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Week 4.2,  Wed, Sept 11

Homework 2 Due: September 16th, 2019 @ 11:59PM on Gradescope
Homework 1: Graded (see Gradescope)



 Maximum: 100
 Mean: 89.2
 Median: 92.5
 Standard Deviation: 13.26

Regrade Requests?
 Submit on Gradescope before Sept 24 (10PM)
 Your score may go up or down
 Appeal Result of Regrade Request?

 Contact me directly
 2 point penalty/bonus depending on outcome



 You must include a resource & collaborator 
statement (0 points without one).

 You Must Typeset Your Solutions
 Photocopies of handwritten work will receive 0 

points
 Exception: You may include photocopies of 

diagrams, but the main solution should be typed.
 Expectation to use mathematical symbols
 Sum (n^(1/2)+n^(4n))^2/2^n from n =1 to k versus

�
𝑛𝑛=1

𝑘𝑘 𝑛𝑛 + 𝑛𝑛4𝑛𝑛 2

2𝑛𝑛



5.4  Closest Pair of Points



Closest Pair of Points in 1-Dimension

Input: Array A[1…n] of numbers (not sorted)
Output: (i.j) minimizing 𝑨𝑨 𝒊𝒊 − 𝑨𝑨[𝒋𝒋]

Example: 
Input:    A =  [ -1 7 2 9 5  1 11] 
Output: (3,6) 

𝑨𝑨 𝟑𝟑 − 𝑨𝑨[𝟔𝟔] = 𝟐𝟐 − 𝟏𝟏 = 𝟏𝟏

Clicker Question: Suppose the array A is already sorted. How long 
does it take to find (i,j)? Find the tightest answer.

A. O(1)    B. O( log n)    C. O(n) D. O(n log n)    E.  O(n2) 
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Closest Pair of Points in 1-Dimension

Input: Array A[1…n] of numbers (not sorted)
Output: (i.j) minimizing 𝑨𝑨 𝒊𝒊 − 𝑨𝑨[𝒋𝒋]

Example: 
Input:    A =  [ -1 7 2 9 5  1 11] 
Output: (3,6) 

𝑨𝑨 𝟑𝟑 − 𝑨𝑨[𝟔𝟔] = 𝟐𝟐 − 𝟏𝟏 = 𝟏𝟏

Easy Solution: 
• Observation: if list is sorted can find optimal pair with j=i+1
1. Sort(A)
2. Min = 0
3. For i = 1 to n-1
4. If Min > |A[i]-A[i+1]| then Min = |A[i]-A[i+1]| ;
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Brute force.  Check all pairs of points p and q with Θ(n2) 
comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.
 Combine:  find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like Θ(n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j| ≥ 12, then the distance between
si and sj is at least δ.
Pf.
 No two points lie in same ½δ-by-½δ box.
 Two points at least 2 rows apart

have distance ≥ 2(½δ).   ▪

δ

27

29 30

31

28

26

25

δ

½δ

2 rows
½δ

½δ

39

i

j

Fact.  Still true if we replace 12 with 7.



Final Merge Step

Precondition: 
• Filtered Out points further than δ from separation line L
• Remaining points R sorted by y 

For i=1 to |R|
For j=i+1 to i+11

p1 = R[i],  p2 = R[j]
oppositeSide = (p1.x < L and p2.x >= L) 

OR (p1.x > L and p2.x < L)
if oppositeSide and dist(p1,p2) < δ then

δ= dist(p1,p2)

Running Time: O(n)

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than δ, update δ.
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

δ1 = Closest-Pair(left half)
δ2 = Closest-Pair(right half)
δ = min(δ1, δ2)

Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than δ, update δ.

return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points

Recurrence of DQ algorithm

Use a generalization of case 2 in Master theorem

f (n) = Θ(nlogba lgkn) for some constant k ≥0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n).

How do we achieve O(n log n)? We will just 
give an outline, look at the book for details.

  

 

T(n) ≤ 2T n /2( ) + O(n log n) ⇒ T(n)  =  O(n log2 n)
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Solution (Idea)

 Use linear time median finding algorithm to 
determine line L and make the two recursive 
calls. 

 Each recursive call returns its δ and the points 
in its region sorted by y coordinates.

 Merge: Sort y-lists by merging two returned 
sorted lists in time O(n). Same as mergesort!

Terminate recursion when n<4 or some other 
small constant and solve the resulting small 
problem by brute force.

  

 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n log n)
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Closest Pair Algorithm

Closest-Pair-And-Sort (p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

(δ1,S1) = Closest-Pair-And-Sort(left half) //sort by y
(δ2,S2) = Closest-Pair-And-Sort(right half)  //sort by y

δ = min(δ1, δ2)

S = Merge(S1,S2)
S’= Filter(L,δ, S)
Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than δ, update δ.

return (δ,S).
}

O(n)

2T(n / 2)

O(n)

O(n log n)

O(n)



Majority Element Problem

Input: Array A[1…n] of numbers (not sorted)
Output: 

x      ---- if x=A[i] for more than n/2 array elements  
“N/A”  ---- if no majority element exists

Example 1: 
Input:    A =  [ 1  7 2 9 7  2  7] 
Output: “N/A”

Example 2: 
Input:    A =  [ 1  7 2 7 7  2 7] 
Output: 7

Observation: If A does contain a majority element x then x=Median(A)

25



Clicker Question: Sorted Majority problem

Suppose A is an array of size n containing increasingly sorted entries.
We can determine whether A has a majority element in what time (check 
best bound)

A.O(1)
B.O(log n)
C.O(log2 n)
D.O(n)
E.O(n log n)



Clicker Question: Sorted Majority problem

Suppose A is an array of size n containing increasingly sorted entries.
We can determine whether A has a majority element in what time (check 
best bound)

A.O(1)
B.O(log n)
C.O(log2 n)
D.O(n)
E.O(n log n)



Majority Element Problem

Input: Array A[1…n] of numbers (not sorted)
Output: 

x      ---- if x=A[i] for more than n/2 array elements  
“N/A”  ---- if no majority element exists

Solution 1: Sort array, find median and binary search 𝑂𝑂 𝑛𝑛 log𝑛𝑛
• i := location of greatest element smaller than median x
• j:= location of smallest element greater than median x
• Return

N/A 𝑗𝑗 − 𝑖𝑖 − 1 ≤
𝑛𝑛
2

𝒙𝒙 = 𝐴𝐴
𝑛𝑛
2 𝑗𝑗 − 𝑖𝑖 − 1 >

𝑛𝑛
2

Example: 
Input:    A =  [ 1 2 7 7 7  7 8] 
Output:  7

28

Median j-1i+1



Majority Element Problem

Input: Array A[1…n] of numbers (not sorted)
Output: 

x      ---- if x=A[i] for more than n/2 array elements  
“N/A”  ---- if no majority element exists

Solution 2: Find Median and Scan Array to Count Matches
• X= Median(A)
• Count = 0
• For i = 1 to n

• If X=A[i] then Count= Count + 1;
• Return

N/A 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤
𝑛𝑛
2

𝒙𝒙 = 𝐴𝐴
𝑛𝑛
2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 >

𝑛𝑛
2

Running time: O(n)
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