CS 381 - FALL 2019

Week 16.1, Monday, December 2nd

Review for Final Exam: Wednesday, December 4th PSOs This Week: Review for Final Exam No Class on Friday, December 6th

Reminder: Course Evaluation

Please let me know what you liked and what could be improved

- <u>http://www.purdue.edu/idp/courseevaluations/CE</u> <u>Students.html</u>
- "NP is too hard"
- Closes December 8th at 11:59PM
- Feedback is anonymous and will have no impact on final grades

네. My Reports			
CS38100 LE1 Intro Analysis Algor Jeremiah Blocki	Report Unavailable This report will be available on Dec 18	Response Rate	Q •
us stantiaru LEU survey	Closes in 6 days	19 of 162	
	Share Link: CS38100 Survey 👔		

Extending the Limits of Tractability

Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. Coping With NP-Completeness

- Q. Suppose I need to solve an NP-complete problem. What should I do?
- A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that arise in practice.

Example: Knapsack is NP-Hard

- Can find solutions that are very close to optimal in polynomial time
- · Can efficiently solve instances when all weights are small
- · Can also efficiently solve instances when all values are small...(next slide)

Knapsack Problem: Dynamic Programming II

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value exactly v.

- Case 1: OPT does not select item i.
 - OPT selects best of 1, ..., i-1 that achieves exactly value v
- . Case 2: OPT selects item i.
 - adds weight w_i , new value needed = $v v_i$
 - OPT selects best of 1, ..., i-1 that achieves value exactly v v_i

$$OPT(i, v) = \begin{cases} 0 & \text{if } v = 0 \\ \infty & \text{if } i = 0, v > 0 \\ OPT(i-1, v) & \text{if } v_i > v \\ \min \{ OPT(i-1, v), w_i + OPT(i-1, v-v_i) \} & \text{otherwise} \end{cases}$$

$$V^* \le n v_{max}$$

Running time. $O(n V^*) = O(n^2 v_{max})$.

- V* = optimal value = maximum v such that $OPT(n, v) \le W$.
- