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Week 16.1,  Monday, December 2nd

Review for Final Exam: Wednesday, December 4th

PSOs This Week: Review for Final Exam  
No Class on Friday, December 6th



 Please let me know what you liked and what 
could be improved

 http://www.purdue.edu/idp/courseevaluations/CE_
Students.html

 “NP is too hard”

 Closes December 8th at 11:59PM

 Feedback is anonymous and will have no 
impact on final grades

http://www.purdue.edu/idp/courseevaluations/CE_Students.html
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Chapter 10

Extending the Limits
of Tractability
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Copyright @ 2005 Pearson-Addison Wesley.

All rights reserved.



4

Coping With NP-Completeness

Q.  Suppose I need to solve an NP-complete problem. What should I do?

A.  Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

 Solve problem to optimality.

 Solve problem in polynomial time.

 Solve arbitrary instances of the problem.

This lecture.  Solve some special cases of NP-complete problems that arise in 

practice.

Example: Knapsack is NP-Hard

• Can find solutions that are very close to optimal in polynomial time

• Can efficiently solve instances when all weights are small

• Can also efficiently solve instances when all values are small…(next slide)
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Knapsack Problem:  Dynamic Programming II

Def.  OPT(i, v) = min weight subset of items 1, …, i that yields value 

exactly v.

 Case 1:  OPT does not select item i.

– OPT selects best of 1, …, i-1 that achieves exactly value v

 Case 2:  OPT selects item i.

– adds weight wi, new value needed = v – vi

– OPT selects best of 1, …, i-1 that achieves value exactly v – vi

Running time.  O(n V*) = O(n2 vmax).

 V* = optimal value = maximum v such that OPT(n, v)  W.

 Not polynomial in input size!



OPT(i, v) 

0 if  v  0

 if  i 0, v > 0

OPT(i 1, v) if  vi  v

min OPT(i 1, v), wi  OPT(i 1, v vi )  otherwise













V*  n vmax
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Knapsack:  FPTAS

Polynomial Time Approximation Scheme (PTAS): (1 + )-approximation 

algorithm for any constant  > 0. 

Intuition for approximation algorithm.

 Round all values up to lie in smaller range.

 Run dynamic programming algorithm on rounded instance.

 Return optimal items in rounded instance.

W = 11

original instance rounded instance

W = 11

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

934,221

Value

17,810,013

21,217,800

27,343,199

1

Weight

5

6

5,956,342 2

7

Item

1

3

4

5

2



iClicker Question

Assume P≠NP. Which of the following claims are necessarily true? 

(Let n denote the number of variables in a 3SAT formula)

A.There is no algorithm that solves 3SAT in time 𝑂 1.5𝑛

B.There is no algorithm that solves arbitrary 3SAT instances in time 

𝑂 𝑛20000000

C. There is no algorithm running in time 𝑂 𝑛2 that successfully solves 

most 3SAT instances (and occasionally outputs “I don’t know” for 

hard instances that the algorithm cannot solve)

D.Claims B and C are both true

E. Claims A, B and C are all true.
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iClicker Question

Assume P≠NP. Which of the following claims are necessarily true? 

(Let n denote the number of variables in a 3SAT formula)

A.There is no algorithm that solves 3SAT in time 𝑂 1.5𝑛

A.[KS10] deterministic 𝑂 1.439𝑛 algorithm for 3SAT

B. [HMS11]: randomized time 𝑂 1.321𝑛

B.There is no algorithm that solves arbitrary 3SAT instances in time 

𝑂 𝑛20000000

A.this would imply P=NP as 𝑂 𝑛20000000 is still polynomial time.

C. There is no algorithm running in time 𝑂 𝑛2 that successfully solves 

most 3SAT instances (and occasionally outputs “I don’t know” for 

hard instances that the algorithm cannot solve)

A.Heuristic solvers often work quite quickly in practice

D.Claims B and C are both true

E. Claims A, B and C are all true.
9



10.1  Finding Small Vertex Covers
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Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S  V such that |S|  k, and for each edge (u, v) 
either u  S, or v  S, or both.

3

6

10

7

1

5

8

2

4 9

k = 4

S = { 3, 6, 7, 10 }
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Finding Small Vertex Covers

Q.  What if k is small?

Brute force.  O(k nk+1).

 Try all 𝑛
𝑘

= 𝑂 𝑛𝑘 subsets of size k.

 Takes O(k n) time to check whether a subset is a vertex cover.

Goal.  Limit exponential dependency on k, e.g., to O(2k k n).

Ex.  n = 1,000, k = 10.

Brute. k nk+1  = 1034   infeasible.

Better.  2k k n = 107     feasible.

Remark.  If k is a constant, algorithm is poly-time; if k is a small 

constant, then it's also practical.
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Finding Small Vertex Covers

Claim.  Let u-v be an edge of G.  G has a vertex cover of size  k iff

at least one of G  { u } and G  { v } has a vertex cover of size  k-1.

Pf.  

 Suppose G has a vertex cover S of size  k.

 S contains either u or v (or both).  Assume it contains u.

 S  { u } is a vertex cover of G  { u }.

Pf.  

 Suppose S is a vertex cover of G  { u } of size  k-1.

 Then S  { u } is a vertex cover of G.  ▪

Claim.  If G has a vertex cover of size k, it has  k(n-1) edges.

Pf.  Each vertex covers at most n-1 edges.  ▪

delete v and all incident edges



14

Finding Small Vertex Covers:  Algorithm

Claim. The following algorithm determines if G has a vertex 

cover of size  k in O(2k kn) time.

Pf.

 Correctness follows from previous two claims.

 There are  2k+1 nodes in the recursion tree; each 

invocation takes O(kn) time.  ▪

boolean Vertex-Cover(G, k) {

if (G contains no edges)   return true

if (G contains  kn edges) return false

let (u, v) be any edge of G

a = Vertex-Cover(G - {u}, k-1)

b = Vertex-Cover(G - {v}, k-1)

return a or b

}


