CS 381 – FALL 2019

Week 2.1, Monday, August 26

Homework 1 available on course web page (**Due:** September 3 at 11:59PM on Gradescope)

Office Hours (Piazza)

Monday

- **9-10:30**
- 2:30-3:30 PM
- 3:30-4:30 PM
- Tuesday
 - 8-9:30AM

(Hai Nguyen --- HAAS G050) (Prof. Blocki --- LWSN 1165) (Utkarsh Jain --- HAAS G050)

- (Noah Franks --- HAAS G050)
- 11:45AM-1:15PM (Himanshi Mehta --- HAAS G050)

Wednesday

- 9:30 -11AM
- 11:30AM-1PM
- 2:30-3:30PM
- 4-5:30PM

(Mike Cinkoske --- HAAS G050) (Kevin Xia --- HAAS G050) (Prof. Blocki --- LWSN 1165) (Ahammed Ullah --- HAAS G050)

Office Hours (Piazza)

Thursday
 8-9:30AM
 11:45-1:15AM
 Friday
 10-11:30AM

2:30-3:30PM5-6:30PM

(Noah Franks --- HAAS G050) (Himanshi Mehta --- HAAS G050)

(Abhishek Sharma ---LWSN 3rd floor lobby*) (Hiten Rathod --- HAAS G050) (Tunaz Islam --- HAAS G050)

* If available; otherwise HAAS G050

What do we count?

Time and space

- time in terms of number of basic operations on basic data types
- Ignore machine dependent factors, but remain realistic
- Random Access Model (RAM)
 - no concurrency
 - count instructions (arithmetic operation, comparison, data movement)
 - each instruction takes constant time
 - realistic assumption on the size of the numbers (to represent n, it takes log n bits)

Asymptotic notation: Big-O

 $O(g(n)) = \{f(n) \mid \text{there exist positive constants} \ c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c g(n) \text{ or all} \ n \ge n_0\}$

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

 $4n + 23\log n - 28 = O(n)$

- Drops low-order terms
- Ignores leading constants
- May not hold for small values of n

f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$

such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

 $f(n) = 3n^{2} - 4n + 512$ ≤ 3n²+512 ≤ 4n² for n ≥ 23 (set c=4, n₀= 23) I f(n) = O(n²) I f(n)= O(n³) also holds I f(n) = O(n) is false

CLRS text Figure 3.1

Which statements are true?

 $3n^3 + 90n^2 - 5n = O(n^3)$ $3n^3 + 90n^2 - 5n = O(2^n)$ $3n^3 + 90n^2 - 5n = O(n^2)$ $5 \log n = O(n)$ $\sqrt{n} = O(\log n^8)$ $n \log n = O(n)$ $4n = O(n \log n)$ $n/\log n = O(\sqrt{n})$

Which statements are true?

 $3n^3 + 90n^2 - 5n = O(n^3)$ $3n^3 + 90n^2 - 5n = O(2^n)$ $3n^3 + 90n^2 - 5n = O(n^2)$ $5 \log n = O(n)$ $\sqrt{n} = O(\log n^8)$ $n \log n = O(n)$ $4n = O(n \log n)$ $n/\log n = O(\sqrt{n})$

true true false true false false true false

Consider two running times: 4*n*log*n* and 8*nn*^{1/8}

 Which relationships hold?

 1. $4n\log n = O(8nn^{1/8})$

 2. $8nn^{1/8} = O(4n\log n)$

 3. $4n\log n = \Theta(8nn^{1/8})$

 4. $8nn^{1/8} = \Theta(4n\log n)$

A. None
B. 1
C. 2
D. 1 and 3
E. 4

Consider two running times: 4*n*log*n* and 8*nn*^{1/8}

Which relationships hold? 1. $4n\log n = O(8nn^{1/8})$ 2. $8nn^{1/8} = O(4n\log n)$ 3. $4n\log n = \Theta(8nn^{1/8})$ 4. $8nn^{1/8} = \Theta(4n\log n)$

A. None **B. C. D. D. E. A.**

Clicker: Question 2

Suppose that f,g, and h are positive functions (i.e., $f(n), g(n), h(n) \ge 1$ for all $n \ge 1$). Which of the following claims are necessarily true?

