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Week 3.1,  Wednesday, Sept 4

Announcement: Homework 2 released soon (tonight)
Due: September 16th, 2019 @ 11:59PM on Gradescope
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Example: T(n) = 4T(n/2) + n (n is a power of 2)

Claim: T(n) = O(n3)
Induction Hypothesis: 
Assume T(k) ≤ ck3 for all k<n, for some constant c 

T(n) = 4T(n/2) + n
≤ 4 c (n/2)3 + n 
= cn3/2 + n 
= cn3 – (cn3/2  - n)
≤ cn3

Need to show cn3/2  - n ≥ 0. True for c≥2

But O(n3) is not a tight bound! Ɵ(n3) does not hold.
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Show that T(n) = O(n2)
Claim:  T(n) ≤ cn2 

T(n) = 4T(n/2) + n ≤ cn2 

≤ 4 c (n/2)2 + n 
= cn2 +n   
≤  cn2  NO!

To show that it is O(n2), we need to subtract 
lower order terms!

Wrong argument: we 
just made the constant c 
larger
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Claim: T(n) ≤ c1n2  - c2n, for some constants c1 and 
c2

Inductive hypothesis:  T(k) ≤ c1k2  - c2k for all k<n

T(n) = 4T(n/2) + n
≤ 4 (c1(n/2)2  - c2(n/2))  + n
= c1n2 – 2c2n + n 
= c1n2 – c2n – c2n +n
≤  c1n2 – c2n Need -c2n + n ≤ 0:  

true if c2 ≥ 1
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Recursion Tree Method

Use the recursion tree to find the solution to a 
recurrence
• Tree represents a model of the cost of the 

recursive algorithm
• Getting a closed form can be messy
• Insight obtained from tree can give a good 

initial guess to be used in an induction 
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T(n) = 4T(n/2) + n, n=2k

Work done at each level
• Level 0: n
• Level 1: 2n (4 instances of size n/2 each)
• Level 2: 4n (42 =16 instances of size n/4 each)
• Clicker Question: How much total work is done 

at Level 3?
A. 6n B. 8n     C. 9n     D. 16n     E. 32n

n

�𝑛𝑛 4�𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4

�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2
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T(n) = 4T(n/2) + n, n=2k

Work done at each level
• Level 0: n
• Level 1: 2n (4 instances of size n/2 each)
• Level 2: 4n (42 =16 instances of size n/4 each)
• Clicker Question: How much total work is done 

at Level 3?
A. 6n B. 8n     C. 9n     D. 16n     E. 32n

n

�𝑛𝑛 4�𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4

�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2
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T(n) = 4T(n/2) + n, n=2k

Work done at each level
• Level 0: n
• Level 1: 2n (4 instances of size n/2 each)
• Level 2: 4n (42 =16 instances of size n/4 each)
• Level 3: 8n (43  instances of size n/23 each)
• at level i, there are 4i  instances of size n/2i

results in 2i n total work for level i

n

�𝑛𝑛 4�𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4�𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4 �𝑛𝑛 4

�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2�𝑛𝑛 2
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Total work done at all levels of the recursion 
tree

at level i of the tree
• there are 4i  nodes, each doing work of size n/2i

• results in n2i  total work for level i

∑𝑖𝑖=0𝑘𝑘 𝑛𝑛 2𝑖𝑖 = 𝑛𝑛 2𝑘𝑘+1 − 1 = 𝑛𝑛 2𝑛𝑛 − 1 = 2𝑛𝑛2 − 𝑛𝑛

This gives T(n) = Ɵ(n2) 
Prove this correct by induction as an exercise.
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More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

a2(n/b2)c = nc(a/bc)2

nc(a/bc)k

nc(𝑎𝑎/𝑏𝑏𝑐𝑐)log𝑏𝑏 𝑛𝑛

. . .

. . .
logbn

𝑇𝑇 𝑛𝑛 ≤ nc �
𝑖𝑖=0

log𝑏𝑏 𝑛𝑛 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑖𝑖

𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

. . .

