
1

Week 4.2,  Wed, Sept 11

Homework 2 Due: September 16th, 2019 @ 11:59PM on Gradescope
Homework 1: Graded (see Gradescope)



 Maximum: 100
 Mean: 89.2
 Median: 92.5
 Standard Deviation: 13.26

Regrade Requests?
 Submit on Gradescope before Sept 24 (10PM)
 Your score may go up or down
 Appeal Result of Regrade Request?

 Contact me directly
 2 point penalty/bonus depending on outcome



 You must include a resource & collaborator 
statement (0 points without one).

 You Must Typeset Your Solutions
 Photocopies of handwritten work will receive 0 

points
 Exception: You may include photocopies of 

diagrams, but the main solution should be typed.
 Expectation to use mathematical symbols
 Sum (n^(1/2)+n^(4n))^2/2^n from n =1 to k versus

�
𝑛𝑛=1

𝑘𝑘 𝑛𝑛 + 𝑛𝑛4𝑛𝑛 2

2𝑛𝑛



5.4  Closest Pair of Points



Closest Pair of Points in 1-Dimension

Input: Array A[1…n] of numbers (not sorted)
Output: (i.j) minimizing 𝑨𝑨 𝒊𝒊 − 𝑨𝑨[𝒋𝒋]

Example: 
Input:    A =  [ -1 7 2 9 5  1 11] 
Output: (3,6) 

𝑨𝑨 𝟑𝟑 − 𝑨𝑨[𝟔𝟔] = 𝟐𝟐 − 𝟏𝟏 = 𝟏𝟏

Clicker Question: Suppose the array A is already sorted. How long 
does it take to find (i,j)? Find the tightest answer.

A. O(1)    B. O( log n)    C. O(n) D. O(n log n)    E.  O(n2) 

5



6



Closest Pair of Points in 1-Dimension

Input: Array A[1…n] of numbers (not sorted)
Output: (i.j) minimizing 𝑨𝑨 𝒊𝒊 − 𝑨𝑨[𝒋𝒋]

Example: 
Input:    A =  [ -1 7 2 9 5  1 11] 
Output: (3,6) 

𝑨𝑨 𝟑𝟑 − 𝑨𝑨[𝟔𝟔] = 𝟐𝟐 − 𝟏𝟏 = 𝟏𝟏

Easy Solution: 
• Observation: if list is sorted can find optimal pair with j=i+1
1. Sort(A)
2. Min = 0
3. For i = 1 to n-1
4. If Min > |A[i]-A[i+1]| then Min = |A[i]-A[i+1]| ;

7



8

Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Brute force.  Check all pairs of points p and q with Θ(n2) 
comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.



9

Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L



10

Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L



11

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.

L



12

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.

12

21

L



13

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.
 Combine:  find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like Θ(n2) 



14

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L



15

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)



16

12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)



17

12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)



18

Closest Pair of Points

Def.  Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j| ≥ 12, then the distance between
si and sj is at least δ.
Pf.
 No two points lie in same ½δ-by-½δ box.
 Two points at least 2 rows apart

have distance ≥ 2(½δ).   ▪

δ

27

29 30

31

28

26

25

δ

½δ

2 rows
½δ

½δ

39

i

j

Fact.  Still true if we replace 12 with 7.



Final Merge Step

Precondition: 
• Filtered Out points further than δ from separation line L
• Remaining points R sorted by y 

For i=1 to |R|
For j=i+1 to i+11

p1 = R[i],  p2 = R[j]
oppositeSide = (p1.x < L and p2.x >= L) 

OR (p1.x > L and p2.x < L)
if oppositeSide and dist(p1,p2) < δ then

δ= dist(p1,p2)

Running Time: O(n)

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than δ, update δ.

19



20

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

δ1 = Closest-Pair(left half)
δ2 = Closest-Pair(right half)
δ = min(δ1, δ2)

Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than δ, update δ.

return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)



21

Closest Pair of Points

Recurrence of DQ algorithm

Use a generalization of case 2 in Master theorem

f (n) = Θ(nlogba lgkn) for some constant k ≥0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n).

