
1

Week 2.1, Monday, August 26

Homework 1 available on course web page
(Due: September 3 at 11:59PM on Gradescope)

 Monday
 9-10:30 (Hai Nguyen --- HAAS G050)
 2:30-3:30 PM (Prof. Blocki --- LWSN 1165)
 3:30-4:30 PM (Utkarsh Jain --- HAAS G050)

 Tuesday
 8-9:30AM (Noah Franks --- HAAS G050)
 11:45AM-1:15PM (Himanshi Mehta --- HAAS G050)

 Wednesday
 9:30 -11AM (Mike Cinkoske --- HAAS G050)
 11:30AM-1PM (Kevin Xia --- HAAS G050)
 2:30-3:30PM (Prof. Blocki --- LWSN 1165)
 4-5:30PM (Ahammed Ullah --- HAAS G050)

 Thursday
 8-9:30AM (Noah Franks --- HAAS G050)
 11:45-1:15AM (Himanshi Mehta --- HAAS G050)

 Friday
 10-11:30AM (Abhishek Sharma ---

LWSN 3rd floor lobby*)
 2:30-3:30PM (Hiten Rathod --- HAAS G050)
 5-6:30PM (Tunaz Islam --- HAAS G050)

* If available; otherwise HAAS G050

4

 Time and space
 time in terms of number of basic operations

on basic data types
 Ignore machine dependent factors, but remain

realistic
 Random Access Model (RAM)

 no concurrency
 count instructions (arithmetic operation,

comparison, data movement)
 each instruction takes constant time
 realistic assumption on the size of the

numbers (to represent n, it takes log n bits)

5

O(g(n)) = { f (n)| there exist positive constants
c and n0 such that 0 ≤ f (n) ≤ c g(n) or all
n≥n0}

We write f(n) = O(g(n)) if there exist constants c>
0, n0> 0 such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

4n + 23log n –28 = O(n)
 Drops low-order terms
 Ignores leading constants
 May not hold for small values of n

6

f(n) = O(g(n)) if there exist constants c> 0, n0> 0

such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

f(n) = 3n2 – 4n + 512
≤ 3n2 +512
≤ 4n2 for n ≥ 23

(set c=4, n0= 23)
 f(n) = O(n2)
 f(n)= O(n3) also holds
 f(n) = O(n) is false

CLRS text Figure 3.1

7

3n3 + 90n2–5n = O(n3)
3n3 + 90n2–5n = O(2n)
3n3 + 90n2–5n = O(n2)
5 log n = O(n)
𝑛𝑛 = O(log n8)

n log n = O(n)
4n = O(n log n)
n/log n = O(𝑛𝑛)

8

3n3 + 90n2–5n = O(n3) true
3n3 + 90n2–5n = O(2n) true
3n3 + 90n2–5n = O(n2) false
5 log n = O(n) true
𝑛𝑛 = O(log n8) false

n log n = O(n) false
4n = O(n log n) true
n/log n = O(𝑛𝑛) false

Which relationships hold?
1. 4nlogn = O(8nn1/8)
2. 8nn1/8 = O(4nlogn)
3. 4nlogn = Θ(8nn1/8)
4. 8nn1/8 = Θ(4nlogn)

A. None
B. 1
C. 2
D. 1 and 3
E. 4

Which relationships hold?
1. 4nlogn = O(8nn1/8)
2. 8nn1/8 = O(4nlogn)
3. 4nlogn = Θ(8nn1/8)
4. 8nn1/8 = Θ(4nlogn)

A. None
B. 1
C. 2
D. 1 and 3
E. 4

Suppose that f,g, and h are positive functions (i.e.,
𝑓𝑓 𝑛𝑛 ,𝑔𝑔 𝑛𝑛 ,ℎ 𝑛𝑛 ≥ 1 for all 𝑛𝑛 ≥ 1). Which of the
following claims are necessarily true?
1. f(n)=O(g(n))  f(n) = O(f(n)+g(n))
2. f(n) = O(g(n)) and g(n) = O(h(n)) f(n) =