- 1. $f(n)=O(g(n)) \rightarrow f(n) = O(f(n)+g(n))$
- 2. f(n) = O(g(n)) and $g(n) = O(h(n)) \rightarrow f(n) = O(h(n))$
- 3. f(n) = O(f(n/2))

A. All of the above
B. 1
C. 2
D. 1 and 3
E. 1 and 2

Clicker: Question 2

Suppose that f,g, and h are positive functions (i.e., $f(n), g(n), h(n) \ge 1$ for all $n \ge 1$). Which of the following claims are necessarily true?

- 1. $f(n)=O(g(n)) \rightarrow f(n) = O(f(n)+g(n))$
- 2. f(n) = O(g(n)) and $g(n) = O(h(n)) \rightarrow f(n) = O(h(n))$
- 3. f(n) = O(f(n/2))

A. All of the above
B. 1
C. 2
D. 1 and 3
E. 1 and 2

Asymptotic Bounds

 $O(g(n)) = {f(n) |$ there exist positive constants *c* and n_0 such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0$ } O captures upper bounds

 $\Theta(g(n)) = \{ f(n) \mid \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

Θ captures upper and lower bounds

Examples

- $3n^3 + 90n^2 5n$ is $O(n^3)$ and $\Theta(n^3)$ is true
- $3n^3 + 90n^2 5n$ is O(2ⁿ) true, but $\Theta(2^n)$ false
- 5 log n is O(n) true, but Θ(n) false
 4n = O(n log n) is true, but Θ(n log n) false

Asymptotic Bounds

 $O(g(n)) = \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \\ \text{such that } 0 \le f(n) \le c g(n) \text{ for all } n \ge n_0 \}$ O captures upper bounds

 $\Theta(g(n)) = \{f(n) \mid \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \}$ Θ captures upper and lower bounds

 $\Omega(g(n)) = \{ f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \\ \text{such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}$ $\Omega \text{ captures lower bounds} \\ 4n \log n = \Omega(n)$

Note

- We will generally assume that n is "nice"
 - E.g., power of 2
 - We are not implementing the algorithms and only need to consider crucial the boundary/special cases
- When asked to design an efficient algorithm
 - sometimes you will be given a target asymptotic bound
 - other times you need to find the "best" one
- You can use known data structures
 - State how they are implemented and give time bounds of operations

Assume n is a power of 4 (n=4^k) while n > 1 do for i = 1 to n do F(i,n)n = n/4

 $\begin{array}{ll} O(n \log n) & \Theta(n \log n) \\ O(n^2) & \Theta(n^2) \\ O(n) & \Theta(n) \\ O(\log n) & \Theta(\log n) \end{array}$

Assume n is a power of 4 (n=4^k) while n > 1 do for i = 1 to n do F(i,n)n = n/4

 $\begin{array}{ll} O(n \log n) & \Theta(n \log n) \\ O(n^2) & \Theta(n^2) \\ O(n) & \Theta(n) \\ O(\log n) & \Theta(\log n) \end{array}$

Assume n is a power of 4 (n=4^k)

 $\sum_{k=1}^{k} 4^{k}$

while n > 1 do for i = 1 to n do F(i,n)n = n/4

 $\begin{array}{ll} O(n \log n) & \Theta(n \log n) \\ O(n^2) & \Theta(n^2) \\ O(n) & \Theta(n) \\ O(\log n) & \Theta(\log n) \end{array}$

Useful Fact: Geometric Series

Fact: Suppose $x \neq 1$ then $\sum_{i=0}^{k} x^i = \frac{x^{k+1}-1}{x-1}$

Proof:
$$\sum_{i=0}^{k} x^{i} = \frac{1-x}{1-x} \sum_{i=0}^{k} x^{i}$$

$$= \frac{1}{1-x} \left(\sum_{i=0}^{k} x^{i} - \sum_{i=0}^{k} x^{i+1} \right)$$

$$= \frac{1}{1-x} \left(\sum_{i=0}^{k} x^{i} - \sum_{i=1}^{k+1} x^{i} \right) = \frac{x^{k+1} - 1}{x-1}$$

Example: x = 4 we have $\sum_{i=0}^{k} 4^{i} = \frac{4^{k+1}-1}{3} = \frac{4n-1}{3}$

Assume n is a power of 4 ($n=4^k$)

while n > 1 do for i = 1 to n do F(i,n)n = n/4

Common complexity classes

O(1) – constant O(log n) – logarithmic (any base) O(log^k n) – poly log

O(n) – linear $O(n \log n)$ - quasi-linear $O(n^2)$ – quadratic $O(n^3)$ – cubic $O(n^k)$ – polynomial, k is a positive constant

 $O(2^n)$, $O(c^n)$ – exponential, c is a constant > 1 O(n!) – factorial $O(n^n)$ **Table 2.1** The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	n log ₂ n	<i>n</i> ²	<i>n</i> ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
<i>n</i> = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
<i>n</i> = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
<i>n</i> = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

The divide-and-conquer algorithm design paradigm

Divide the problem (instance) into subproblems. *Conquer* the subproblems by solving them recursively. *Combine* subproblem solutions.

