k 2.1, Monday, August 26

Homework 1 available on course web page
(Due: September 3 at 11:59PM on Gradescope)

‘Hours (Piazza)

ai Nguyen --- HAAS G050)
of. Blocki --- LWSN 1165)
1 Jain --- HAAS G050)

__ (Noah Franks - HAAS @)
AM-1:15PM (Himanshi Mehta --- HAAS G050)

(Mike Cinkoske --- HAAS G050)
| (Kevin Xia --- HAAS G050)
- = 2:30-3:30PM (Prof. Blocki --- LWSN 1165)
= 4-5:30PM (Ahammed Ullah --- HAAS G050)

ours (Piazza)

(Noah Franks --- HAAS G050)
imanshi Mehta --- HAAS G050)

(Abhishek Sharma -

LWSN 3 floor lobby*)
(Hiten Rathod — HAAS G050)
(Tunaz Islam --- HAAS G050)

ok f available; otherwise HA AS G050

What do we count?

om Access Model RAM)

concurrency

1t instructions (arithmetic operation,
comparison, data movement)

m each instruction takes constant time

= realistic assumption on the size of the
numbers (to represent n, it takes log n bits)

Asymp totic notation: Big-O

1) | there exist positive constants
at0<f (n) < c g(n) or all

Jud @

e f(n) = O(g(n)) if there exist constants c>
-0 such that 0 < f(n) <cg(n) for all n = n,,.

£ 23log n -28 = O(n)
= Drops low-order terms
= Jenores leading constants
= May not hold for small values of n

1) = O(g(n)) it there exist constants ¢> 0, ny,> 0

such that 0 < f(n) <cg(n) for all n = n,,.

f(n) =3n” - 4n + 512
3n?+512

4n? for n = 23
(set c=4, n,= 23)

<
<

= f(n) = O(n?)
[=] f(n)= O(IIS) also holds "o fln) = X g(n)) "
= f(n) =O(n) is false

true
true
false
true
false
false
true

false

sonsider two running times:
4nlogn and 8nn'/s

s hold?

= O(8nn!/8)

Z

one

and 3

MmO N>
== N =

sonsider two running times:
4nlogn and 8nn'/s

s hold?

i < (4nlogn)
= O(8nn!/8)

A.None

(a4
D.1and 3
E. 4

licker: Question 2

,g, and h are positive functions (i.e.,
for alln > 1) Which of the

A. All of the above
B. 1

L

D.1and 3

E. 1and 2

Clicker: Question 2

and h are positive functions (i.e.,
for all n = 1). Which of the
necessarily true?

O(t(n)+g(n))
O(g(n)) and g(n) = O(h(n))=> f(n) =
O(f(n/2)) A. All of the above

B. 1
&)
D.1

and 3

Asymptotic Bounds

n) | there exist positive constants c and n,
ich that 0 < f (1) < ¢ g(n) for all n2n,}

captures upper bounds

)) = { f (n)| there exist positive constants c;, c,,
o such that 0 <c, g(n) <f (n) < ¢, g(n) for all n=n}

© captiites upper and lower bounds

| ~Xamp|es

on is O(n°) and ©(r°) is true
O(2") true, but ©(2")

Y is O(n) true, but O(n) false
)(n log) is true, but ©(1 log)

14

Asymptotic Bounds

there exist positive constants c and n,,
that 0 <f (n) < c g(n) for all n=n,}

unds

={f(n)] there e positive constants c;, ¢,,
ch that 0 <c, g(n) < f(n) < c, g(n) for all n=n,}

s upper and lower bounds

¢(n) f(n) | there exist positive constants c and n,
such that 0 <cg(n) <f(n) for all n=2n}

aptures lower bounds

4n log n = Q (n)

15

Note

assume that n is “nice”

enting the algorithms and
ruc1a1 the

asked to design an efficient algorithm
mes you will be given a target asymptotic

times you need to find the “best” one
] You can use known data structures

- = State how they are implemented and give time
bounds of operations

16

while n > 1 do
fori=1tondo

F(in)

17

while n > 1 do
fori=1tondo

F(in)

18

while n > 1 do
fori=1tondo

F(in)

19

while n > 1 do
fori=1tondo

F(in)

22

nt
irithmic (any base)

hXO®
<)

> n)- quasi-linear
Juadratic
ubic

polynomial, k is a positive constant

O(2n), O(c) - exponential, ¢ is a constant > 1
O(n!) - factorial
O(n?)

