
1

Week 2.1, Monday, August 26

Homework 1 available on course web page
(Due: September 3 at 11:59PM on Gradescope)

 Monday
 9-10:30 (Hai Nguyen --- HAAS G050)
 2:30-3:30 PM (Prof. Blocki --- LWSN 1165)
 3:30-4:30 PM (Utkarsh Jain --- HAAS G050)

 Tuesday
 8-9:30AM (Noah Franks --- HAAS G050)
 11:45AM-1:15PM (Himanshi Mehta --- HAAS G050)

 Wednesday
 9:30 -11AM (Mike Cinkoske --- HAAS G050)
 11:30AM-1PM (Kevin Xia --- HAAS G050)
 2:30-3:30PM (Prof. Blocki --- LWSN 1165)
 4-5:30PM (Ahammed Ullah --- HAAS G050)

 Thursday
 8-9:30AM (Noah Franks --- HAAS G050)
 11:45-1:15AM (Himanshi Mehta --- HAAS G050)

 Friday
 10-11:30AM (Abhishek Sharma ---

LWSN 3rd floor lobby*)
 2:30-3:30PM (Hiten Rathod --- HAAS G050)
 5-6:30PM (Tunaz Islam --- HAAS G050)

* If available; otherwise HAAS G050

4

 Time and space
 time in terms of number of basic operations

on basic data types
 Ignore machine dependent factors, but remain

realistic
 Random Access Model (RAM)

 no concurrency
 count instructions (arithmetic operation,

comparison, data movement)
 each instruction takes constant time
 realistic assumption on the size of the

numbers (to represent n, it takes log n bits)

5

O(g(n)) = { f (n)| there exist positive constants
c and n0 such that 0 ≤ f (n) ≤ c g(n) or all
n≥n0}

We write f(n) = O(g(n)) if there exist constants c>
0, n0> 0 such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

4n + 23log n –28 = O(n)
 Drops low-order terms
 Ignores leading constants
 May not hold for small values of n

6

f(n) = O(g(n)) if there exist constants c> 0, n0> 0

such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

f(n) = 3n2 – 4n + 512
≤ 3n2 +512
≤ 4n2 for n ≥ 23

(set c=4, n0= 23)
 f(n) = O(n2)
 f(n)= O(n3) also holds
 f(n) = O(n) is false

CLRS text Figure 3.1

7

3n3 + 90n2–5n = O(n3)
3n3 + 90n2–5n = O(2n)
3n3 + 90n2–5n = O(n2)
5 log n = O(n)
𝑛𝑛 = O(log n8)

n log n = O(n)
4n = O(n log n)
n/log n = O(𝑛𝑛)

8

3n3 + 90n2–5n = O(n3) true
3n3 + 90n2–5n = O(2n) true
3n3 + 90n2–5n = O(n2) false
5 log n = O(n) true
𝑛𝑛 = O(log n8) false

n log n = O(n) false
4n = O(n log n) true
n/log n = O(𝑛𝑛) false

Which relationships hold?
1. 4nlogn = O(8nn1/8)
2. 8nn1/8 = O(4nlogn)
3. 4nlogn = Θ(8nn1/8)
4. 8nn1/8 = Θ(4nlogn)

A. None
B. 1
C. 2
D. 1 and 3
E. 4

Which relationships hold?
1. 4nlogn = O(8nn1/8)
2. 8nn1/8 = O(4nlogn)
3. 4nlogn = Θ(8nn1/8)
4. 8nn1/8 = Θ(4nlogn)

A. None
B. 1
C. 2
D. 1 and 3
E. 4

Suppose that f,g, and h are positive functions (i.e.,
𝑓𝑓 𝑛𝑛 ,𝑔𝑔 𝑛𝑛 ,ℎ 𝑛𝑛 ≥ 1 for all 𝑛𝑛 ≥ 1). Which of the
following claims are necessarily true?
1. f(n)=O(g(n)) f(n) = O(f(n)+g(n))
2. f(n) = O(g(n)) and g(n) = O(h(n)) f(n) =

