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Week 2.1,  Monday, August 26

Homework 1 available on course web page
(Due: September 3 at 11:59PM on Gradescope)  



 Monday
 9-10:30                  (Hai Nguyen --- HAAS G050)
 2:30-3:30 PM        (Prof. Blocki --- LWSN 1165)
 3:30-4:30 PM        (Utkarsh Jain --- HAAS G050)

 Tuesday 
 8-9:30AM              (Noah Franks --- HAAS G050)
 11:45AM-1:15PM (Himanshi Mehta --- HAAS G050)

 Wednesday
 9:30 -11AM           (Mike Cinkoske --- HAAS G050)
 11:30AM-1PM      (Kevin Xia --- HAAS G050)
 2:30-3:30PM          (Prof. Blocki --- LWSN 1165)
 4-5:30PM               (Ahammed Ullah --- HAAS G050)



 Thursday
 8-9:30AM               (Noah Franks --- HAAS G050)
 11:45-1:15AM        (Himanshi Mehta --- HAAS G050)

 Friday
 10-11:30AM           (Abhishek Sharma ---

LWSN 3rd floor lobby*)
 2:30-3:30PM           (Hiten Rathod --- HAAS G050)
 5-6:30PM                (Tunaz Islam  --- HAAS G050)

* If available; otherwise HAAS G050
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 Time and space
 time in terms of number of basic operations 

on basic data types
 Ignore machine dependent factors, but remain 

realistic
 Random Access Model (RAM) 

 no concurrency
 count instructions (arithmetic operation, 

comparison, data movement)
 each instruction takes constant time 
 realistic assumption on the size of the 

numbers (to represent n, it takes log n bits)
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O(g(n)) = { f (n)| there exist positive constants 
c and n0 such that 0 ≤ f (n) ≤ c g(n) or all 
n≥n0}

We write f(n) = O(g(n)) if there exist constants c> 
0, n0> 0 such that  0 ≤ f(n) ≤cg(n) for all n ≥ n0.

4n + 23log n –28 = O(n)
 Drops low-order terms
 Ignores leading constants
 May not hold for small values of n 
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f(n) = O(g(n)) if there exist constants c> 0, n0> 0 

such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

f(n) = 3n2 – 4n  + 512  
≤  3n2 +512  
≤  4n2  for n ≥ 23

(set c=4, n0= 23)
 f(n) = O(n2)
 f(n)= O(n3) also holds 
 f(n) = O(n) is false 

CLRS text Figure 3.1
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3n3 + 90n2–5n = O(n3) 
3n3 + 90n2–5n = O(2n)
3n3 + 90n2–5n = O(n2) 
5 log n = O(n)  
𝑛𝑛 = O(log n8)   

n log n = O(n) 
4n = O(n log n)
n/log n = O( 𝑛𝑛) 
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3n3 + 90n2–5n = O(n3) true
3n3 + 90n2–5n = O(2n) true
3n3 + 90n2–5n = O(n2) false
5 log n = O(n)  true 
𝑛𝑛 = O(log n8)   false 

n log n = O(n) false
4n = O(n log n) true 
n/log n = O( 𝑛𝑛) false



Which relationships hold?
1. 4nlogn = O(8nn1/8)
2. 8nn1/8 = O(4nlogn)
3. 4nlogn = Θ(8nn1/8)
4. 8nn1/8 = Θ(4nlogn)

A. None
B. 1
C. 2
D. 1 and 3
E. 4



Which relationships hold?
1. 4nlogn = O(8nn1/8)
2. 8nn1/8 = O(4nlogn)
3. 4nlogn = Θ(8nn1/8)
4. 8nn1/8 = Θ(4nlogn)

A. None
B. 1
C. 2
D. 1 and 3
E. 4



Suppose that f,g, and h are positive functions (i.e., 
𝑓𝑓 𝑛𝑛 ,𝑔𝑔 𝑛𝑛 ,ℎ 𝑛𝑛 ≥ 1 for all 𝑛𝑛 ≥ 1). Which of the 
following claims are necessarily true?
1. f(n)=O(g(n))  f(n) = O(f(n)+g(n))
2. f(n) = O(g(n)) and g(n) = O(h(n)) f(n) = 

O(h(n))
3. f(n) = O(f(n/2)) A. All of the above

B. 1
C. 2
D. 1 and 3
E. 1 and 2



Suppose that f,g, and h are positive functions (i.e., 
𝑓𝑓 𝑛𝑛 ,𝑔𝑔 𝑛𝑛 ,ℎ 𝑛𝑛 ≥ 1 for all 𝑛𝑛 ≥ 1). Which of the 
following claims are necessarily true?
1. f(n)=O(g(n))  f(n) = O(f(n)+g(n))
2. f(n) = O(g(n)) and g(n) = O(h(n)) f(n) = 

O(h(n))
3. f(n) = O(f(n/2)) A. All of the above

B. 1
C. 2
D. 1 and 3
E. 1 and 2
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O(g(n)) = { f (n)| there exist positive constants c and n0 
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2, 
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}

Θ captures upper and lower bounds
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 3n3 + 90n2–5n is O(n3) and Θ(n3) is true
 3n3 + 90n2–5n is O(2n) true, but Θ(2n) 

false 
 5 log n is O(n) true,  but Θ(n) false
 4n = O(n log n) is true, but Θ(n log n) 

false
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O(g(n)) = { f (n)| there exist positive constants c and n0 
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2, 
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}
Θ captures upper and lower bounds

Ω(g(n)) = { f(n)|there exist positive constants c and n0
such that 0 ≤cg(n) ≤f(n) for all n≥n0}

