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Week 4.1,  Monday, Sept 9

Homework 2 Due: September 16th, 2019 @ 11:59PM on Gradescope



5.5  Integer Multiplication

Slides: Kevin Wayne
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Motivation: Complex Multiplication

Complex multiplication.  (a + bi) (c + di) = x + yi.

Grade-school.  x = ac - bd,  y = bc + ad.

Q.  Is it possible to do with fewer multiplications?

4 multiplications, 2 additions

Our Prices Are Fantastic! 
Multiplication: $100 (reals only ℝ)
Addition:         $1     (reals only ℝ) 

$402 for Grade-School Approach: 4 
multiplications, 2 additions 
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Complex Multiplication

Complex multiplication.  (a + bi) (c + di) = x + yi.

Grade-school.  x = ac - bd,  y = bc + ad.

Q.  Is it possible to do with fewer multiplications?
Yes.  [Gauss] x = ac - bd,  y = (a + b) (c + d) - ac - bd.

(y= ac + ad + bc + bd - ac – bd = bc + ad)

Remark.  Improvement if no hardware multiply.

4 multiplications, 2 additions

3 multiplications, 5 additions ($305)

1 2 3 1 2



Clicker Question

𝒙𝒙 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟎𝟎
Suppose we have computed 𝑥𝑥0𝑦𝑦0 and 𝑥𝑥1𝑦𝑦1 how can we 
compute 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 with only one additional 
multiplication (and O(1) addition/subtraction operations)?

A. Impossible! Two multiplications are necessary
B. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑥𝑥1 𝑦𝑦0 + 𝑦𝑦1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1
C. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑦𝑦1 𝑦𝑦0 + 𝑥𝑥1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1
D. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑦𝑦0 𝑦𝑦1 + 𝑥𝑥1 − 𝑥𝑥1𝑦𝑦0 − 𝑥𝑥0𝑦𝑦1
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Clicker Question

𝒙𝒙 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟎𝟎
Suppose we have computed 𝑥𝑥0𝑦𝑦0 and 𝑥𝑥1𝑦𝑦1 how can we 
compute 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 with only one additional 
multiplication (and O(1) addition/subtraction operations)?

A. Impossible! Two multiplications are necessary
B. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑥𝑥1 𝑦𝑦0 + 𝑦𝑦1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1
C. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑦𝑦1 𝑦𝑦0 + 𝑥𝑥1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1
D. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑦𝑦0 𝑦𝑦1 + 𝑥𝑥1 − 𝑥𝑥1𝑦𝑦0 − 𝑥𝑥0𝑦𝑦1
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Addition.  Given two n-bit integers x and y, compute x + y.
Grade-school.  Θ(n) bit operations.

Remark.  Grade-school addition algorithm is optimal.

Integer Addition

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111



8

Integer Multiplication

Multiplication. Given two n-bit integers x and y, compute x × y.
Grade-school.  Θ(n2) bit operations.

Q.  Is grade-school multiplication algorithm optimal?

1

1

1

0

0

0

1

1

1

0

1

0

1

1

1

0

1

0

1

1

1

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

100000000001011

0

1

1

1

1

1

0

0

×
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To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝒙𝒙 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎
𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟎𝟎
𝒙𝒙𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎 2𝑛𝑛/2 � 𝑦𝑦1 + 𝑦𝑦0

= 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0𝑦𝑦1 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦0

Ex.

Divide-and-Conquer Multiplication:  Warmup



 

T (n)  =  4T n /2( )
recursive calls
 

 +  Θ(n)
add, shift


 ⇒  T (n) = Θ(n2 )

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4
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To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝒙𝒙 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎
𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟎𝟎
𝒙𝒙𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎 2𝑛𝑛/2 � 𝑦𝑦1 + 𝑦𝑦0

= 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0𝑦𝑦1 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦0

Ex.

Divide-and-Conquer Multiplication:  Warmup



 

T (n)  =  4T n /2( )
recursive calls
 

 +  Θ(n)
add, shift


 ⇒  T (n) = Θ(n2 )

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4

Bit Shifts: O(n)  cheap

Master’s Theorem: a = 4, b=2, c=1   𝑎𝑎
𝑏𝑏𝑐𝑐

> 1, 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎 = 𝑂𝑂 𝑛𝑛2
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To multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

𝑇𝑇 𝑛𝑛 = 3𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Karatsuba Multiplication

𝑥𝑥 = 2𝑛𝑛/2 � 𝑥𝑥1 + 𝑥𝑥0
𝑦𝑦 = 2𝑛𝑛/2 � 𝑦𝑦1 + 𝑦𝑦0

𝑥𝑥𝑥𝑥 = 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0𝑦𝑦1 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦0

= 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0 + 𝑥𝑥1 𝑦𝑦0 + 𝑦𝑦1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1 + 𝑥𝑥0𝑦𝑦0

1 2 1 33

Recursive calls
(1), (2) and (3)

Add, Shift, 
Subtract
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The running time of Karatsuba is:

A. Θ(𝑛𝑛 log𝑛𝑛)

B. Θ 𝑛𝑛log3 2

C. Θ(𝑛𝑛2)

D. Θ 𝑛𝑛log2 3

E. Θ 𝑛𝑛!

𝑇𝑇 𝑛𝑛 = 3𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Clicker Question: Karatsuba Multiplication

Recursive calls
(1), (2) and (3)

Add, Shift, 
Subtract
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The running time of Karatsuba is:

A. Θ(𝑛𝑛 log𝑛𝑛)

B. Θ 𝑛𝑛log3 2

C. Θ(𝑛𝑛2)

D. 𝜣𝜣 𝒏𝒏𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐 𝟑𝟑

E. Θ 𝑛𝑛!

𝑇𝑇 𝑛𝑛 = 3𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Clicker Question: Karatsuba Multiplication

Recursive calls
(1), (2) and (3)

Add, Shift, 
Subtract
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To multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

Theorem.  [Karatsuba-Ofman 1962]  Can multiply two n-bit integers
in O(n1.585) bit operations.