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size ¹/₂n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n².
- Divide-and-conquer: n log n.

Divide et impera. Veni, vidi, vici.

- Julius Caesar

Analysis: Divide and Conquer

Running Time (Recurrences):

- Let T(n) be the time to solve problem of size n (worstcase).
- Suppose we split input X into 3 equal size parts A, B and C recursively solve smaller problems A, B and C and then merge the solutions.

$$T(n) \le 3T\left(\frac{n}{3}\right) + #$$
Steps(Merge)

Correctness?

- Induction!
- Prove that algorithm is correct on small inputs (e.g., n ≤ 2)
- Prove that merge algorithm is correct (QED)

What you should learn?

- Solve Recurrences
- Identify recurrence associated with divide and conquer algorithm
- Prove that a divide and conquer algorithm is correct
- Creative: Design efficient divide and conquer algorithms
 - Build intuition about when the divide and conquer approach will work.

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.

Jon von Neumann (1945)

Merge two halves to make sorted whole.

 $T(n) \le 2 T\left(\frac{n}{2}\right) + O(n)$

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

- How to merge efficiently?
 - Linear number of comparisons.
 - Use temporary array.

05demo-merge.ppt

Challenge for the bored. In-place merge. [Kronrud, 1969]
 using only a constant amount of extra storage

A Useful Recurrence Relation Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right half}} + \underbrace{n}_{\text{merging}} & \text{otherwise} \end{cases}$$

• Solution. $T(n) = O(n \log_2 n)$.

■ Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace ≤ with =.

Proof by Induction

• Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ \underbrace{2T(n/2)}_{\text{sorting both halves merging}} + \underbrace{n}_{\text{merging}} & \text{otherwise} \end{cases}$$

■ Pf. (by induction on n)

- Base case: n = 1.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$

= $2n \log_2 n + 2n$
= $2n (\log_2(2n) - 1) + 2n$
= $2n \log_2(2n)$

assumes n is a power of 2

Analysis of Mergesort Recurrence

□ Claim. If T(n) satisfies the following recurrence, then $T(n) \le n \lceil \lg n \rceil$.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right half}} + \underbrace{n}_{\text{merging}} & \text{otherwise} \end{cases}$$

■ Pf. (by induction on n)

- Base case: n = 1.
- Define $n_1 = \lfloor n / 2 \rfloor$, $n_2 = \lceil n / 2 \rceil$.
- Induction step: assume true for 1, 2, ... , n–1.

Analysis of Mergesort Recurrence

- □ Claim. If T(n) satisfies the following recurrence, then $T(n) \le n \lceil \lg n \rceil$.
- □ Pf. (by induction on n)
 - Base case: n = 1.
 - Define $n_1 = \lfloor n / 2 \rfloor$, $n_2 = \lceil n / 2 \rceil$.
 - Induction step: assume true for 1, 2, … , n–1.

$$T(n) \leq T(n_{1}) + T(n_{2}) + n$$

$$\leq n_{1} \lceil \lg n_{1} \rceil + n_{2} \lceil \lg n_{2} \rceil + n$$

$$\leq n_{1} \lceil \lg n_{2} \rceil + n_{2} \lceil \lg n_{2} \rceil + n$$

$$= n \lceil \lg n_{2} \rceil + n$$

$$\leq n(\lceil \lg n \rceil - 1) + n$$

$$= n \lceil \lg n \rceil$$

$$n_{2} = \lceil n/2 \rceil$$

$$\leq \lceil 2^{\lceil \lg n \rceil}/2$$

$$= 2^{\lceil \lg n \rceil}/2$$

$$\Rightarrow \lg n_{2} \leq \lceil \lg n \rceil - 1$$

Problem: Compute *aⁿ*, n>0. Minimize number of multiplications.

Naive algorithm: $\Theta(n)$ multiplications

Divide-and-conquer algorithm:

 $a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$

 $T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\log n)$