O(h(n))
3. f(n) = O(f(n/2)) A. All of the above

B. 1
C. 2
D. 1 and 3
E. 1 and 2

Suppose that f,g, and h are positive functions (i.e.,
𝑓𝑓 𝑛𝑛 ,𝑔𝑔 𝑛𝑛 ,ℎ 𝑛𝑛 ≥ 1 for all 𝑛𝑛 ≥ 1). Which of the
following claims are necessarily true?
1. f(n)=O(g(n))  f(n) = O(f(n)+g(n))
2. f(n) = O(g(n)) and g(n) = O(h(n)) f(n) =

O(h(n))
3. f(n) = O(f(n/2)) A. All of the above

B. 1
C. 2
D. 1 and 3
E. 1 and 2

13

O(g(n)) = { f (n)| there exist positive constants c and n0
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2,
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}

Θ captures upper and lower bounds

14

 3n3 + 90n2–5n is O(n3) and Θ(n3) is true
 3n3 + 90n2–5n is O(2n) true, but Θ(2n)

false
 5 log n is O(n) true, but Θ(n) false
 4n = O(n log n) is true, but Θ(n log n)

false

15

O(g(n)) = { f (n)| there exist positive constants c and n0
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2,
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}
Θ captures upper and lower bounds

Ω(g(n)) = { f(n)|there exist positive constants c and n0
such that 0 ≤cg(n) ≤f(n) for all n≥n0}

Ω captures lower bounds
4n log n = Ω (n)

16

 We will generally assume that n is “nice”
 E.g., power of 2
 We are not implementing the algorithms and

only need to consider crucial the
boundary/special cases

 When asked to design an efficient algorithm
 sometimes you will be given a target asymptotic

bound
 other times you need to find the “best” one

 You can use known data structures
 State how they are implemented and give time

bounds of operations

17

Assume n is a
power of 4
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

18

Assume n is a
power of 4
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

19

Assume n is a
power of 4
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

�
𝑖𝑖=1

𝑘𝑘
4𝑘𝑘

Fact: Suppose 𝑥𝑥 ≠ 1 then ∑𝑖𝑖=0𝑘𝑘 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑘𝑘+1−1
𝑥𝑥−1

Proof: ∑𝑖𝑖=0𝑘𝑘 𝑥𝑥𝑖𝑖 = 1−𝑥𝑥
1−𝑥𝑥

∑𝑖𝑖=0𝑘𝑘 𝑥𝑥𝑖𝑖

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

𝑘𝑘
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=0

𝑘𝑘
𝑥𝑥𝑖𝑖+1

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

𝑘𝑘
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=1

𝑘𝑘+1
𝑥𝑥𝑖𝑖 =

𝑥𝑥𝑘𝑘+1 − 1
𝑥𝑥 − 1

Example: 𝑥𝑥 = 4 we have ∑𝑖𝑖=0𝑘𝑘 4𝑖𝑖 = 4𝑘𝑘+1−1
3

= 4𝑛𝑛−1
3

22

Assume n is a
power of 4 (n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

23

O(1) – constant
O(log n) – logarithmic (any base)
O(logk n) – poly log

O(n) – linear
O(n log n)- quasi-linear
O(n2) – quadratic
O(n3) – cubic
O(nk) – polynomial, k is a positive constant

O(2n), O(cn) – exponential, c is a constant > 1
O(n!) – factorial
O(nn)

24

1. Divide the problem
(instance) into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem
solutions.

 Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

 Most common usage.
 Break up problem of size n into two equal parts of size ½n.
 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

 Consequence.
 Brute force: n2.
 Divide-and-conquer: n log n.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

 Running Time (Recurrences):
 Let T(n) be the time to solve problem of size n (worst-

case).
 Suppose we split input X into 3 equal size parts A, B and

C recursively solve smaller problems A, B and C and then
merge the solutions.

