
1

Week 3.1, Wednesday, Sept 4

Announcement: Homework 2 released soon (tonight)
Due: September 16th, 2019 @ 11:59PM on Gradescope

2

Example: T(n) = 4T(n/2) + n (n is a power of 2)

Claim: T(n) = O(n3)
Induction Hypothesis:
Assume T(k) ≤ ck3 for all k<n, for some constant c

T(n) = 4T(n/2) + n
≤ 4 c (n/2)3 + n
= cn3/2 + n
= cn3 – (cn3/2 - n)
≤ cn3

Need to show cn3/2 - n ≥ 0. True for c≥2

But O(n3) is not a tight bound! Ɵ(n3) does not hold.

3

Show that T(n) = O(n2)
Claim: T(n) ≤ cn2

T(n) = 4T(n/2) + n ≤ cn2

≤ 4 c (n/2)2 + n
= cn2 +n
≤ cn2 NO!

To show that it is O(n2), we need to subtract
lower order terms!

Wrong argument: we
just made the constant c
larger

4

Claim: T(n) ≤ c1n2 - c2n, for some constants c1 and
c2

Inductive hypothesis: T(k) ≤ c1k2 - c2k for all k<n

T(n) = 4T(n/2) + n
≤ 4 (c1(n/2)2 - c2(n/2)) + n
= c1n2 – 2c2n + n
= c1n2 – c2n – c2n +n
≤ c1n2 – c2n Need -c2n + n ≤ 0:

true if c2 ≥ 1

5

Recursion Tree Method

Use the recursion tree to find the solution to a
recurrence
• Tree represents a model of the cost of the

recursive algorithm
• Getting a closed form can be messy
• Insight obtained from tree can give a good

initial guess to be used in an induction

6

T(n) = 4T(n/2) + n, n=2k

Work done at each level
• Level 0: n
• Level 1: 2n (4 instances of size n/2 each)
• Level 2: 4n (42 =16 instances of size n/4 each)
• Clicker Question: How much total work is done

at Level 3?
A. 6n B. 8n C. 9n D. 16n E. 32n

n

�𝑛𝑛 4�𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4

�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2

7

T(n) = 4T(n/2) + n, n=2k

Work done at each level
• Level 0: n
• Level 1: 2n (4 instances of size n/2 each)
• Level 2: 4n (42 =16 instances of size n/4 each)
• Clicker Question: How much total work is done

at Level 3?
A. 6n B. 8n C. 9n D. 16n E. 32n

n

�𝑛𝑛 4�𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4

�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2

8

T(n) = 4T(n/2) + n, n=2k

Work done at each level
• Level 0: n
• Level 1: 2n (4 instances of size n/2 each)
• Level 2: 4n (42 =16 instances of size n/4 each)
• Level 3: 8n (43 instances of size n/23 each)
• at level i, there are 4i instances of size n/2i

results in 2i n total work for level i

n

�𝑛𝑛 4�𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4

�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2

9

Total work done at all levels of the recursion
tree

at level i of the tree
• there are 4i nodes, each doing work of size n/2i

• results in n2i total work for level i

∑𝑖𝑖=0𝑘𝑘 𝑛𝑛 2𝑖𝑖 = 𝑛𝑛 2𝑘𝑘+1 − 1 = 𝑛𝑛 2𝑛𝑛 − 1 = 2𝑛𝑛2 − 𝑛𝑛

This gives T(n) = Ɵ(n2)
Prove this correct by induction as an exercise.

10

More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

a2(n/b2)c = nc(a/bc)2

nc(a/bc)k

nc(𝑎𝑎/𝑏𝑏𝑐𝑐)log𝑏𝑏 𝑛𝑛

. . .

. . .
logbn

𝑇𝑇 𝑛𝑛 ≤ nc �
𝑖𝑖=0

log𝑏𝑏 𝑛𝑛 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑖𝑖

𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

. . .

Merge Step Cost

A Helpful Identity

Fact: If 𝛾𝛾 ≠ 1 then

1 + 𝛾𝛾1 + 𝛾𝛾2 … + 𝛾𝛾𝑘𝑘 =
1 − 𝛾𝛾𝑘𝑘+1

1 − 𝛾𝛾

Observation 1: If 𝛾𝛾 = 1 then 1 + 𝛾𝛾1 + 𝛾𝛾2 … + 𝛾𝛾𝑘𝑘 = 𝑘𝑘 + 1 ∈ Θ 𝑘𝑘

Observation 2: If 0 < 𝛾𝛾 < 1 then 𝟏𝟏 + 𝛾𝛾1 + 𝛾𝛾2 … + 𝛾𝛾𝑘𝑘 ≈ 1
1−𝛾𝛾

∈ Θ 1

Observation 3: If 1 < 𝛾𝛾 then 1 + 𝛾𝛾1 + 𝛾𝛾2 … + 𝜸𝜸𝒌𝒌 ≈ 𝛾𝛾𝑘𝑘+1

𝛾𝛾−1
∈ Θ 𝛾𝛾𝑘𝑘

Observation 4: In our case 𝑘𝑘 = log𝑏𝑏 𝑛𝑛 and 𝛾𝛾 = 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑇𝑇 𝑛𝑛 ≤ nc �
𝑖𝑖=0

log𝑏𝑏 𝑛𝑛 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑖𝑖
= 𝑛𝑛𝑐𝑐

1 − 𝛾𝛾𝑘𝑘+1

1 − 𝛾𝛾

12

13

More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

nc(𝑎𝑎/𝑏𝑏𝑐𝑐)log𝑏𝑏 𝑛𝑛

. . .

. . .
logbn

𝑇𝑇 𝑛𝑛 ≤ nc �
𝑖𝑖=0

log𝑏𝑏 𝑛𝑛 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑖𝑖

= Θ nc log𝑏𝑏 𝑛𝑛

. . .

Case 1: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

= 1𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Merge Step Cost

14

More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

nc(𝑎𝑎/𝑏𝑏𝑐𝑐)log𝑏𝑏 𝑛𝑛

. . .

. . .
logbn

𝑇𝑇 𝑛𝑛 ≤ nc �
𝑖𝑖=0

log𝑏𝑏 𝑛𝑛 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑖𝑖

= Θ nc

. . .

Case 2: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

< 1

𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Merge Step Cost

15

More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

nc(𝑎𝑎/𝑏𝑏𝑐𝑐)log𝑏𝑏 𝑛𝑛

. . .

. . .
logbn

𝑇𝑇 𝑛𝑛 ≤ �
𝑖𝑖=0

log𝑏𝑏 𝑛𝑛

nc 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑖𝑖

= Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

. . .

Case 3: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Merge Step Cost

nc 𝑎𝑎
𝑏𝑏𝑐𝑐

log𝑏𝑏 𝑛𝑛
=

nc

𝑏𝑏𝑐𝑐 log𝑏𝑏 𝑛𝑛
× 𝑎𝑎log𝑏𝑏 𝑛𝑛 = 𝑛𝑛log𝑏𝑏 𝑎𝑎

Implications for Divide and Conquer Analysis

• Merge Cost: O(nc) (want c to be small)

• Branching Factor: a (smaller branching factor faster)

• Reduction in Input Size: b (bigger is better)
• Key Ratio: a/bc

16

Case 3: 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Case 1: 𝑎𝑎
𝑏𝑏𝑐𝑐

< 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐

Case 2: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

= 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐 log𝑛𝑛

Clicker Question

17

Case 3: 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Case 1: 𝑎𝑎
𝑏𝑏𝑐𝑐

< 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐

Case 2: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

= 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐 log𝑛𝑛

𝑇𝑇 𝑛𝑛 = 4𝑇𝑇
𝑛𝑛
2

+ 𝑛𝑛2

a. Θ 𝑛𝑛2 b. Θ 𝑛𝑛3 c. Θ 𝑛𝑛2 log𝑛𝑛 d. Θ 𝑛𝑛ln 4

e. none of the above

Master Theorem

Clicker Question

18

Case 3: 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Case 1: 𝑎𝑎
𝑏𝑏𝑐𝑐

< 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐

Case 2: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

= 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐 log𝑛𝑛

𝑇𝑇 𝑛𝑛 = 4𝑇𝑇
𝑛𝑛
2

+ 𝑛𝑛2

a. Θ 𝑛𝑛2 b. Θ 𝑛𝑛3 c. 𝜣𝜣 𝒏𝒏𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 d. Θ 𝑛𝑛ln 4

e. none of the above

Master Theorem

Implications for Divide and Conquer Analysis

• Merge Cost: O(nc) (want c to be small)

