Week 4.2, Wed, Sept 11

Homework 2 Due: September 16th, 2019 @ 11:59PM on Gradescope
Homework 1: Graded (see Gradescope)
Maximum: 100
Mean: 89.2
Median: 92.5
Standard Deviation: 13.26

Regrade Requests?
Submit on Gradescope before Sept 24 (10PM)
Your score may go up or down
Appeal Result of Regrade Request?
 - Contact me directly
 - 2 point penalty/bonus depending on outcome
Homework 2 Reminders

- You must include a resource & collaborator statement (0 points without one).
- You **Must** Typeset Your Solutions
 - Photocopies of handwritten work will receive 0 points
 - Exception: You may include photocopies of diagrams, but the main solution should be typed.
 - Expectation to use mathematical symbols
 - Sum \((n^{(1/2)}+n^{(4n)})^2/2^n\) from \(n = 1\) to \(k\) versus

\[
\sum_{n=1}^{k} \frac{(\sqrt{n} + n^{4n})^2}{2^n}
\]
5.4 Closest Pair of Points
Closest Pair of Points in 1-Dimension

Input: Array $A[1...n]$ of numbers (not sorted)

Output: (i,j) minimizing $|A[i] - A[j]|$

Example:
- Input: $A = [-1, 7, 2, 9, 5, 1, 11]$
- Output: $(3, 6)$

Clicker Question: Suppose the array A is already sorted. How long does it take to find (i,j)? Find the tightest answer.

A. $O(1)$ B. $O(\log n)$ C. $O(n)$ D. $O(n \log n)$ E. $O(n^2)$
Closest Pair of Points in 1-Dimension

Input: Array $A[1...n]$ of numbers (not sorted)

Output: (i,j) minimizing $|A[i] - A[j]|$

Example:

- **Input:** $A = [-1, 7, 2, 9, 5, 1, 11]$
- **Output:** $(3,6)$

Easy Solution:

- **Observation:** if list is sorted can find optimal pair with $j=i+1$

1. Sort(A)
2. $\text{Min} = 0$
3. For $i = 1$ to $n-1$
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.

To make presentation cleaner
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.
Algorithm.

- **Divide:** draw vertical line \(L \) so that roughly \(\frac{1}{2} n \) points on each side.
Closest Pair of Points

Algorithm.

- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.

- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer**: find closest pair in each side recursively.
- **Combine**: find closest pair with one point in each side. ← seems like $\Theta(n^2)$
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.
- Observation: only need to consider points within δ of line L.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, **assuming that distance < δ.**

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

$\delta = \min(12, 21)$
Closest Pair of Points

Def. Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.

Pf.
- No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

Fact. Still true if we replace 12 with 7.
Final Merge Step

Precondition:

- Filtered Out points further than δ from separation line L
- Remaining points R sorted by y

For $i=1$ to $|R|$
 For $j=i+1$ to $i+11$
 $p_1 = R[i], p_2 = R[j]$
 oppositeSide = $(p_1.x < L \text{ and } p_2.x \geq L)$
 OR $(p_1.x > L \text{ and } p_2.x < L)$
 if oppositeSide and $\text{dist}(p_1,p_2) < \delta$ then
 $\delta = \text{dist}(p_1,p_2)$

Running Time: $O(n)$

Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than δ, update δ.
Closest Pair Algorithm

Closest-Pair(p₁, ..., pₙ) {
 Compute separation line L such that half the points are on one side and half on the other side.

 δ₁ = Closest-Pair(left half)
 δ₂ = Closest-Pair(right half)
 δ = min(δ₁, δ₂)

 Delete all points further than δ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than δ, update δ.

 return δ.
}

O(n log n)
2T(n / 2)
O(n)
O(n log n)
O(n)
Closest Pair of Points

Recurrence of DQ algorithm

\[T(n) \leq 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n) \]

Use a generalization of case 2 in Master theorem

\[f(n) = \Theta(n^{\log a} \lg^k n) \text{ for some constant } k \geq 0. \]

\[\cdot f(n) \text{ and } n^{\log a} \text{ grow at similar rates.} \]

Solution: \(T(n) = \Theta(n^{\log a} \lg^{k+1} n) \).

