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Week 2.2,  Wednesday, August 28

Homework 1 available on course web page
(Due: September 3 at 11:59PM on Gradescope)  

Instructor Office Hours:  (Monday 2:30-3:30PM, Wed 5:30-6:30PM)



Suppose that 
𝑓𝑓 𝑛𝑛 = 2000𝑛𝑛 + 𝑛𝑛2
𝑔𝑔 𝑛𝑛 = 10 𝑛𝑛 log𝑛𝑛
ℎ 𝑛𝑛 = 𝑛𝑛2/1000

Which of the following claims are true?

1. 𝑔𝑔 𝑛𝑛 = 𝑂𝑂 𝑓𝑓 𝑛𝑛
2. ℎ 𝑛𝑛 = 𝑂𝑂 𝑓𝑓 𝑛𝑛
3. ℎ 𝑛𝑛 = Ω 𝑓𝑓 𝑛𝑛
4. ℎ 𝑛𝑛 = 𝑂𝑂 𝑔𝑔 𝑛𝑛

A.Claim 4 only
B. Claim 1 & 2 only
C. Claims 1,2 and 3
D.All claims are true
E. None of them



1.  Divide the problem (instance) 
into subproblems.

2.  Conquer the subproblems by 
solving them recursively.

3.  Combine subproblem solutions.



 Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

 Most common usage.
 Break up problem of size n into two equal parts of size 𝑛𝑛

2
.

 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

 Consequence.
 Brute force:  n2.
 Divide-and-conquer:  n log n.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar



 Running Time (Recurrences): 
 Let T(n) be the time to solve problem of size n (worst-

case).
 Suppose we split input X into 3 equal size parts A, B and 

C recursively solve smaller problems A, B and C and then 
merge the solutions.

𝑇𝑇 𝑛𝑛 ≤ 3𝑇𝑇
𝑛𝑛
3

+ #Steps(Merge)

 Correctness?
 Induction!
 Prove that algorithm is correct on small inputs (e.g., 𝑛𝑛 ≤

2)
 Prove that merge algorithm is correct (QED) 



 Solve Recurrences
 Identify recurrence associated with divide and 

conquer algorithm
 Prove that a divide and conquer algorithm is 

correct
 Creative: Design efficient divide and conquer 

algorithms
 Build intuition about when the divide and conquer 

approach will work.



 Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

𝑇𝑇 𝑛𝑛 ≤ 2 � 𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Divide   O(1)

Sort      2T(n/2)

Merge   O(n)



 Merging.  Combine two pre-sorted lists into a sorted whole.

 How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

 Challenge for the bored.  In-place merge.  [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

05demo-merge.ppt



 Pre-condition. [Merge] A and B are sorted.
 Post-condition.  [Sort] L is sorted.

Sort(L) {
if list L has one element

return 0 and the list L

Divide the list into two (equal) halves A and B
A ← Sort(A)
B ← Sort(B)
L ← Merge(A, B)

return L
}



 P(n) = “Mergesort correctly sorts all lists L of 
length |L| = n”

 Base Case: |L| = 1  (check)
Sort(L) {

if list L has one element
return 0 and the list L

Divide the list into two (equal) halves A and B
A ← Sort(A)
B ← Sort(B)
L ← Merge(A, B)

return L
}



 P(n) = “Mergesort correctly sorts all lists L of 
length |L| = n”

 Base Case: |L| = 1 
 Strong Inductive Hypothesis: P(k) holds for all k < 

n i.e., correct on any list of length < n
 Inductive Step: 

 Algorithm splits input L into A and B
A ← Sort(A), B ← Sort(B)

 IH  both A and B both sorted correctly
 Therefore, algorithm is correct (as long 
as merge step is implemented correctly) 
QED



 Def.  T(n)  = number of comparisons to mergesort an input 
of size n.

 Mergesort recurrence.  

 Solution.  T(n) = O(n log2 n). 

