
1

Week 2.3,  Friday, August 30

Homework 1 available on course web page
(Due: September 3 at 11:59PM on Gradescope)

Labor Day:  No Class on Monday, Sept 2  



 Pre-condition. [Merge] A and B are sorted.
 Post-condition.  [Sort] L is sorted.

Sort(L) {
if list L has one element

return 0 and the list L

Divide the list into two (equal) halves A and B
A ← Sort(A)
B ← Sort(B)
L ← Merge(A, B)

return L
}



 Def.  T(n)  = number of comparisons to mergesort an input 
of size n.

 Mergesort recurrence.  

 Solution.  T(n) = O(n log2 n). 

 Assorted proofs.  We describe several ways to prove this 
recurrence. Initially we assume n is a power of 2 and 
replace ≤ with =.

  

 

T(n) ≤
 0 if  n =1
T n /2 ( )
solve left half
  

+ T n /2 ( )
solve right half
  

+ n
merging
 otherwise

 

 
 

  



 Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

 Pf.  (by induction on n)
 Base case:  n = 1.
 Inductive hypothesis:  T(n) =  n log2 n.
 Goal:  show that T(2n) =  2n log2 (2n).

  

 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2 (2n) −1( ) +  2n
= 2n log2(2n)

assumes n is a power of 2

  

 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
 

+ n
merging
 otherwise

 
 
 

  



 Claim.  If T(n) satisfies the following recurrence, 
then T(n)  ≤ n lg n.

 Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = n / 2 ,  n2 = n / 2.
 Induction step:  assume true for 1, 2, ... , n–1.

  

 

T(n) ≤
 0 if  n =1
T n /2 ( )
solve left half
  

+ T n /2 ( )
solve right half
  

+ n
merging
 otherwise

 

 
 

  



 Claim.  If T(n) satisfies the following 
recurrence, then T(n)  ≤ n lg n.

 Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = n / 2 ,  n2 = n / 2.
 Induction step:  assume true for 1, 2, ... , n–1.

  

 

T(n) ≤ T(n1)  +  T(n2 )  +  n
≤ n1 lgn1  +  n2 lgn2  +  n
≤ n1 lgn2  +  n2 lgn2  +  n
= n lgn2  +  n
≤ n( lgn −1 )  +  n
= n lgn 

 
  

   

  1lglg
22/2

2/2

2/

2

1lglg

lg

2

−≤⇒

==
≤

=

−

nn

nn

nn

n



Problem: Compute an, n>0.  Minimize 
number of multiplications.

Naive algorithm: Θ(n) multiplications

Exp(a,n) {
if n=0 return 1
else if n=1 return a 
else if n is even 

b ← Exp(a,n/2) 
return b × b

else // n>1 is odd  
b ← Exp(a,(n-1)/2) 
return b × b × a

}



A. T n ≤ T 𝑛𝑛 − 1 + 1
B. T n ≤ T 𝑛𝑛

2
+ 2

C. T n ≤ 4T 𝑛𝑛/2 + n

D.  T n ≤ 3T 𝑛𝑛/3 + 1
E.  T n ≤ T 𝑛𝑛

2
+ n/2

Which of the following recurrences describes the number of 
multiplications in the above algorithm?

Exp(a,n) {
if n=0 return 1
else if n=1 return a 
else if n is even 

b ← Exp(a,n/2) 
return b × b

else // n>1 is odd  
b ← Exp(a,(n-1)/2) 
return b × b × a

}



A. T n ≤ T 𝑛𝑛 − 1 + 1
B. 𝐓𝐓 𝐧𝐧 ≤ 𝐓𝐓 𝒏𝒏

𝟐𝟐
+ 𝟐𝟐

C. T n ≤ 4T 𝑛𝑛/2 + n

D.  T n ≤ 3T 𝑛𝑛/3 + 1
E.  T n ≤ T 𝑛𝑛

2
+ n/2

Which of the following recurrences describes the number of 
multiplications in the above algorithm?

Exp(a,n) {
if n=0 return 1
else if n=1 return a 
else if n is even 

b ← Exp(a,n/2) 
return b × b

else // n>1 is odd  
b ← Exp(a,(n-1)/2) 
return b × b × a

}



Suggested Exercise: Prove that above algorithm is 
correct using strong induction.

Exp(a,n) {
if n=0 return 1
else if n=1 return a 
else if n is even 

b ← Exp(a,n/2) 
return b × b

else // n>1 is odd  
b ← Exp(a,(n-1)/2) 
return b × b × a

}

T(n) = T(n/2) + Θ(1)  ⇒ T(n) = Θ(log n) 



11

Music site tries to match your song preferences with others.
 You rank n songs.
 Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.
 My rank:  1, 2, …, n.
 Your rank:  a1, a2, …, an.
 Songs i and j inverted if i < j, but ai > aj.