How do we achieve \(O(n \log n) \)? We will just give an outline, look at the book for details.
Solution (Idea)

- Use linear time median finding algorithm to determine line L and make the two recursive calls.

- Each recursive call returns its δ and the points in its region sorted by y coordinates.

- Merge: Sort y-lists by merging two returned sorted lists in time $O(n)$. Same as mergesort!

Terminate recursion when $n<4$ or some other small constant and solve the resulting small problem by brute force.

$T(n) \leq 2T(n/2) + O(n) \implies T(n) = O(n \log n)$
Closest Pair Algorithm

Closest-Pair-And-Sort \((p_1, \ldots, p_n)\) {

Compute separation line \(L\) such that half the points are on one side and half on the other side.

\[(\delta_1, S_1) = \text{Closest-Pair-And-Sort(left half)} \quad \text{//sort by y}\]
\[(\delta_2, S_2) = \text{Closest-Pair-And-Sort(right half)} \quad \text{//sort by y}\]
\[
\delta = \min(\delta_1, \delta_2)
\]

\(S = \text{Merge}(S_1, S_2)\)
\(S' = \text{Filter}(L, \delta, S)\)

Delete all points further than \(\delta\) from separation line \(L\)

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than \(\delta\), update \(\delta\).

return \((\delta, S)\).
}
Majority Element Problem

Input: Array $A[1...n]$ of numbers (not sorted)

Output:
- x ---- if $x=A[i]$ for more than $n/2$ array elements
- “N/A” ---- if no majority element exists

Example 1:
- Input: $A = [1 \ 7 \ 2 \ 9 \ 7 \ 2 \ 7]$
- Output: “N/A”

Example 2:
- Input: $A = [1 \ 7 \ 2 \ 7 \ 7 \ 2 \ 7]$
- Output: 7

Observation: If A does contain a majority element x then $x=\text{Median}(A)$
Clicker Question: Sorted Majority problem

Suppose A is an array of size n containing increasingly sorted entries. We can determine whether A has a majority element in what time (check best bound)

A. $O(1)$
B. $O(\log n)$
C. $O(\log^2 n)$
D. $O(n)$
E. $O(n \log n)$
Clicker Question: Sorted Majority problem

Suppose A is an array of size n containing increasingly sorted entries. We can determine whether A has a majority element in what time (check best bound)

A. $O(1)$
B. $O(\log n)$
C. $O(\log^2 n)$
D. $O(n)$
E. $O(n \log n)$
Majority Element Problem

Input: Array A[1...n] of numbers (not sorted)
Output:
 x ---- if x=A[i] for more than n/2 array elements
 "N/A" ---- if no majority element exists

Solution 1: Sort array, find median and binary search \(O(n \log n)\)
 i := location of greatest element smaller than median x
 j:= location of smallest element greater than median x
 Return
 \[
 \begin{cases}
 N/A & j - i - 1 \leq \frac{n}{2} \\
 x = A\left[\left\lceil \frac{n}{2} \right\rceil \right] & j - i - 1 > \frac{n}{2}
 \end{cases}
 \]

Example:
Input: A = [1 2 7 7 7 7 8]
Output: 7
 i+1 Median j-1
Majority Element Problem

Input: Array $A[1...n]$ of numbers (not sorted)

Output:
- x ----- if $x=A[i]$ for more than $n/2$ array elements
- “N/A” ----- if no majority element exists

Solution 2: Find Median and Scan Array to Count Matches

1. $X = \text{Median}(A)$
2. $\text{Count} = 0$
3. For $i = 1$ to n
 - If $X = A[i]$ then $\text{Count} = \text{Count} + 1$;
4. Return
 \[
 \begin{cases}
 \text{N/A} & \text{count} \leq \frac{n}{2} \\
 x = A\left[\left\lceil\frac{m}{2}\right\rceil\right] & \text{count} > \frac{n}{2}
 \end{cases}
 \]

Running time: $O(n)$