O(h(n))
3. f(n) = O(f(n/2)) A. All of the above

B. 1
C. 2
D. 1 and 3
E. 1 and 2

Suppose that f,g, and h are positive functions (i.e.,
𝑓𝑓 𝑛𝑛 ,𝑔𝑔 𝑛𝑛 ,ℎ 𝑛𝑛 ≥ 1 for all 𝑛𝑛 ≥ 1). Which of the
following claims are necessarily true?
1. f(n)=O(g(n)) f(n) = O(f(n)+g(n))
2. f(n) = O(g(n)) and g(n) = O(h(n)) f(n) =

O(h(n))
3. f(n) = O(f(n/2)) A. All of the above

B. 1
C. 2
D. 1 and 3
E. 1 and 2

13

O(g(n)) = { f (n)| there exist positive constants c and n0
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2,
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}

Θ captures upper and lower bounds

14

 3n3 + 90n2–5n is O(n3) and Θ(n3) is true
 3n3 + 90n2–5n is O(2n) true, but Θ(2n)

false
 5 log n is O(n) true, but Θ(n) false
 4n = O(n log n) is true, but Θ(n log n)

false

15

O(g(n)) = { f (n)| there exist positive constants c and n0
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2,
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}
Θ captures upper and lower bounds

Ω(g(n)) = { f(n)|there exist positive constants c and n0
such that 0 ≤cg(n) ≤f(n) for all n≥n0}

Ω captures lower bounds
4n log n = Ω (n)

16

 We will generally assume that n is “nice”
 E.g., power of 2
 We are not implementing the algorithms and

only need to consider crucial the
boundary/special cases

 When asked to design an efficient algorithm
 sometimes you will be given a target asymptotic

bound
 other times you need to find the “best” one

 You can use known data structures
 State how they are implemented and give time

bounds of operations

17

Assume n is a
power of 4
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

18

Assume n is a
power of 4
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

19

Assume n is a
power of 4
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

�
𝑖𝑖=1

𝑘𝑘
4𝑘𝑘

Fact: Suppose 𝑥𝑥 ≠ 1 then ∑𝑖𝑖=0𝑘𝑘 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑘𝑘+1−1
𝑥𝑥−1

Proof: ∑𝑖𝑖=0𝑘𝑘 𝑥𝑥𝑖𝑖 = 1−𝑥𝑥
1−𝑥𝑥

∑𝑖𝑖=0𝑘𝑘 𝑥𝑥𝑖𝑖

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

𝑘𝑘
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=0

𝑘𝑘
𝑥𝑥𝑖𝑖+1

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

𝑘𝑘
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=1

𝑘𝑘+1
𝑥𝑥𝑖𝑖 =

𝑥𝑥𝑘𝑘+1 − 1
𝑥𝑥 − 1

Example: 𝑥𝑥 = 4 we have ∑𝑖𝑖=0𝑘𝑘 4𝑖𝑖 = 4𝑘𝑘+1−1
3

= 4𝑛𝑛−1
3

22

Assume n is a
power of 4 (n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

23

O(1) – constant
O(log n) – logarithmic (any base)
O(logk n) – poly log

O(n) – linear
O(n log n)- quasi-linear
O(n2) – quadratic
O(n3) – cubic
O(nk) – polynomial, k is a positive constant

O(2n), O(cn) – exponential, c is a constant > 1
O(n!) – factorial
O(nn)

24

1. Divide the problem
(instance) into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem
solutions.

 Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

 Most common usage.
 Break up problem of size n into two equal parts of size ½n.
 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

 Consequence.
 Brute force: n2.
 Divide-and-conquer: n log n.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

 Running Time (Recurrences):
 Let T(n) be the time to solve problem of size n (worst-

case).
 Suppose we split input X into 3 equal size parts A, B and

C recursively solve smaller problems A, B and C and then
merge the solutions.

