
1

Week 2.2, Wednesday, August 28

Homework 1 available on course web page
(Due: September 3 at 11:59PM on Gradescope)

Instructor Office Hours: (Monday 2:30-3:30PM, Wed 5:30-6:30PM)

Suppose that
𝑓𝑓 𝑛𝑛 = 2000𝑛𝑛 + 𝑛𝑛2
𝑔𝑔 𝑛𝑛 = 10 𝑛𝑛 log𝑛𝑛
ℎ 𝑛𝑛 = 𝑛𝑛2/1000

Which of the following claims are true?

1. 𝑔𝑔 𝑛𝑛 = 𝑂𝑂 𝑓𝑓 𝑛𝑛
2. ℎ 𝑛𝑛 = 𝑂𝑂 𝑓𝑓 𝑛𝑛
3. ℎ 𝑛𝑛 = Ω 𝑓𝑓 𝑛𝑛
4. ℎ 𝑛𝑛 = 𝑂𝑂 𝑔𝑔 𝑛𝑛

A.Claim 4 only
B. Claim 1 & 2 only
C. Claims 1,2 and 3
D.All claims are true
E. None of them

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

 Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

 Most common usage.
 Break up problem of size n into two equal parts of size 𝑛𝑛

2
.

 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

 Consequence.
 Brute force: n2.
 Divide-and-conquer: n log n.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

 Running Time (Recurrences):
 Let T(n) be the time to solve problem of size n (worst-

case).
 Suppose we split input X into 3 equal size parts A, B and

C recursively solve smaller problems A, B and C and then
merge the solutions.

𝑇𝑇 𝑛𝑛 ≤ 3𝑇𝑇
𝑛𝑛
3

+ #Steps(Merge)

 Correctness?
 Induction!
 Prove that algorithm is correct on small inputs (e.g., 𝑛𝑛 ≤

2)
 Prove that merge algorithm is correct (QED)

 Solve Recurrences
 Identify recurrence associated with divide and

conquer algorithm
 Prove that a divide and conquer algorithm is

correct
 Creative: Design efficient divide and conquer

algorithms
 Build intuition about when the divide and conquer

approach will work.

 Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

𝑇𝑇 𝑛𝑛 ≤ 2 � 𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Divide O(1)

Sort 2T(n/2)

Merge O(n)

 Merging. Combine two pre-sorted lists into a sorted whole.

 How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

 Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

05demo-merge.ppt

 Pre-condition. [Merge] A and B are sorted.
 Post-condition. [Sort] L is sorted.

Sort(L) {
if list L has one element

return 0 and the list L

Divide the list into two (equal) halves A and B
A ← Sort(A)
B ← Sort(B)
L ← Merge(A, B)

return L
}

 P(n) = “Mergesort correctly sorts all lists L of
length |L| = n”

 Base Case: |L| = 1 (check)
Sort(L) {

if list L has one element
return 0 and the list L

Divide the list into two (equal) halves A and B
A ← Sort(A)
B ← Sort(B)
L ← Merge(A, B)

return L
}

 P(n) = “Mergesort correctly sorts all lists L of
length |L| = n”

 Base Case: |L| = 1
 Strong Inductive Hypothesis: P(k) holds for all k <

n i.e., correct on any list of length < n
 Inductive Step:

 Algorithm splits input L into A and B
A ← Sort(A), B ← Sort(B)

 IH both A and B both sorted correctly
 Therefore, algorithm is correct (as long
as merge step is implemented correctly)
QED

 Def. T(n) = number of comparisons to mergesort an input
of size n.

 Mergesort recurrence.

 Solution. T(n) = O(n log2 n).

 Assorted proofs. We describe several ways to prove this
recurrence. Initially we assume n is a power of 2 and
replace ≤ with =.

T(n) ≤
 0 if n =1
T n /2 ()
solve left half

+ T n /2 ()
solve right half

+ n
merging
 otherwise

 Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

 Pf. (by induction on n)
 Base case: n = 1.
 Inductive hypothesis: T(n) = n log2 n.
 Goal: show that T(2n) = 2n log2 (2n).

T(2n) = 2T(n) + 2n
= 2n log2 n + 2n
= 2n log2 (2n) −1() + 2n
= 2n log2(2n)

assumes n is a power of 2

T(n) =
0 if n =1
2T(n /2)

sorting both halves

+ n
merging
 otherwise

 Claim. If T(n) satisfies the following recurrence,
then T(n) ≤ n lg n.

 Pf. (by induction on n)
 Base case: n = 1.
 Define n1 = n / 2 , n2 = n / 2.
 Induction step: assume true for 1, 2, ... , n–1.

T(n) ≤
 0 if n =1
T n /2 ()
solve left half

+ T n /2 ()
solve right half

+ n
merging
 otherwise

 Claim. If T(n) satisfies the following
recurrence, then T(n) ≤ n lg n.

 Pf. (by induction on n)
 Base case: n = 1.
 Define n1 = n / 2 , n2 = n / 2.
 Induction step: assume true for 1, 2, ... , n–1.

T(n) ≤ T(n1) + T(n2) + n
≤ n1 lgn1 + n2 lgn2 + n
≤ n1 lgn2 + n2 lgn2 + n
= n lgn2 + n
≤ n(lgn −1) + n
= n lgn

 1lglg
22/2

2/2

2/

2

1lglg

lg

2

−≤⇒

==
≤

=

−

nn

nn

nn

n

Problem: Compute an, n>0. Minimize
number of multiplications.

Naive algorithm: Θ(n) multiplications

Exp(a,n) {
if n=0 return 1
else if n=1 return a
else if n is even

b ← Exp(a,n/2)
return b x b

else // n>1 is odd
b ← Exp(a,(n-1)/2)
return b x b x a

}

A. T n ≤ T 𝑛𝑛 − 1 + 1
B. T n ≤ T 𝑛𝑛/2 + 2
C. T n ≤ 4T 𝑛𝑛/2 + n

D. T n ≤ 3T 𝑛𝑛/3 + 1
E. T n ≤ T 𝑛𝑛

2
+ n/2

Which of the following recurrences describes the number of
multiplications in the above algorithm?

Exp(a,n) {
if n=0 return 1
else if n=1 return a
else if n is even

b ← Exp(a,n/2)
return b x b

else // n>1 is odd
b ← Exp(a,(n-1)/2)
return b x b x a

}

A. T n ≤ T 𝑛𝑛 − 1 + 1
B. T n ≤ T 𝑛𝑛/2 + 2
C. T n ≤ 4T 𝑛𝑛/2 + n

D. T n ≤ 3T 𝑛𝑛/3 + 1
E. T n ≤ T 𝑛𝑛

2
+ n/2

Which of the following recurrences describes the number of
multiplications in the above algorithm?

Exp(a,n) {
if n=0 return 1
else if n=1 return a
else if n is even

b ← Exp(a,n/2)
return b x b

else // n>1 is odd
b ← Exp(a,(n-1)/2)
return b x b x a

}

	CS 381 – Fall 2019
	Review: Asymptotic Notation
	The divide-and-conquer algorithm design paradigm
	Divide-and-Conquer
	Analysis: Divide and Conquer
	What you should learn?
	Mergesort
	Merging
	Mergesort
	Mergesort Correctness
	Mergesort Correctness
	A Useful Recurrence Relation
	Proof by Induction
	Analysis of Mergesort Recurrence
	Analysis of Mergesort Recurrence
	Slide Number 16
	Slide Number 17
	Clicker Question
	Clicker Question