𝑇𝑇 𝑛𝑛 ≤ 3𝑇𝑇
𝑛𝑛
3

+ #Steps(Merge)

 Correctness?
 Induction!
 Prove that algorithm is correct on small inputs (e.g., 𝑛𝑛 ≤

2)
 Prove that merge algorithm is correct (QED)

 Solve Recurrences
 Identify recurrence associated with divide and

conquer algorithm
 Prove that a divide and conquer algorithm is

correct
 Creative: Design efficient divide and conquer

algorithms
 Build intuition about when the divide and conquer

approach will work.

 Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

𝑇𝑇 𝑛𝑛 ≤ 2 𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)

Divide O(1)

Sort 2T(n/2)

Merge O(n)

 Merging. Combine two pre-sorted lists into a sorted whole.

 How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

 Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

05demo-merge.ppt

 Def. T(n) = number of comparisons to mergesort an input
of size n.

 Mergesort recurrence.

 Solution. T(n) = O(n log2 n).

 Assorted proofs. We describe several ways to prove this
recurrence. Initially we assume n is a power of 2 and
replace ≤ with =.



T(n) ≤
 0 if n =1
T n /2 ()
solve left half
  

+ T n /2 ()
solve right half
  

+ n
merging
 otherwise






 

 Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

 Pf. (by induction on n)
 Base case: n = 1.
 Inductive hypothesis: T(n) = n log2 n.
 Goal: show that T(2n) = 2n log2 (2n).

T(2n) = 2T(n) + 2n
= 2n log2 n + 2n
= 2n log2 (2n) −1() + 2n
= 2n log2(2n)

assumes n is a power of 2



T(n) =
0 if n =1
2T(n /2)

sorting both halves
 

+ n
merging
 otherwise





 

 Claim. If T(n) satisfies the following recurrence,
then T(n) ≤ n lg n.

 Pf. (by induction on n)
 Base case: n = 1.
 Define n1 = n / 2 , n2 = n / 2.
 Induction step: assume true for 1, 2, ... , n–1.



T(n) ≤
 0 if n =1
T n /2 ()
solve left half
  

+ T n /2 ()
solve right half
  

+ n
merging
 otherwise






 

 Claim. If T(n) satisfies the following
recurrence, then T(n) ≤ n lg n.

 Pf. (by induction on n)
 Base case: n = 1.
 Define n1 = n / 2 , n2 = n / 2.
 Induction step: assume true for 1, 2, ... , n–1.

T(n) ≤ T(n1) + T(n2) + n
≤ n1 lgn1  + n2 lgn2  + n
≤ n1 lgn2  + n2 lgn2  + n
= n lgn2  + n
≤ n(lgn −1) + n
= n lgn 

 
  

 

  1lglg
2/2
2/2

2/

2

lg

lg

2

−≤⇒

=
≤

=

nn

nn

n

n

Problem: Compute an, n>0. Minimize
number of multiplications.

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm:

Naive algorithm: Θ(n) multiplications

T(n) = T(n/2) + Θ(1) ⇒ T(n) = Θ(log n)

	CS 381 – Fall 2019
	Office Hours (Piazza)
	Office Hours (Piazza)
	What do we count? �
	Asymptotic notation: Big-O
	Slide Number 6
	�Which statements are true?
	Which statements are true?
	Consider two running times:�4nlogn and 8nn1/8
	Consider two running times:�4nlogn and 8nn1/8
	Clicker: Question 2
	Clicker: Question 2
	Asymptotic Bounds
	Examples
	Asymptotic Bounds
	Note
	How many times is F called?
	How many times is F called?
	How many times is F called?
	Useful Fact: Geometric Series
	How many times is F called?
	Common complexity classes�
	Slide Number 24
	The divide-and-conquer algorithm design paradigm
	Divide-and-Conquer
	Analysis: Divide and Conquer
	What you should learn?
	Mergesort
	Merging
	A Useful Recurrence Relation
	Proof by Induction
	Analysis of Mergesort Recurrence
	Analysis of Mergesort Recurrence
	Slide Number 35