𝑇𝑇 𝑛𝑛 ≤ 3𝑇𝑇
𝑛𝑛
3

+ #Steps(Merge)

 Correctness?
 Induction!
 Prove that algorithm is correct on small inputs (e.g., 𝑛𝑛 ≤

2)
 Prove that merge algorithm is correct (QED)

 Solve Recurrences
 Identify recurrence associated with divide and

conquer algorithm
 Prove that a divide and conquer algorithm is

correct
 Creative: Design efficient divide and conquer

algorithms
 Build intuition about when the divide and conquer

approach will work.

 Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

𝑇𝑇 𝑛𝑛 ≤ 2 𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Divide O(1)

Sort 2T(n/2)

Merge O(n)

 Merging. Combine two pre-sorted lists into a sorted whole.

 How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

 Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

05demo-merge.ppt

 Def. T(n) = number of comparisons to mergesort an input
of size n.

 Mergesort recurrence.

 Solution. T(n) = O(n log2 n).

 Assorted proofs. We describe several ways to prove this
recurrence. Initially we assume n is a power of 2 and
replace ≤ with =.

T(n) ≤
 0 if n =1
T n /2 ()
solve left half

+ T n /2 ()
solve right half

+ n
merging
 otherwise

 Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

 Pf. (by induction on n)
 Base case: n = 1.
 Inductive hypothesis: T(n) = n log2 n.
 Goal: show that T(2n) = 2n log2 (2n).

T(2n) = 2T(n) + 2n
= 2n log2 n + 2n
= 2n log2 (2n) −1() + 2n
= 2n log2(2n)

assumes n is a power of 2

T(n) =
0 if n =1
2T(n /2)

sorting both halves

+ n
merging
 otherwise

 Claim. If T(n) satisfies the following recurrence,
then T(n) ≤ n lg n.

 Pf. (by induction on n)
 Base case: n = 1.
 Define n1 = n / 2 , n2 = n / 2.
 Induction step: assume true for 1, 2, ... , n–1.

T(n) ≤
 0 if n =1
T n /2 ()
solve left half

+ T n /2 ()
solve right half

+ n
merging
 otherwise

 Claim. If T(n) satisfies the following
recurrence, then T(n) ≤ n lg n.

 Pf. (by induction on n)
 Base case: n = 1.
 Define n1 = n / 2 , n2 = n / 2.
 Induction step: assume true for 1, 2, ... , n–1.

T(n) ≤ T(n1) + T(n2) + n
≤ n1 lgn1 + n2 lgn2 + n
≤ n1 lgn2 + n2 lgn2 + n
= n lgn2 + n
≤ n(lgn −1) + n
= n lgn

 1lglg
2/2
2/2

2/

2

lg

lg

2

−≤⇒

=
≤

=

nn

nn

n

n

Problem: Compute an, n>0. Minimize
number of multiplications.

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:

Naive algorithm: Θ(n) multiplications

T(n) = T(n/2) + Θ(1) ⇒ T(n) = Θ(log n)

	CS 381 – Fall 2019
	Office Hours (Piazza)
	Office Hours (Piazza)
	What do we count? �
	Asymptotic notation: Big-O
	Slide Number 6
	�Which statements are true?
	Which statements are true?
	Consider two running times:�4nlogn and 8nn1/8
	Consider two running times:�4nlogn and 8nn1/8
	Clicker: Question 2
	Clicker: Question 2
	Asymptotic Bounds
	Examples
	Asymptotic Bounds
	Note
	How many times is F called?
	How many times is F called?
	How many times is F called?
	Useful Fact: Geometric Series
	How many times is F called?
	Common complexity classes�
	Slide Number 24
	The divide-and-conquer algorithm design paradigm
	Divide-and-Conquer
	Analysis: Divide and Conquer
	What you should learn?
	Mergesort
	Merging
	A Useful Recurrence Relation
	Proof by Induction
	Analysis of Mergesort Recurrence
	Analysis of Mergesort Recurrence
	Slide Number 35

