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Week 16.1,  Monday, December 2nd

Review for Final Exam: Wednesday, December 4th

PSOs This Week: Review for Final Exam  
No Class on Friday, December 6th



 Please let me know what you liked and what 
could be improved

 http://www.purdue.edu/idp/courseevaluations/CE_
Students.html

 “NP is too hard”

 Closes December 8th at 11:59PM

 Feedback is anonymous and will have no 
impact on final grades

http://www.purdue.edu/idp/courseevaluations/CE_Students.html
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Chapter 10

Extending the Limits
of Tractability

Slides by Kevin Wayne.

Copyright @ 2005 Pearson-Addison Wesley.

All rights reserved.
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Coping With NP-Completeness

Q.  Suppose I need to solve an NP-complete problem. What should I do?

A.  Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

 Solve problem to optimality.

 Solve problem in polynomial time.

 Solve arbitrary instances of the problem.

This lecture.  Solve some special cases of NP-complete problems that arise in 

practice.

Example: Knapsack is NP-Hard

• Can find solutions that are very close to optimal in polynomial time

• Can efficiently solve instances when all weights are small

• Can also efficiently solve instances when all values are small…(next slide)
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Knapsack Problem:  Dynamic Programming II

Def.  OPT(i, v) = min weight subset of items 1, …, i that yields value 

exactly v.

 Case 1:  OPT does not select item i.

– OPT selects best of 1, …, i-1 that achieves exactly value v

 Case 2:  OPT selects item i.

– adds weight wi, new value needed = v – vi

– OPT selects best of 1, …, i-1 that achieves value exactly v – vi

Running time.  O(n V*) = O(n2 vmax).

 V* = optimal value = maximum v such that OPT(n, v)  W.

 Not polynomial in input size!



OPT(i, v) 

0 if  v  0

 if  i 0, v > 0

OPT(i 1, v) if  vi  v

min OPT(i 1, v), wi  OPT(i 1, v vi )  otherwise













V*  n vmax
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Knapsack:  FPTAS

Polynomial Time Approximation Scheme (PTAS): (1 + )-approximation 

algorithm for any constant  > 0. 

Intuition for approximation algorithm.

 Round all values up to lie in smaller range.

 Run dynamic programming algorithm on rounded instance.

 Return optimal items in rounded instance.

W = 11

original instance rounded instance

W = 11

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

934,221

Value

17,810,013

21,217,800

27,343,199

1

Weight

5

6

5,956,342 2
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Item

1

3

4

5

2



iClicker Question

Assume P≠NP. Which of the following claims are necessarily true? 

(Let n denote the number of variables in a 3SAT formula)

A.There is no algorithm that solves 3SAT in time 𝑂 1.5𝑛

B.There is no algorithm that solves arbitrary 3SAT instances in time 

𝑂 𝑛20000000

C. There is no algorithm running in time 𝑂 𝑛2 that successfully solves 

most 3SAT instances (and occasionally outputs “I don’t know” for 

hard instances that the algorithm cannot solve)

D.Claims B and C are both true

E. Claims A, B and C are all true.

7



8



iClicker Question

Assume P≠NP. Which of the following claims are necessarily true? 

(Let n denote the number of variables in a 3SAT formula)

A.There is no algorithm that solves 3SAT in time 𝑂 1.5𝑛

A.[KS10] deterministic 𝑂 1.439𝑛 algorithm for 3SAT

B. [HMS11]: randomized time 𝑂 1.321𝑛

B.There is no algorithm that solves arbitrary 3SAT instances in time 

𝑂 𝑛20000000

A.this would imply P=NP as 𝑂 𝑛20000000 is still polynomial time.

C. There is no algorithm running in time 𝑂 𝑛2 that successfully solves 

most 3SAT instances (and occasionally outputs “I don’t know” for 

hard instances that the algorithm cannot solve)

A.Heuristic solvers often work quite quickly in practice

D.Claims B and C are both true

E. Claims A, B and C are all true.
9



10.1  Finding Small Vertex Covers
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Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S  V such that |S|  k, and for each edge (u, v) 
either u  S, or v  S, or both.

3

6

10

7

1

5

8

2

4 9

k = 4

S = { 3, 6, 7, 10 }
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Finding Small Vertex Covers

Q.  What if k is small?

Brute force.  O(k nk+1).

 Try all 𝑛
𝑘

= 𝑂 𝑛𝑘 subsets of size k.

 Takes O(k n) time to check whether a subset is a vertex cover.

Goal.  Limit exponential dependency on k, e.g., to O(2k k n).

Ex.  n = 1,000, k = 10.

Brute. k nk+1  = 1034   infeasible.

Better.  2k k n = 107     feasible.

Remark.  If k is a constant, algorithm is poly-time; if k is a small 

constant, then it's also practical.
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Finding Small Vertex Covers

Claim.  Let u-v be an edge of G.  G has a vertex cover of size  k iff

at least one of G  { u } and G  { v } has a vertex cover of size  k-1.

Pf.  

 Suppose G has a vertex cover S of size  k.

 S contains either u or v (or both).  Assume it contains u.

 S  { u } is a vertex cover of G  { u }.

Pf.  

 Suppose S is a vertex cover of G  { u } of size  k-1.

 Then S  { u } is a vertex cover of G.  ▪

Claim.  If G has a vertex cover of size k, it has  k(n-1) edges.

Pf.  Each vertex covers at most n-1 edges.  ▪

delete v and all incident edges
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Finding Small Vertex Covers:  Algorithm

Claim. The following algorithm determines if G has a vertex 

cover of size  k in O(2k kn) time.

Pf.

 Correctness follows from previous two claims.

 There are  2k+1 nodes in the recursion tree; each 

invocation takes O(kn) time.  ▪

boolean Vertex-Cover(G, k) {

if (G contains no edges)   return true

if (G contains  kn edges) return false

let (u, v) be any edge of G

a = Vertex-Cover(G - {u}, k-1)

b = Vertex-Cover(G - {v}, k-1)

return a or b

}


