
1

Week 4.1, Monday, Sept 9

Homework 2 Due: September 16th, 2019 @ 11:59PM on Gradescope

5.5 Integer Multiplication

Slides: Kevin Wayne

3

Motivation: Complex Multiplication

Complex multiplication. (a + bi) (c + di) = x + yi.

Grade-school. x = ac - bd, y = bc + ad.

Q. Is it possible to do with fewer multiplications?

4 multiplications, 2 additions

Our Prices Are Fantastic!
Multiplication: $100 (reals only ℝ)
Addition: $1 (reals only ℝ)

$402 for Grade-School Approach: 4
multiplications, 2 additions

4

Complex Multiplication

Complex multiplication. (a + bi) (c + di) = x + yi.

Grade-school. x = ac - bd, y = bc + ad.

Q. Is it possible to do with fewer multiplications?
Yes. [Gauss] x = ac - bd, y = (a + b) (c + d) - ac - bd.

(y= ac + ad + bc + bd - ac – bd = bc + ad)

Remark. Improvement if no hardware multiply.

4 multiplications, 2 additions

3 multiplications, 5 additions ($305)

1 2 3 1 2

Clicker Question

𝒙𝒙 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟎𝟎
Suppose we have computed 𝑥𝑥0𝑦𝑦0 and 𝑥𝑥1𝑦𝑦1 how can we
compute 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 with only one additional
multiplication (and O(1) addition/subtraction operations)?

A. Impossible! Two multiplications are necessary
B. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑥𝑥1 𝑦𝑦0 + 𝑦𝑦1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1
C. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑦𝑦1 𝑦𝑦0 + 𝑥𝑥1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1
D. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑦𝑦0 𝑦𝑦1 + 𝑥𝑥1 − 𝑥𝑥1𝑦𝑦0 − 𝑥𝑥0𝑦𝑦1

5

Clicker Question

𝒙𝒙 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟎𝟎
Suppose we have computed 𝑥𝑥0𝑦𝑦0 and 𝑥𝑥1𝑦𝑦1 how can we
compute 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 with only one additional
multiplication (and O(1) addition/subtraction operations)?

A. Impossible! Two multiplications are necessary
B. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑥𝑥1 𝑦𝑦0 + 𝑦𝑦1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1
C. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑦𝑦1 𝑦𝑦0 + 𝑥𝑥1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1
D. 𝒙𝒙𝟎𝟎𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟏𝟏𝒚𝒚𝟎𝟎 = 𝑥𝑥0 + 𝑦𝑦0 𝑦𝑦1 + 𝑥𝑥1 − 𝑥𝑥1𝑦𝑦0 − 𝑥𝑥0𝑦𝑦1

6

7

Addition. Given two n-bit integers x and y, compute x + y.
Grade-school. Θ(n) bit operations.

Remark. Grade-school addition algorithm is optimal.

Integer Addition

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

8

Integer Multiplication

Multiplication. Given two n-bit integers x and y, compute x × y.
Grade-school. Θ(n2) bit operations.

Q. Is grade-school multiplication algorithm optimal?

1

1

1

0

0

0

1

1

1

0

1

0

1

1

1

0

1

0

1

1

1

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

100000000001011

0

1

1

1

1

1

0

0

×

9

To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝒙𝒙 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎
𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟎𝟎
𝒙𝒙𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎 2𝑛𝑛/2 � 𝑦𝑦1 + 𝑦𝑦0

= 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0𝑦𝑦1 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦0

Ex.

Divide-and-Conquer Multiplication: Warmup

T (n) = 4T n /2()
recursive calls

 + Θ(n)
add, shift

 ⇒ T (n) = Θ(n2)

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4

10

To multiply two n-bit integers x and y:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

𝒙𝒙 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎
𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟎𝟎
𝒙𝒙𝒚𝒚 = 𝟐𝟐𝒏𝒏/𝟐𝟐 � 𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟎𝟎 2𝑛𝑛/2 � 𝑦𝑦1 + 𝑦𝑦0

= 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0𝑦𝑦1 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦0

Ex.

