
1

Week 2.2, Wednesday, August 28

Homework 1 available on course web page
(Due: September 3 at 11:59PM on Gradescope)

Instructor Office Hours: (Monday 2:30-3:30PM, Wed 5:30-6:30PM)

Suppose that
𝑓𝑓 𝑛𝑛 = 2000𝑛𝑛 + 𝑛𝑛2
𝑔𝑔 𝑛𝑛 = 10 𝑛𝑛 log𝑛𝑛
ℎ 𝑛𝑛 = 𝑛𝑛2/1000

Which of the following claims are true?

1. 𝑔𝑔 𝑛𝑛 = 𝑂𝑂 𝑓𝑓 𝑛𝑛
2. ℎ 𝑛𝑛 = 𝑂𝑂 𝑓𝑓 𝑛𝑛
3. ℎ 𝑛𝑛 = Ω 𝑓𝑓 𝑛𝑛
4. ℎ 𝑛𝑛 = 𝑂𝑂 𝑔𝑔 𝑛𝑛

A.Claim 4 only
B. Claim 1 & 2 only
C. Claims 1,2 and 3
D.All claims are true
E. None of them

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

 Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

 Most common usage.
 Break up problem of size n into two equal parts of size 𝑛𝑛

2
.

 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

 Consequence.
 Brute force: n2.
 Divide-and-conquer: n log n.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

 Running Time (Recurrences):
 Let T(n) be the time to solve problem of size n (worst-

case).
 Suppose we split input X into 3 equal size parts A, B and

C recursively solve smaller problems A, B and C and then
merge the solutions.

𝑇𝑇 𝑛𝑛 ≤ 3𝑇𝑇
𝑛𝑛
3

+ #Steps(Merge)

 Correctness?
 Induction!
 Prove that algorithm is correct on small inputs (e.g., 𝑛𝑛 ≤

2)
 Prove that merge algorithm is correct (QED)

 Solve Recurrences
 Identify recurrence associated with divide and

conquer algorithm
 Prove that a divide and conquer algorithm is

correct
 Creative: Design efficient divide and conquer

algorithms
 Build intuition about when the divide and conquer

approach will work.

 Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

𝑇𝑇 𝑛𝑛 ≤ 2 � 𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Divide O(1)

Sort 2T(n/2)

Merge O(n)

 Merging. Combine two pre-sorted lists into a sorted whole.

 How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

 Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

05demo-merge.ppt

 Pre-condition. [Merge] A and B are sorted.
 Post-condition. [Sort] L is sorted.

Sort(L) {
if list L has one element

return 0 and the list L

Divide the list into two (equal) halves A and B
A ← Sort(A)
B ← Sort(B)
L ← Merge(A, B)

return L
}

 P(n) = “Mergesort correctly sorts all lists L of
length |L| = n”

 Base Case: |L| = 1 (check)
Sort(L) {

if list L has one element
return 0 and the list L

Divide the list into two (equal) halves A and B
A ← Sort(A)
B ← Sort(B)
L ← Merge(A, B)

return L
}

 P(n) = “Mergesort correctly sorts all lists L of
length |L| = n”

 Base Case: |L| = 1
 Strong Inductive Hypothesis: P(k) holds for all k <

n i.e., correct on any list of length < n
 Inductive Step:

 Algorithm splits input L into A and B
A ← Sort(A), B ← Sort(B)

 IH  both A and B both sorted correctly
 Therefore, algorithm is correct (as long
as merge step is implemented correctly)
QED

 Def. T(n) = number of comparisons to mergesort an input
of size n.

 Mergesort recurrence.

 Solution. T(n) = O(n log2 n).

 Assorted proofs. We describe several ways to prove this
recurrence. Initially we assume n is a power of 2 and
replace ≤ with =.



T(n) ≤
 0 if n =1
T n /2 ()
solve left half
  

+ T n /2 ()
solve right half
  

+ n
merging
 otherwise






 

 Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

 Pf. (by induction on n)
 Base case: n = 1.
 Inductive hypothesis: T(n) = n log2 n.
 Goal: show that T(2n) = 2n log2 (2n).

T(2n) = 2T(n) + 2n
= 2n log2 n + 2n
= 2n log2 (2n) −1() + 2n
= 2n log2(2n)

assumes n is a power of 2



T(n) =
0 if n =1
2T(n /2)

sorting both halves
 

+ n
merging
 otherwise





 

 Claim. If T(n) satisfies the following recurrence,
then T(n) ≤ n lg n.

 Pf. (by induction on n)
 Base case: n = 1.
 Define n1 = n / 2 , n2 = n / 2.
 Induction step: assume true for 1, 2, ... , n–1.



T(n) ≤
 0 if n =1
T n /2 ()
solve left half
  

+ T n /2 ()
solve right half
  

+ n
merging
 otherwise






 

 Claim. If T(n) satisfies the following
recurrence, then T(n) ≤ n lg n.

 Pf. (by induction on n)
 Base case: n = 1.
 Define n1 = n / 2 , n2 = n / 2.
 Induction step: assume true for 1, 2, ... , n–1.

T(n) ≤ T(n1) + T(n2) + n
≤ n1 lgn1  + n2 lgn2  + n
≤ n1 lgn2  + n2 lgn2  + n
= n lgn2  + n
≤ n(lgn −1) + n
= n lgn 

 
  

   

  1lglg
22/2

2/2

2/

2

1lglg

lg

2

−≤⇒

==
≤

=

−

nn

nn

nn

n

Problem: Compute an, n>0. Minimize
number of multiplications.

Naive algorithm: Θ(n) multiplications

Exp(a,n) {
if n=0 return 1
else if n=1 return a
else if n is even

b ← Exp(a,n/2)
return b x b

else // n>1 is odd
b ← Exp(a,(n-1)/2)
return b x b x a

}

A. T n ≤ T 𝑛𝑛 − 1 + 1
B. T n ≤ T 𝑛𝑛/2 + 2
C. T n ≤ 4T 𝑛𝑛/2 + n

D. T n ≤ 3T 𝑛𝑛/3 + 1
E. T n ≤ T 𝑛𝑛

2
+ n/2

Which of the following recurrences describes the number of
multiplications in the above algorithm?

Exp(a,n) {
if n=0 return 1
else if n=1 return a
else if n is even

b ← Exp(a,n/2)
return b x b

else // n>1 is odd
b ← Exp(a,(n-1)/2)
return b x b x a

}

A. T n ≤ T 𝑛𝑛 − 1 + 1
B. T n ≤ T 𝑛𝑛/2 + 2
C. T n ≤ 4T 𝑛𝑛/2 + n

D. T n ≤ 3T 𝑛𝑛/3 + 1
E. T n ≤ T 𝑛𝑛

2
+ n/2

Which of the following recurrences describes the number of
multiplications in the above algorithm?

Exp(a,n) {
if n=0 return 1
else if n=1 return a
else if n is even

b ← Exp(a,n/2)
return b x b

else // n>1 is odd
b ← Exp(a,(n-1)/2)
return b x b x a

}

	CS 381 – Fall 2019
	Review: Asymptotic Notation
	The divide-and-conquer algorithm design paradigm
	Divide-and-Conquer
	Analysis: Divide and Conquer
	What you should learn?
	Mergesort
	Merging
	Mergesort
	Mergesort Correctness
	Mergesort Correctness
	A Useful Recurrence Relation
	Proof by Induction
	Analysis of Mergesort Recurrence
	Analysis of Mergesort Recurrence
	Slide Number 16
	Slide Number 17
	Clicker Question
	Clicker Question