How do we achieve O(n log n)? We will just 
give an outline, look at the book for details.

  

 

T(n) ≤ 2T n /2( ) + O(n log n) ⇒ T(n)  =  O(n log2 n)



22

Solution (Idea)

 Use linear time median finding algorithm to 
determine line L and make the two recursive 
calls. 

 Each recursive call returns its δ and the points 
in its region sorted by y coordinates.

 Merge: Sort y-lists by merging two returned 
sorted lists in time O(n). Same as mergesort!

Terminate recursion when n<4 or some other 
small constant and solve the resulting small 
problem by brute force.

  

 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n log n)



23

Closest Pair Algorithm

Closest-Pair-And-Sort (p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

(δ1,S1) = Closest-Pair-And-Sort(left half) //sort by y
(δ2,S2) = Closest-Pair-And-Sort(right half)  //sort by y

δ = min(δ1, δ2)

S = Merge(S1,S2)
S’= Filter(L,δ, S)
Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than δ, update δ.

return (δ,S).
}

O(n)

2T(n / 2)

O(n)

O(n log n)

O(n)



Majority Element Problem

Input: Array A[1…n] of numbers (not sorted)
Output: 

x      ---- if x=A[i] for more than n/2 array elements  
“N/A”  ---- if no majority element exists

Example 1: 
Input:    A =  [ 1  7 2 9 7  2  7] 
Output: “N/A”

Example 2: 
Input:    A =  [ 1  7 2 7 7  2 7] 
Output: 7

Observation: If A does contain a majority element x then x=Median(A)

25



Clicker Question: Sorted Majority problem

Suppose A is an array of size n containing increasingly sorted entries.
We can determine whether A has a majority element in what time (check 
best bound)

A.O(1)
B.O(log n)
C.O(log2 n)
D.O(n)
E.O(n log n)



Clicker Question: Sorted Majority problem

Suppose A is an array of size n containing increasingly sorted entries.
We can determine whether A has a majority element in what time (check 
best bound)

A.O(1)
B.O(log n)
C.O(log2 n)
D.O(n)
E.O(n log n)



Majority Element Problem

Input: Array A[1…n] of numbers (not sorted)
Output: 

x      ---- if x=A[i] for more than n/2 array elements  
“N/A”  ---- if no majority element exists

Solution 1: Sort array, find median and binary search 𝑂𝑂 𝑛𝑛 log𝑛𝑛
• i := location of greatest element smaller than median x
• j:= location of smallest element greater than median x
• Return

N/A 𝑗𝑗 − 𝑖𝑖 − 1 ≤
𝑛𝑛
2

𝒙𝒙 = 𝐴𝐴
𝑛𝑛
2 𝑗𝑗 − 𝑖𝑖 − 1 >

𝑛𝑛
2

Example: 
Input:    A =  [ 1 2 7 7 7  7 8] 
Output:  7

28

Median j-1i+1



Majority Element Problem

Input: Array A[1…n] of numbers (not sorted)
Output: 

x      ---- if x=A[i] for more than n/2 array elements  
“N/A”  ---- if no majority element exists

Solution 2: Find Median and Scan Array to Count Matches
• X= Median(A)
• Count = 0
• For i = 1 to n

• If X=A[i] then Count= Count + 1;
• Return

N/A 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 ≤
𝑛𝑛
2

𝒙𝒙 = 𝐴𝐴
𝑛𝑛
2 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 >

𝑛𝑛
2

Running time: O(n)

29


	CS 381 – Fall 2019
	Homework 1
	Homework 2 Reminders
	5.4  Closest Pair of Points
	Closest Pair of Points in 1-Dimension
	Slide Number 6
	Closest Pair of Points in 1-Dimension
	Closest Pair of Points
	Closest Pair of Points:  First Attempt
	Closest Pair of Points:  First Attempt
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Final Merge Step
	Closest Pair Algorithm
	Closest Pair of Points
	Slide Number 22
	Closest Pair Algorithm
	Majority Element Problem
	Clicker Question: Sorted Majority problem
	Clicker Question: Sorted Majority problem
	Majority Element Problem
	Majority Element Problem