Divide-and-Conquer Multiplication: Warmup

T (n) = 4T n /2()
recursive calls

 + Θ(n)
add, shift

 ⇒ T (n) = Θ(n2)

x = 10001101 y = 11100001

x1 x0 y1 y0

1 2 3 4

Bit Shifts: O(n) cheap

Master’s Theorem: a = 4, b=2, c=1 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1, 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎 = 𝑂𝑂 𝑛𝑛2

11

To multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

𝑇𝑇 𝑛𝑛 = 3𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Karatsuba Multiplication

𝑥𝑥 = 2𝑛𝑛/2 � 𝑥𝑥1 + 𝑥𝑥0
𝑦𝑦 = 2𝑛𝑛/2 � 𝑦𝑦1 + 𝑦𝑦0

𝑥𝑥𝑦𝑦 = 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0𝑦𝑦1 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦0

= 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0 + 𝑥𝑥1 𝑦𝑦0 + 𝑦𝑦1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1 + 𝑥𝑥0𝑦𝑦0

1 2 1 33

Recursive calls
(1), (2) and (3)

Add, Shift,
Subtract

12

The running time of Karatsuba is:

A. Θ(𝑛𝑛 log𝑛𝑛)

B. Θ 𝑛𝑛log3 2

C. Θ(𝑛𝑛2)

D. Θ 𝑛𝑛log2 3

E. Θ 𝑛𝑛!

𝑇𝑇 𝑛𝑛 = 3𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Clicker Question: Karatsuba Multiplication

Recursive calls
(1), (2) and (3)

Add, Shift,
Subtract

13

The running time of Karatsuba is:

A. Θ(𝑛𝑛 log𝑛𝑛)

B. Θ 𝑛𝑛log3 2

C. Θ(𝑛𝑛2)

D. 𝜣𝜣 𝒏𝒏𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐 𝟑𝟑

E. Θ 𝑛𝑛!

𝑇𝑇 𝑛𝑛 = 3𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Clicker Question: Karatsuba Multiplication

Recursive calls
(1), (2) and (3)

Add, Shift,
Subtract

14

To multiply two n-bit integers x and y:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers
in O(n1.585) bit operations.

Karatsuba Multiplication

 () () ())()(2/12/2/)(
shiftsubtract, add,calls recursive

nTnnTnTnTnT ⇒Θ++++≤

𝑥𝑥 = 2𝑛𝑛/2 � 𝑥𝑥1 + 𝑥𝑥0
𝑦𝑦 = 2𝑛𝑛/2 � 𝑦𝑦1 + 𝑦𝑦0

𝑥𝑥𝑦𝑦 = 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0𝑦𝑦1 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦0

= 2𝑛𝑛 � 𝑥𝑥1𝑦𝑦1 + 2
𝑛𝑛
2 � 𝑥𝑥0 + 𝑥𝑥1 𝑦𝑦0 + 𝑦𝑦1 − 𝑥𝑥0𝑦𝑦0 − 𝑥𝑥1𝑦𝑦1 + 𝑥𝑥0𝑦𝑦0

1 2 1 33

Master’s Theorem: a = 3, b=2, c=1 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1 ⇒ 𝑇𝑇 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎

[log2 3 < 1.585]

Toom-3 Generalization

𝑎𝑎 = 22𝑛𝑛/3 � 𝑎𝑎2 + 2
𝑛𝑛
3 � 𝑎𝑎1 + 𝑎𝑎0

𝑏𝑏 = 22𝑛𝑛/3 � 𝑏𝑏2 + 2
𝑛𝑛
3 � 𝑏𝑏1 + 𝑏𝑏0

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

𝑇𝑇 𝑛𝑛 = 5 � 𝑇𝑇
𝑛𝑛
3

+ 𝑂𝑂(𝑛𝑛) ⇒ 𝑇𝑇 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛log3 5

Toom-Cook Generalization (split into k parts): merge w/ (2k-1) mults

𝑎𝑎 = 2
𝑛𝑛(𝑘𝑘−1)

𝑘𝑘 � 𝑎𝑎𝑘𝑘−1 + ⋯+ 2
𝑛𝑛
𝑘𝑘 � 𝑎𝑎1 + 𝑎𝑎0

𝑏𝑏 = 2
𝑛𝑛(𝑘𝑘−1)

𝑘𝑘 � 𝑎𝑎𝑘𝑘 + ⋯+ 2
𝑛𝑛
𝑘𝑘 � 𝑎𝑎1 + 𝑎𝑎0

𝑇𝑇𝑘𝑘 𝑛𝑛 = 2𝑘𝑘 − 1 � 𝑇𝑇𝑘𝑘
𝑛𝑛
𝑘𝑘 + 𝑂𝑂 𝑛𝑛 ⇒ 𝑇𝑇𝑘𝑘 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛log𝑘𝑘 2𝑘𝑘−1