Brute force:  check all Θ(n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2



12

Applications

Applications.
 Voting theory.
 Collaborative filtering.
 Measuring the "sortedness" of an array.
 Sensitivity analysis of Google's ranking function. 
 Rank aggregation for meta-searching on the Web.
 Nonparametric statistics  (e.g., Kendall's Tau distance).



13

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9



14

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide:  O(1).



15

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.
 Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7



16

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.
 Conquer: recursively count inversions in each half.
 Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.



17

13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine

Combine:  count blue-green inversions
 Assume each half is sorted.
 Count inversions where ai and aj are in different halves. 
 Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

 ( )  ( ) )log()T()(2/2/ )( nnOnnOnTnTnT =⇒++≤

6 3 2 2 0 0

to maintain sorted invariant

play



18

Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition.  [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A) ← Sort-and-Count(A)
(rB, B) ← Sort-and-Count(B)
(rB, L) ← Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}



19

Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition.  [Sort-and-Count] L is sorted.

Proof of Correctness (Strong Induction):
Base Case: n=1 (check)
Strong Inductive Hypothesis: Sort-and-Count(L) is correct 
for all lists L of length |L| < n

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A) ← Sort-and-Count(A)
(rB, B) ← Sort-and-Count(B)
(rB, L) ← Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}



20

Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition.  [Sort-and-Count] L is sorted.

Inductive Step: Let L be a list of length n with (A,B)=L
(rA, A) ← Sort-and-Count(A)      // Correct by IH
(rB, B) ← Sort-and-Count(B)      // Correct by IH
(r, L) ← Merge-and-Count(A, B)  // r counts A,B inv

 rA + rB + r is correct total count + L is sorted

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A) ← Sort-and-Count(A)
(rB, B) ← Sort-and-Count(B)
(r, L) ← Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}



Clicker Question

The recurrence for the running time T(n) of         
Sort-and-Count is

A. T(n) = 2T(n/2)+log n      B. T(n) = 2T(n-1) + 1                             
C. T(n) = 2T(n/2)+1             D. T(n) = 2T(n/2) + n      
E. None of the above

21

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A) ← Sort-and-Count(A)
(rB, B) ← Sort-and-Count(B)
(r, L) ← Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}



Clicker Question

The recurrence for the running time T(n) of         
Sort-and-Count is

A. T(n) = 2T(n/2)+log n      B. T(n) = 2T(n-1) + 1                             
C. T(n) = 2T(n/2)+1             D. T(n) = 2T(n/2) + n      
E. None of the above

22

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A) ← Sort-and-Count(A)
(rB, B) ← Sort-and-Count(B)
(r, L) ← Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}



23



24

Assume the basis is T(1) = Θ(1)
 T(n) = T(n/2) + c
 T(n) = T(n/2) + cn 
 T(n) = 2T(n/2) + cn
 T(n) = 2T(n-1) + 1
 T(n) = 4T(n/2) + n
 T(n) = T(n/4) + T(n/2) + n2

 T(n) = T(2n/3) + n
 T(n) = T( 𝑛𝑛) + c



25

Assume the basis is T(1) = Θ(1)
 T(n) = T(n/2) + c Ɵ(log n)
 T(n) = T(n/2) + cn Ɵ(n)
 T(n) = 2T(n/2) + cn Ɵ (n log n)
 T(n) = 2T(n-1) + 1 Ɵ (2n)
 T(n) = 4T(n/2) + n Ɵ (n2)
 T(n) = T(n/4) + T(n/2) + n2 Ɵ (n2)
 T(n) = T(2n/3) + n Ɵ (n)
 T(n) = T( 𝑛𝑛) + c Ɵ (log log n)



26

 Mergesort
 Quicksort
 Binary Search 
 Linear-time selection
 Skyline Problem
 Maximum Subarray
 Counting inversions


	CS 381 – Fall 2019
	Mergesort
	A Useful Recurrence Relation
	Proof by Induction
	Analysis of Mergesort Recurrence
	Analysis of Mergesort Recurrence
	Slide Number 7
	Clicker Question
	Clicker Question
	Clicker Question
	Counting Inversions
	Applications
	Counting Inversions:  Divide-and-Conquer
	Counting Inversions:  Divide-and-Conquer
	Counting Inversions:  Divide-and-Conquer
	Counting Inversions:  Divide-and-Conquer
	Counting Inversions:  Combine
	Counting Inversions:  Implementation
	Counting Inversions:  Implementation
	Counting Inversions:  Implementation
	Clicker Question
	Clicker Question
	Running time of a divide and conquer algorithm can be captured by a recurrence relation. �How does one determine the running time?��General method�(1) “Guess” the solution. �(in closed exact form or in asymptotic form)�(2) Prove it correct by induction.��If the assumed solution is incorrect, the induction will fall apart somewhere.� 
	Run-time recurrences from divide and conquer algorithms�
	Recurrences from divide and conquer algorithms�
	Divide and conquer algorithms