 Assorted proofs.  We describe several ways to prove this 
recurrence. Initially we assume n is a power of 2 and 
replace ≤ with =.

  

 

T(n) ≤
 0 if  n =1
T n /2 ( )
solve left half
  

+ T n /2 ( )
solve right half
  

+ n
merging
 otherwise

 

 
 

  



 Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

 Pf.  (by induction on n)
 Base case:  n = 1.
 Inductive hypothesis:  T(n) =  n log2 n.
 Goal:  show that T(2n) =  2n log2 (2n).

  

 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2 (2n) −1( ) +  2n
= 2n log2(2n)

assumes n is a power of 2

  

 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
 

+ n
merging
 otherwise

 
 
 

  



 Claim.  If T(n) satisfies the following recurrence, 
then T(n)  ≤ n lg n.

 Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = n / 2 ,  n2 = n / 2.
 Induction step:  assume true for 1, 2, ... , n–1.

  

 

T(n) ≤
 0 if  n =1
T n /2 ( )
solve left half
  

+ T n /2 ( )
solve right half
  

+ n
merging
 otherwise

 

 
 

  



 Claim.  If T(n) satisfies the following 
recurrence, then T(n)  ≤ n lg n.

 Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = n / 2 ,  n2 = n / 2.
 Induction step:  assume true for 1, 2, ... , n–1.

  

 

T(n) ≤ T(n1)  +  T(n2 )  +  n
≤ n1 lgn1  +  n2 lgn2  +  n
≤ n1 lgn2  +  n2 lgn2  +  n
= n lgn2  +  n
≤ n( lgn −1 )  +  n
= n lgn 

 
  

   

  1lglg
22/2

2/2

2/

2

1lglg

lg

2

−≤⇒

==
≤

=

−

nn

nn

nn

n



Problem: Compute an, n>0.  Minimize 
number of multiplications.

Naive algorithm: Θ(n) multiplications

Exp(a,n) {
if n=0 return 1
else if n=1 return a 
else if n is even 

b ← Exp(a,n/2) 
return b x b

else // n>1 is odd  
b ← Exp(a,(n-1)/2) 
return b x b x a

}





A. T n ≤ T 𝑛𝑛 − 1 + 1
B. T n ≤ T 𝑛𝑛/2 + 2
C. T n ≤ 4T 𝑛𝑛/2 + n

D.  T n ≤ 3T 𝑛𝑛/3 + 1
E.  T n ≤ T 𝑛𝑛

2
+ n/2

Which of the following recurrences describes the number of 
multiplications in the above algorithm?

Exp(a,n) {
if n=0 return 1
else if n=1 return a 
else if n is even 

b ← Exp(a,n/2) 
return b x b

else // n>1 is odd  
b ← Exp(a,(n-1)/2) 
return b x b x a

}



A. T n ≤ T 𝑛𝑛 − 1 + 1
B. T n ≤ T 𝑛𝑛/2 + 2
C. T n ≤ 4T 𝑛𝑛/2 + n

D.  T n ≤ 3T 𝑛𝑛/3 + 1
E.  T n ≤ T 𝑛𝑛

2
+ n/2

Which of the following recurrences describes the number of 
multiplications in the above algorithm?

Exp(a,n) {
if n=0 return 1
else if n=1 return a 
else if n is even 

b ← Exp(a,n/2) 
return b x b

else // n>1 is odd  
b ← Exp(a,(n-1)/2) 
return b x b x a

}


	CS 381 – Fall 2019
	Review: Asymptotic Notation
	The divide-and-conquer algorithm design paradigm
	Divide-and-Conquer
	Analysis: Divide and Conquer
	What you should learn?
	Mergesort
	Merging
	Mergesort
	Mergesort Correctness
	Mergesort Correctness
	A Useful Recurrence Relation
	Proof by Induction
	Analysis of Mergesort Recurrence
	Analysis of Mergesort Recurrence
	Slide Number 16
	Slide Number 17
	Clicker Question
	Clicker Question