Merge Step Cost



A Helpful Identity

Fact: If 𝛾𝛾 ≠ 1 then

1 + 𝛾𝛾1 + 𝛾𝛾2 … + 𝛾𝛾𝑘𝑘 =
1 − 𝛾𝛾𝑘𝑘+1

1 − 𝛾𝛾

Observation 1: If 𝛾𝛾 = 1 then 1 + 𝛾𝛾1 + 𝛾𝛾2 … + 𝛾𝛾𝑘𝑘 = 𝑘𝑘 + 1 ∈ Θ 𝑘𝑘

Observation 2: If 0 < 𝛾𝛾 < 1 then 𝟏𝟏 + 𝛾𝛾1 + 𝛾𝛾2 … + 𝛾𝛾𝑘𝑘 ≈ 1
1−𝛾𝛾

∈ Θ 1

Observation 3: If 1 < 𝛾𝛾 then 1 + 𝛾𝛾1 + 𝛾𝛾2 … + 𝜸𝜸𝒌𝒌 ≈ 𝛾𝛾𝑘𝑘+1

𝛾𝛾−1
∈ Θ 𝛾𝛾𝑘𝑘

Observation 4: In our case 𝑘𝑘 = log𝑏𝑏 𝑛𝑛 and 𝛾𝛾 = 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑇𝑇 𝑛𝑛 ≤ nc �
𝑖𝑖=0

log𝑏𝑏 𝑛𝑛 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑖𝑖
= 𝑛𝑛𝑐𝑐

1 − 𝛾𝛾𝑘𝑘+1

1 − 𝛾𝛾

12
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More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

nc(𝑎𝑎/𝑏𝑏𝑐𝑐)log𝑏𝑏 𝑛𝑛

. . .

. . .
logbn

𝑇𝑇 𝑛𝑛 ≤ nc �
𝑖𝑖=0

log𝑏𝑏 𝑛𝑛 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑖𝑖

= Θ nc log𝑏𝑏 𝑛𝑛

. . .

Case 1: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

= 1𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Merge Step Cost
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More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

nc(𝑎𝑎/𝑏𝑏𝑐𝑐)log𝑏𝑏 𝑛𝑛

. . .

. . .
logbn

𝑇𝑇 𝑛𝑛 ≤ nc �
𝑖𝑖=0

log𝑏𝑏 𝑛𝑛 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑖𝑖

= Θ nc

. . .

Case 2: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

< 1

𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Merge Step Cost
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More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

nc(𝑎𝑎/𝑏𝑏𝑐𝑐)log𝑏𝑏 𝑛𝑛

. . .

. . .
logbn

𝑇𝑇 𝑛𝑛 ≤ �
𝑖𝑖=0

log𝑏𝑏 𝑛𝑛

nc 𝑎𝑎
𝑏𝑏𝑐𝑐

𝑖𝑖

= Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

. . .

Case 3: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Merge Step Cost

nc 𝑎𝑎
𝑏𝑏𝑐𝑐

log𝑏𝑏 𝑛𝑛
=

nc

𝑏𝑏𝑐𝑐 log𝑏𝑏 𝑛𝑛
× 𝑎𝑎log𝑏𝑏 𝑛𝑛 = 𝑛𝑛log𝑏𝑏 𝑎𝑎



Implications for Divide and Conquer Analysis

• Merge Cost: O(nc)                (want c to be small)

• Branching Factor: a              (smaller branching factor  faster)

• Reduction in Input Size: b    (bigger is better)
• Key Ratio: a/bc
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Case 3: 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Case 1: 𝑎𝑎
𝑏𝑏𝑐𝑐

< 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐

Case 2: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

= 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐 log𝑛𝑛



Clicker Question
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Case 3: 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Case 1: 𝑎𝑎
𝑏𝑏𝑐𝑐

< 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐

Case 2: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

= 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐 log𝑛𝑛

𝑇𝑇 𝑛𝑛 = 4𝑇𝑇
𝑛𝑛
2

+ 𝑛𝑛2

a. Θ 𝑛𝑛2 b. Θ 𝑛𝑛3 c. Θ 𝑛𝑛2 log𝑛𝑛 d. Θ 𝑛𝑛ln 4

e. none of the above

Master Theorem



Clicker Question
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Case 3: 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑇𝑇 𝑛𝑛 ≤ �
1 𝑖𝑖𝑖𝑖 𝑛𝑛 = 1

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Case 1: 𝑎𝑎
𝑏𝑏𝑐𝑐

< 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐

Case 2: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

= 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐 log𝑛𝑛

𝑇𝑇 𝑛𝑛 = 4𝑇𝑇
𝑛𝑛
2

+ 𝑛𝑛2

a. Θ 𝑛𝑛2 b. Θ 𝑛𝑛3 c. 𝜣𝜣 𝒏𝒏𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 d. Θ 𝑛𝑛ln 4

e. none of the above

Master Theorem



Implications for Divide and Conquer Analysis

• Merge Cost: O(nc)                (want c to be small)

