scheduling: Greedy Algorithm

play

…

…

15

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i2 ir

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

…

… . . .ir+1

16

j1 j2 jr

i1 i2 ir ir+1

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

. . .

Greedy:

OPT:

solution still feasible and optimal,
but contradicts maximality of r.

ir+1

job ir+1 finishes before jr+1

4.2 Scheduling to Minimize Lateness

18

Scheduling to Minimizing Lateness

Minimizing lateness problem.
 Single resource processes one job at a time.
 Job j requires tj units of processing time and is due at time dj.
 If j starts at time sj, it finishes at time fj = sj + tj.
 Lateness: j = max { 0, fj - dj }.
 Goal: schedule all jobs to minimize maximum lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

19

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in ascending order
of processing time tj.

 [Earliest deadline first] Consider jobs in ascending order of
deadline dj.

 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

20

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in ascending order
of processing time tj.

 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

21

Greedy template. Consider jobs in some order.
 [Shortest processing time first] Consider jobs in ascending order of

processing time tj.
 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

Which greedy algorithms outputs the optimal schedule
(minimizes the maximum lateness)?

A. Smallest Slack B. Shortest Processing Time First

C. Both D. Neither

Clicker Question

dj

tj

2

9

1

10

5

2

22

23

Greedy template. Consider jobs in some order.
 [Shortest processing time first] Consider jobs in ascending order of

processing time tj.
 [Smallest slack] Consider jobs in ascending order of slack dj - tj.

Which greedy algorithms outputs the optimal schedule
(minimizes the maximum lateness)?

A. Smallest Slack B. Shortest Processing Time First

C. Both D. Neither

Clicker Question

dj

tj

2

9

1

10

5

2

	CS 381 – Fall 2019
	Homework 2 Reminders
	Majority Element Problem
	Correction: Sorted Majority problem
	Majority Element Problem
	Majority Element Problem
	Chapter 4��Greedy�Algorithms
	4.1 Interval Scheduling
	Interval Scheduling
	Interval Scheduling: Greedy Algorithms
	Interval Scheduling: Greedy Algorithms
	Clicker Question
	Clicker Question
	Interval Scheduling: Greedy Algorithm
	Interval Scheduling: Analysis
	Interval Scheduling: Analysis
	4.2 Scheduling to Minimize Lateness
	Scheduling to Minimizing Lateness
	Minimizing Lateness: Greedy Algorithms
	Minimizing Lateness: Greedy Algorithms
	Clicker Question
	Slide Number 22
	Clicker Question