15

1.465 ≈ log3 5 < log2 3 ≈ 1.585

lim
𝑘𝑘→∞

log𝑘𝑘 2𝑘𝑘 − 1 = 1

Split into 3 parts

∀𝜀𝜀 > 0∃𝑘𝑘 s.t 𝑇𝑇𝑘𝑘 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛1+𝜀𝜀

Toom-3 Generalization

𝑎𝑎 = 22𝑛𝑛/3 � 𝑎𝑎2 + 2
𝑛𝑛
3 � 𝑎𝑎1 + 𝑎𝑎0

𝑏𝑏 = 22𝑛𝑛/3 � 𝑏𝑏2 + 2
𝑛𝑛
3 � 𝑏𝑏1 + 𝑏𝑏0

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

𝑇𝑇 𝑛𝑛 = 5 � 𝑇𝑇
𝑛𝑛
3

+ 𝑂𝑂(𝑛𝑛) ⇒ 𝑇𝑇 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛log3 5

Schönhage–Strassen algorithm
𝑇𝑇 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛 log𝑛𝑛 log log𝑛𝑛

Only used for really big numbers: a > 2215

State of the Art: 𝑂𝑂 𝑛𝑛 log𝑛𝑛 𝑔𝑔(𝑛𝑛) for increasing small
𝑔𝑔(𝑛𝑛) ≪ log log𝑛𝑛

16

≈ 1.465

Split into 3 parts

https://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm

5.4 Closest Pair of Points

18

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with Θ(n2)
comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

19

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

L

20

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

L

21

Closest Pair of Points

Algorithm.
 Divide: draw vertical line L so that roughly ½n points on each side.

L

22

Closest Pair of Points

Algorithm.
 Divide: draw vertical line L so that roughly ½n points on each side.
 Conquer: find closest pair in each side recursively.

12

21

L

23

Closest Pair of Points

Algorithm.
 Divide: draw vertical line L so that roughly ½n points on each side.
 Conquer: find closest pair in each side recursively.
 Combine: find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like Θ(n2)

24

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L

25

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation: only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)

26

12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation: only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)

27

12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
 Observation: only need to consider points within δ of line L.
 Sort points in 2δ-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)

28

Closest Pair of Points

Def. Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

Claim. If |i – j| ≥ 12, then the distance between
si and sj is at least δ.
Pf.
 No two points lie in same ½δ-by-½δ box.
 Two points at least 2 rows apart

have distance ≥ 2(½δ). ▪

δ

27

29 30

31

28

26

25

δ

½δ

2 rows
½δ

½δ

39

i

j

Fact. Still true if we replace 12 with 7.

29

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

δ1 = Closest-Pair(left half)
δ2 = Closest-Pair(right half)
δ = min(δ1, δ2)

Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than δ, update δ.

return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

30

Closest Pair of Points

Recurrence of DQ algorithm

Use a generalization of case 2 in Master theorem

f (n) = Θ(nlogba lgkn) for some constant k ≥0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n).

How do we achieve O(n log n)? We will just
give an outline, look at the book for details.

T(n) ≤ 2T n /2() + O(n log n) ⇒ T(n) = O(n log2 n)

31

Solution (Idea)

 Use linear time median finding algorithm to
determine line L and make the two recursive
calls.

 Each recursive call returns its δ and the points
in its region sorted by y coordinates.

 Merge: Sort y-lists by merging two returned
sorted lists in time O(n). Same as mergesort!

Terminate recursion when n<4 or some other
small constant and solve the resulting small
problem by brute force.

T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n log n)

	CS 381 – Fall 2019
	5.5 Integer Multiplication
	Motivation: Complex Multiplication
	Complex Multiplication
	Clicker Question
	Clicker Question
	Integer Addition
	Integer Multiplication
	Divide-and-Conquer Multiplication: Warmup
	Divide-and-Conquer Multiplication: Warmup
	Karatsuba Multiplication
	Clicker Question: Karatsuba Multiplication
	Clicker Question: Karatsuba Multiplication
	Karatsuba Multiplication
	Toom-3 Generalization
	Toom-3 Generalization
	5.4 Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points: First Attempt
	Closest Pair of Points: First Attempt
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair Algorithm
	Closest Pair of Points
	Slide Number 31