23

Table 2.1 The running times (rounded up) of different algorithms on inputs of

increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10 years, we simply record the algorithm as

taking a very long time.

no onlgn nf n’ 1 2 !
n=10 <lsec <lsec <1sec < 1sec < 1sec < 1sec 4 sec
n=230 <lsec <lsec <1sec < 1sec < 1sec 18min 107 years
n=50 <lsec <lsec <1sec < 1sec Ilmin 36years verylong
n=100 <lsec <lsec <1sec Isec 12,892years 107 years very long
n=1000 <lsec <1sec L sec 18 min very long verylong very long
n=10000 <Isec <lsec 2mn 12 days very long verylong very long
n=100,000 <1sec 2sec 3 hours 32 years very long verylong very long
n = 1,000,000 lsec 20sec 12days 31,710 years very long verylong very long

| he divide-and-conquer
1lgo ihm design paradigm

oblem
ubproblems

'onquer the subproblems by
blving them recursively.

“ombine subproblem
“solutions.

Cup problem of size n int
two parts recursively.
ne two solutions into overall solution in linear time.

two equal parts of size 72n.

= Brute force: n2.
- = Divide-and-conquer: n log n.

- Julius Caesar

ANElysis: Divide and Conquer

Recurrences):
1e to solve problem of size n (worst-

pose we sp 1T
ocursively solve s
e the solutions.

BF(n) < 3T (g

X into 3 equal size parts A, B and
problems A, B and C and then

) + #Steps(Merge)

“tness?
- Induction!
= Prove that algorithm is correct on small inputs (e.g., n <

2)
"~ » Prove that merge algorithm et (QED)

yu should learn?

e associated with divide and

Jue lgo 11

> that a divide and ¢ onquer algorithm is

ve: Design efficient divide and conquer

Build intuition about when the divide and conquer
approach will work.

ergesort

—
[—
[—
_—
—_

v

two halves.

half.
Jon von Neumann (1945)
e sorted whole.

e two halve

BN EEENEEE Dvide o0

BN EENEE st 27/
-

BN Mese O

n

T(n)SZT(z

)+O(n)

lerging

ine two pre-sorted lists into a sorted whole.

‘Challenge for the bored. In-place merge.

I

using only a constant amount of extra storage

lecurrence Relation

number of comparisons to mergesort an input

0 if n=1
T(n) < T(|_n/2_|) + T(|_n/2J) + n otherwise

%/—J .
solve left half solve right half ~ Merging

5 Assorted proofs. We describe several ways to prove this
- recurrence. Initially we assume n is a power of 2 and
replace < with =.

isfies this recurrence, then T(n) = n log, n.
f

assumes n is a power of 2

0 if n=1
2T(n/2) + n otherwise

| H,—J_
sorting both halves merging

2T(n) + 2n

= 2nlog,n + 2n
2n(log,(2n)-1) + 2n
2nlog, (2n)

dlysis of Mergesort
- Recurrence

_satisfies the following recurrence,

Al

‘ 0 if n=1
T() <3 T(In/2]) + T(In/2]) + n otherwise

solve lefthalf ~ solve right half ~ Merging

= Basecase: n=1.
- = Definen, = In/ 2], n,=[n/2l
= Induction step: assume true for1, 2, ..., n-1.

Analysis of Mergesort
Recurrence

satisfies the following
(n) <nllgn].

e case: n=1.

en1 Ly A |_n/2_|

uction step: assume true for1, 2, ..., n-1.

n/2]|

202]

T(n) + T(n,) + n
n1|—lgn1—|+ n2|_lgn2_|+ n
n1|_lgn2_|+ n2|_lgn2_|+ n

n|_lgn2_|+ n
n(|_lgn—|—1) +n

n|_lg n_|

ollan] /o
=Ilgn,<[lgn -1

1 N VA NS | B VA NS VANR VAN

ompute a", n>0. Minimize

and-conquer algorithm:

- [an2. gn2 if n is even:
a(-12. a(-1)2. 5 if nis odd.

T(n) = T(n/2) + ©(1) = T(n) = Olog 1)

	CS 381 – Fall 2019
	Office Hours (Piazza)
	Office Hours (Piazza)
	What do we count? �
	Asymptotic notation: Big-O
	Slide Number 6
	�Which statements are true?
	Which statements are true?
	Consider two running times:�4nlogn and 8nn1/8
	Consider two running times:�4nlogn and 8nn1/8
	Clicker: Question 2
	Clicker: Question 2
	Asymptotic Bounds
	Examples
	Asymptotic Bounds
	Note
	How many times is F called?
	How many times is F called?
	How many times is F called?
	Useful Fact: Geometric Series
	How many times is F called?
	Common complexity classes�
	Slide Number 24
	The divide-and-conquer algorithm design paradigm
	Divide-and-Conquer
	Analysis: Divide and Conquer
	What you should learn?
	Mergesort
	Merging
	A Useful Recurrence Relation
	Proof by Induction
	Analysis of Mergesort Recurrence
	Analysis of Mergesort Recurrence
	Slide Number 35