• Branching Factor: a (smaller branching factor faster)

• Reduction in Input Size: b (bigger is better)
• Key Ratio: a/bc

19

Case 3: 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑇𝑇 𝑛𝑛 ≤ �
𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒊𝒊𝒊𝒊 𝒏𝒏 ≤ 𝟏𝟏𝟎𝟎𝟎𝟎

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝟓𝟓𝟎𝟎 + 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Case 1: 𝑎𝑎
𝑏𝑏𝑐𝑐

< 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐

Case 2: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

= 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐 log𝑛𝑛

Implications for Divide and Conquer Analysis

• Merge Cost: O(nc) (want c to be small)

• Branching Factor: a (smaller branching factor faster)

• Reduction in Input Size: b (bigger is better)
• Key Ratio: a/bc log𝑏𝑏 𝑎𝑎 ≥ 𝑐𝑐 ↔ 𝑎𝑎

𝑏𝑏𝑐𝑐
≥ 1

20

Case 3: 𝑖𝑖 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎−ε 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑇𝑇 𝑛𝑛 ≤ �
𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒊𝒊𝒊𝒊 𝒏𝒏 ≤ 𝟏𝟏𝟎𝟎𝟎𝟎

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝟓𝟓𝟎𝟎 + 𝑖𝑖(𝑛𝑛) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Case 1: 𝑖𝑖 𝑛𝑛 = Ω 𝑛𝑛ε+log𝑏𝑏 𝑎𝑎 𝑇𝑇 𝑛𝑛 = Θ 𝑖𝑖(𝑛𝑛)

Case 2: 𝑖𝑖 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑘𝑘 𝑛𝑛 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑘𝑘+1 𝑛𝑛
(assumes 𝑘𝑘 ≥ 0)

Assume
𝑖𝑖(𝑛𝑛) ≥ 0

Other Recurrences

• T n = T n − 1 + 1 (Unroll: T n = O(n))
• T n = T n − 1 + 1 = T n − 2 + 1 + 1

= T n − 3 + 1 + 1 + 1 = ⋯ = T n − k + k
= T 1 + n − 1

• T n = 2 × T n − 10 (Exponential)

21

Only constant reduction in input size
Two branches

Other Recurrences

• T n = 2 × T n − 10 (Exponential)

T n = Θ cn

• How to find c? [Trick]

2 =
T n

T n − 10
=

cn

𝑐𝑐𝑛𝑛−10

→ c10 = 2

→ c = 10 2 ≈ 1.07177
(Root of Characteristic Equation)

Must verify solution by induction
22

Only constant reduction in input sizeTwo branches

Other Recurrences

• MergeSort with Uneven Split: Split L into A, B of
sizes n/4 and 3n/4.

T n = T
n
4

+ 𝑇𝑇
3𝑛𝑛
4

+ 𝑛𝑛

A bit harder to Analyze with recursion tree

23

n

�𝑛𝑛 16 �9𝑛𝑛
16�3𝑛𝑛

16

�3𝑛𝑛
4�𝑛𝑛 4

�3𝑛𝑛
16

O(log n)

n

n

n

T n = O 𝑛𝑛 log𝑛𝑛

Other Recurrences

• MergeSort with Uneven Split: Split L into A, B of
sizes n/4 and 3n/4.

T n = T
n
5

+ 𝑇𝑇
3𝑛𝑛
4

+ 𝑛𝑛

24

n

�𝑛𝑛 25 �9𝑛𝑛
16 �3𝑛𝑛

20

�3𝑛𝑛
4�𝑛𝑛 5

�3𝑛𝑛
20

O(log n)

n

(19/20)n

(19/20)2n

T n ≤ n�
𝑖𝑖=0

∞
19
20

𝑖𝑖

25

 Mergesort
 Quicksort
 Binary Search
 Linear-time selection
 Skyline Problem
 Maximum Subarray
 Counting inversions

	CS 381 – Fall 2019
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	More General Analysis
	A Helpful Identity
	More General Analysis
	More General Analysis
	More General Analysis
	Implications for Divide and Conquer Analysis
	Clicker Question
	Clicker Question
	Implications for Divide and Conquer Analysis
	Implications for Divide and Conquer Analysis
	Other Recurrences
	Other Recurrences
	Other Recurrences
	Other Recurrences
	Divide and conquer algorithms

