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Week 2.2,  Wednesday, August 28

Homework 1 available on course web page
(Due: September 3 at 11:59PM on Gradescope)  

Instructor Office Hours:  (Monday 2:30-3:30PM, Wed 5:30-6:30PM)



Suppose that 
𝑓𝑓 𝑛𝑛 = 2000𝑛𝑛 + 𝑛𝑛2
𝑔𝑔 𝑛𝑛 = 10 𝑛𝑛 log𝑛𝑛
ℎ 𝑛𝑛 = 𝑛𝑛2/1000

Which of the following claims are true?

1. 𝑔𝑔 𝑛𝑛 = 𝑂𝑂 𝑓𝑓 𝑛𝑛
2. ℎ 𝑛𝑛 = 𝑂𝑂 𝑓𝑓 𝑛𝑛
3. ℎ 𝑛𝑛 = Ω 𝑓𝑓 𝑛𝑛
4. ℎ 𝑛𝑛 = 𝑂𝑂 𝑔𝑔 𝑛𝑛

A.Claim 4 only
B. Claim 1 & 2 only
C. Claims 1,2 and 3
D.All claims are true
E. None of them



1.  Divide the problem (instance) 
into subproblems.

2.  Conquer the subproblems by 
solving them recursively.

3.  Combine subproblem solutions.



 Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

 Most common usage.
 Break up problem of size n into two equal parts of size 𝑛𝑛

2
.

 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

 Consequence.
 Brute force:  n2.
 Divide-and-conquer:  n log n.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar



 Running Time (Recurrences): 
 Let T(n) be the time to solve problem of size n (worst-

case).
 Suppose we split input X into 3 equal size parts A, B and 

C recursively solve smaller problems A, B and C and then 
merge the solutions.

𝑇𝑇 𝑛𝑛 ≤ 3𝑇𝑇
𝑛𝑛
3

+ #Steps(Merge)

 Correctness?
 Induction!
 Prove that algorithm is correct on small inputs (e.g., 𝑛𝑛 ≤

2)
 Prove that merge algorithm is correct (QED) 



 Solve Recurrences
 Identify recurrence associated with divide and 

conquer algorithm
 Prove that a divide and conquer algorithm is 

correct
 Creative: Design efficient divide and conquer 

algorithms
 Build intuition about when the divide and conquer 

approach will work.



 Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

𝑇𝑇 𝑛𝑛 ≤ 2 � 𝑇𝑇
𝑛𝑛
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+ 𝑂𝑂(𝑛𝑛)

Divide   O(1)

Sort      2T(n/2)

Merge   O(n)



 Merging.  Combine two pre-sorted lists into a sorted whole.

 How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

 Challenge for the bored.  In-place merge.  [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

05demo-merge.ppt



 Pre-condition. [Merge] A and B are sorted.
 Post-condition.  [Sort] L is sorted.

Sort(L) {
if list L has one element

return 0 and the list L

Divide the list into two (equal) halves A and B
A ← Sort(A)
B ← Sort(B)
L ← Merge(A, B)

return L
}



 P(n) = “Mergesort correctly sorts all lists L of 
length |L| = n”

 Base Case: |L| = 1  (check)
Sort(L) {

if list L has one element
return 0 and the list L

Divide the list into two (equal) halves A and B
A ← Sort(A)
B ← Sort(B)
L ← Merge(A, B)

return L
}



 P(n) = “Mergesort correctly sorts all lists L of 
length |L| = n”

 Base Case: |L| = 1 
 Strong Inductive Hypothesis: P(k) holds for all k < 

n i.e., correct on any list of length < n
 Inductive Step: 

 Algorithm splits input L into A and B
A ← Sort(A), B ← Sort(B)

 IH  both A and B both sorted correctly
 Therefore, algorithm is correct (as long 
as merge step is implemented correctly) 
QED



 Def.  T(n)  = number of comparisons to mergesort an input 
of size n.

 Mergesort recurrence.  

 Solution.  T(n) = O(n log2 n). 

 Assorted proofs.  We describe several ways to prove this 
recurrence. Initially we assume n is a power of 2 and 
replace ≤ with =.

  

 

T(n) ≤
 0 if  n =1
T n /2 ( )
solve left half
  

+ T n /2 ( )
solve right half
  

+ n
merging
 otherwise

 

 
 

  



 Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

 Pf.  (by induction on n)
 Base case:  n = 1.
 Inductive hypothesis:  T(n) =  n log2 n.
 Goal:  show that T(2n) =  2n log2 (2n).

  

 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2 (2n) −1( ) +  2n
= 2n log2(2n)

assumes n is a power of 2

  

 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
 

+ n
merging
 otherwise

 
 
 

  



 Claim.  If T(n) satisfies the following recurrence, 
then T(n)  ≤ n lg n.

 Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = n / 2 ,  n2 = n / 2.
 Induction step:  assume true for 1, 2, ... , n–1.

  

 

T(n) ≤
 0 if  n =1
T n /2 ( )
solve left half
  

+ T n /2 ( )
solve right half
  

+ n
merging
 otherwise

 

 
 

  



 Claim.  If T(n) satisfies the following 
recurrence, then T(n)  ≤ n lg n.

 Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = n / 2 ,  n2 = n / 2.
 Induction step:  assume true for 1, 2, ... , n–1.

  

 

T(n) ≤ T(n1)  +  T(n2 )  +  n
≤ n1 lgn1  +  n2 lgn2  +  n
≤ n1 lgn2  +  n2 lgn2  +  n
= n lgn2  +  n
≤ n( lgn −1 )  +  n
= n lgn 
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Problem: Compute an, n>0.  Minimize 
number of multiplications.

Naive algorithm: Θ(n) multiplications

Exp(a,n) {
if n=0 return 1
else if n=1 return a 
else if n is even 

b ← Exp(a,n/2) 
return b x b

else // n>1 is odd  
b ← Exp(a,(n-1)/2) 
return b x b x a

}





A. T n ≤ T 𝑛𝑛 − 1 + 1
B. T n ≤ T 𝑛𝑛/2 + 2
C. T n ≤ 4T 𝑛𝑛/2 + n

D.  T n ≤ 3T 𝑛𝑛/3 + 1
E.  T n ≤ T 𝑛𝑛

2
+ n/2

Which of the following recurrences describes the number of 
multiplications in the above algorithm?

Exp(a,n) {
if n=0 return 1
else if n=1 return a 
else if n is even 

b ← Exp(a,n/2) 
return b x b

else // n>1 is odd  
b ← Exp(a,(n-1)/2) 
return b x b x a

}



A. T n ≤ T 𝑛𝑛 − 1 + 1
B. T n ≤ T 𝑛𝑛/2 + 2
C. T n ≤ 4T 𝑛𝑛/2 + n

D.  T n ≤ 3T 𝑛𝑛/3 + 1
E.  T n ≤ T 𝑛𝑛

2
+ n/2

Which of the following recurrences describes the number of 
multiplications in the above algorithm?

Exp(a,n) {
if n=0 return 1
else if n=1 return a 
else if n is even 

b ← Exp(a,n/2) 
return b x b

else // n>1 is odd  
b ← Exp(a,(n-1)/2) 
return b x b x a

}
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