Karatsuba Multiplication

 ( )  ( )  ( )   )()(2/12/2/)(
shiftsubtract, add,calls recursive

nTnnTnTnTnT ⇒Θ++++≤
  

𝑥𝑥 = 2𝑛𝑛/2 � 𝑥𝑥1 + 𝑥𝑥0
𝑦𝑦 = 2𝑛𝑛/2 � 𝑦𝑦1 + 𝑦𝑦0

𝑥𝑥𝑥𝑥 = 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0𝑦𝑦1 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦0

= 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0 + 𝑥𝑥1 𝑦𝑦0 + 𝑦𝑦1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1 + 𝑥𝑥0𝑦𝑦0

1 2 1 33

Master’s Theorem: a = 3, b=2, c=1   𝑎𝑎
𝑏𝑏𝑐𝑐

> 1 ⇒ 𝑇𝑇 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎

[log2 3 < 1.585]



Toom-3 Generalization

𝑎𝑎 = 22𝑛𝑛/3 � 𝑎𝑎2 + 2
𝑛𝑛
3 � 𝑎𝑎1 + 𝑎𝑎0

𝑏𝑏 = 22𝑛𝑛/3 � 𝑏𝑏2 + 2
𝑛𝑛
3 � 𝑏𝑏1 + 𝑏𝑏0

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

𝑇𝑇 𝑛𝑛 = 5 � 𝑇𝑇
𝑛𝑛
3

+ 𝑂𝑂(𝑛𝑛) ⇒ 𝑇𝑇 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛log3 5

Toom-Cook Generalization (split into k parts): merge w/ (2k-1) mults

𝑎𝑎 = 2
𝑛𝑛(𝑘𝑘−1)

𝑘𝑘 � 𝑎𝑎𝑘𝑘−1 + ⋯+ 2
𝑛𝑛
𝑘𝑘 � 𝑎𝑎1 + 𝑎𝑎0

𝑏𝑏 = 2
𝑛𝑛(𝑘𝑘−1)

𝑘𝑘 � 𝑎𝑎𝑘𝑘 + ⋯+ 2
𝑛𝑛
𝑘𝑘 � 𝑎𝑎1 + 𝑎𝑎0

𝑇𝑇𝑘𝑘 𝑛𝑛 = 2𝑘𝑘 − 1 � 𝑇𝑇𝑘𝑘
𝑛𝑛
𝑘𝑘 + 𝑂𝑂 𝑛𝑛 ⇒ 𝑇𝑇𝑘𝑘 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛log𝑘𝑘 2𝑘𝑘−1

15

1.465 ≈ log3 5 < log2 3 ≈ 1.585

lim
𝑘𝑘→∞

log𝑘𝑘 2𝑘𝑘 − 1 = 1

Split into 3 parts

∀𝜀𝜀 > 0∃𝑘𝑘 s.t 𝑇𝑇𝑘𝑘 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛1+𝜀𝜀



Toom-3 Generalization

𝑎𝑎 = 22𝑛𝑛/3 � 𝑎𝑎2 + 2
𝑛𝑛
3 � 𝑎𝑎1 + 𝑎𝑎0

𝑏𝑏 = 22𝑛𝑛/3 � 𝑏𝑏2 + 2
𝑛𝑛
3 � 𝑏𝑏1 + 𝑏𝑏0

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

𝑇𝑇 𝑛𝑛 = 5 � 𝑇𝑇
𝑛𝑛
3

+ 𝑂𝑂(𝑛𝑛) ⇒ 𝑇𝑇 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛log3 5

Schönhage–Strassen algorithm
𝑇𝑇 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛 log𝑛𝑛 log log𝑛𝑛

Only used for really big numbers: a > 2215

State of the Art: 𝑂𝑂 𝑛𝑛 log𝑛𝑛 𝑔𝑔(𝑛𝑛) for increasing small
𝑔𝑔(𝑛𝑛) ≪ log log𝑛𝑛

16

≈ 1.465

Split into 3 parts

https://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm


5.4  Closest Pair of Points
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Brute force.  Check all pairs of points p and q with Θ(n2) 
comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L



21

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.
 Combine:  find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like Θ(n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)
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12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)
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12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation:  only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j| ≥ 12, then the distance between
si and sj is at least δ.
Pf.
 No two points lie in same ½δ-by-½δ box.
 Two points at least 2 rows apart

have distance ≥ 2(½δ).   ▪

δ

27

29 30

31

28

26

25

δ

½δ

2 rows
½δ

½δ

39

i

j

Fact.  Still true if we replace 12 with 7.
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

δ1 = Closest-Pair(left half)
δ2 = Closest-Pair(right half)
δ = min(δ1, δ2)

Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than δ, update δ.

return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points

Recurrence of DQ algorithm

Use a generalization of case 2 in Master theorem

f (n) = Θ(nlogba lgkn) for some constant k ≥0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n).

How do we achieve O(n log n)? We will just 
give an outline, look at the book for details.

  

 

T(n) ≤ 2T n /2( ) + O(n log n) ⇒ T(n)  =  O(n log2 n)
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Solution (Idea)

 Use linear time median finding algorithm to 
determine line L and make the two recursive 
calls. 

 Each recursive call returns its δ and the points 
in its region sorted by y coordinates.

 Merge: Sort y-lists by merging two returned 
sorted lists in time O(n). Same as mergesort!

Terminate recursion when n<4 or some other 
small constant and solve the resulting small 
problem by brute force.

  

 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n log n)
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