• Branching Factor: a              (smaller branching factor  faster)

• Reduction in Input Size: b    (bigger is better)
• Key Ratio: a/bc
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Case 3: 𝑎𝑎
𝑏𝑏𝑐𝑐

> 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑇𝑇 𝑛𝑛 ≤ �
𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒊𝒊𝒊𝒊 𝒏𝒏 ≤ 𝟏𝟏𝟎𝟎𝟎𝟎

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝟓𝟓𝟎𝟎 + 𝑛𝑛𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Case 1: 𝑎𝑎
𝑏𝑏𝑐𝑐

< 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐

Case 2: γ = 𝑎𝑎
𝑏𝑏𝑐𝑐

= 1 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛𝑐𝑐 log𝑛𝑛



Implications for Divide and Conquer Analysis

• Merge Cost: O(nc)                (want c to be small)

• Branching Factor: a              (smaller branching factor  faster)

• Reduction in Input Size: b    (bigger is better)
• Key Ratio: a/bc log𝑏𝑏 𝑎𝑎 ≥ 𝑐𝑐 ↔ 𝑎𝑎

𝑏𝑏𝑐𝑐
≥ 1

20

Case 3: 𝑖𝑖 𝑛𝑛 = 𝑂𝑂 𝑛𝑛log𝑏𝑏 𝑎𝑎−ε 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎

𝑇𝑇 𝑛𝑛 ≤ �
𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒊𝒊𝒊𝒊 𝒏𝒏 ≤ 𝟏𝟏𝟎𝟎𝟎𝟎

𝑎𝑎 × 𝑇𝑇
𝑛𝑛
𝑏𝑏

+ 𝟓𝟓𝟎𝟎 + 𝑖𝑖(𝑛𝑛) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Case 1: 𝑖𝑖 𝑛𝑛 = Ω 𝑛𝑛ε+log𝑏𝑏 𝑎𝑎 𝑇𝑇 𝑛𝑛 = Θ 𝑖𝑖(𝑛𝑛)

Case 2: 𝑖𝑖 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑘𝑘 𝑛𝑛 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎 log𝑘𝑘+1 𝑛𝑛
(assumes 𝑘𝑘 ≥ 0)

Assume
𝑖𝑖(𝑛𝑛) ≥ 0



Other Recurrences

• T n = T n − 1 + 1 (Unroll: T n = O(n))
• T n = T n − 1 + 1 = T n − 2 + 1 + 1

= T n − 3 + 1 + 1 + 1 = ⋯ = T n − k + k
= T 1 + n − 1

• T n = 2 × T n − 10 (Exponential)

21

Only constant reduction in input size
Two branches



Other Recurrences

• T n = 2 × T n − 10 (Exponential)

T n = Θ cn

• How to find c? [Trick]

2 =
T n

T n − 10
=

cn

𝑐𝑐𝑛𝑛−10

→ c10 = 2

→ c = 10 2 ≈ 1.07177
(Root of Characteristic Equation)

Must verify solution by induction
22

Only constant reduction in input sizeTwo branches



Other Recurrences

• MergeSort with Uneven Split: Split L into A, B of 
sizes n/4 and 3n/4.   

T n = T
n
4

+ 𝑇𝑇
3𝑛𝑛
4

+ 𝑛𝑛

A bit harder to Analyze with recursion tree

23

n

�𝑛𝑛 16 �9𝑛𝑛
16�3𝑛𝑛

16

�3𝑛𝑛
4�𝑛𝑛 4

�3𝑛𝑛
16

O(log n)

n

n

n

T n = O 𝑛𝑛 log𝑛𝑛



Other Recurrences

• MergeSort with Uneven Split: Split L into A, B of 
sizes n/4 and 3n/4.   

T n = T
n
5

+ 𝑇𝑇
3𝑛𝑛
4

+ 𝑛𝑛

24

n

�𝑛𝑛 25 �9𝑛𝑛
16 �3𝑛𝑛

20

�3𝑛𝑛
4�𝑛𝑛 5

�3𝑛𝑛
20

O(log n)

n

(19/20)n

(19/20)2n

T n ≤ n�
𝑖𝑖=0

∞
19
20

𝑖𝑖
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 Mergesort
 Quicksort
 Binary Search 
 Linear-time selection
 Skyline Problem
 Maximum Subarray
 Counting inversions
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