Ω captures lower bounds
4n log n = Ω (n)
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 We will generally assume that n is “nice”
 E.g., power of 2
 We are not implementing the algorithms and 

only need to consider crucial the 
boundary/special cases

 When asked to design an efficient algorithm
 sometimes you will be given a target asymptotic 

bound
 other times you need to find the “best” one

 You can use known data structures
 State how they are implemented and give time 

bounds of operations 
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Assume n is a 
power of 4 
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n) 
O(log n) Θ(log n)
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Assume n is a 
power of 4 
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n) 
O(log n) Θ(log n)
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Assume n is a 
power of 4 
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n) 
O(log n) Θ(log n)

�
𝑖𝑖=1

𝑘𝑘
4𝑘𝑘



Fact: Suppose 𝑥𝑥 ≠ 1 then ∑𝑖𝑖=0𝑘𝑘 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑘𝑘+1−1
𝑥𝑥−1

Proof: ∑𝑖𝑖=0𝑘𝑘 𝑥𝑥𝑖𝑖 = 1−𝑥𝑥
1−𝑥𝑥

∑𝑖𝑖=0𝑘𝑘 𝑥𝑥𝑖𝑖

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

𝑘𝑘
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=0

𝑘𝑘
𝑥𝑥𝑖𝑖+1

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

𝑘𝑘
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=1

𝑘𝑘+1
𝑥𝑥𝑖𝑖 =

𝑥𝑥𝑘𝑘+1 − 1
𝑥𝑥 − 1

Example: 𝑥𝑥 = 4 we have ∑𝑖𝑖=0𝑘𝑘 4𝑖𝑖 = 4𝑘𝑘+1−1
3

= 4𝑛𝑛−1
3
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Assume n is a 
power of 4 (n=4k )

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)
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O(1) – constant 
O(log n) – logarithmic (any base)
O(logk n) – poly log

O(n) – linear
O(n log n)- quasi-linear
O(n2) – quadratic 
O(n3) – cubic
O(nk) – polynomial, k is a positive constant

O(2n), O(cn) – exponential, c is a constant > 1
O(n!) – factorial
O(nn)
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1. Divide the problem 
(instance) into subproblems.

2. Conquer the subproblems by 
solving them recursively.

3. Combine subproblem
solutions.



 Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

 Most common usage.
 Break up problem of size n into two equal parts of size ½n.
 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

 Consequence.
 Brute force:  n2.
 Divide-and-conquer:  n log n.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar



 Running Time (Recurrences): 
 Let T(n) be the time to solve problem of size n (worst-

case).
 Suppose we split input X into 3 equal size parts A, B and 

C recursively solve smaller problems A, B and C and then 
merge the solutions.

𝑇𝑇 𝑛𝑛 ≤ 3𝑇𝑇
𝑛𝑛
3

+ #Steps(Merge)

 Correctness?
 Induction!
 Prove that algorithm is correct on small inputs (e.g., 𝑛𝑛 ≤

2)
 Prove that merge algorithm is correct (QED) 



 Solve Recurrences
 Identify recurrence associated with divide and 

conquer algorithm
 Prove that a divide and conquer algorithm is 

correct
 Creative: Design efficient divide and conquer 

algorithms
 Build intuition about when the divide and conquer 

approach will work.



 Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

𝑇𝑇 𝑛𝑛 ≤ 2 𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Divide   O(1)

Sort      2T(n/2)

Merge   O(n)



 Merging.  Combine two pre-sorted lists into a sorted whole.

 How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

 Challenge for the bored.  In-place merge.  [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

05demo-merge.ppt



 Def.  T(n)  = number of comparisons to mergesort an input 
of size n.

 Mergesort recurrence.  

 Solution.  T(n) = O(n log2 n). 

 Assorted proofs.  We describe several ways to prove this 
recurrence. Initially we assume n is a power of 2 and 
replace ≤ with =.

  

 

T(n) ≤
 0 if  n =1
T n /2 ( )
solve left half
  

+ T n /2 ( )
solve right half
  

+ n
merging
 otherwise

 

 
 

  



 Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

 Pf.  (by induction on n)
 Base case:  n = 1.
 Inductive hypothesis:  T(n) =  n log2 n.
 Goal:  show that T(2n) =  2n log2 (2n).

  

 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2 (2n) −1( ) +  2n
= 2n log2(2n)

assumes n is a power of 2

  

 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
 

+ n
merging
 otherwise

 
 
 

  



 Claim.  If T(n) satisfies the following recurrence, 
then T(n)  ≤ n lg n.

 Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = n / 2 ,  n2 = n / 2.
 Induction step:  assume true for 1, 2, ... , n–1.

  

 

T(n) ≤
 0 if  n =1
T n /2 ( )
solve left half
  

+ T n /2 ( )
solve right half
  

+ n
merging
 otherwise

 

 
 

  



 Claim.  If T(n) satisfies the following 
recurrence, then T(n)  ≤ n lg n.

 Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = n / 2 ,  n2 = n / 2.
 Induction step:  assume true for 1, 2, ... , n–1.

  

 

T(n) ≤ T(n1)  +  T(n2 )  +  n
≤ n1 lgn1  +  n2 lgn2  +  n
≤ n1 lgn2  +  n2 lgn2  +  n
= n lgn2  +  n
≤ n( lgn −1 )  +  n
= n lgn 

 
  

 

  1lglg
2/2
2/2

2/

2

lg

lg

2

−≤⇒

=
≤

=

nn

nn

n

n



Problem: Compute an, n>0.  Minimize 
number of multiplications.

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:

Naive algorithm: Θ(n) multiplications

T(n) = T(n/2) + Θ(1)  ⇒ T(n) = Θ(log n) 
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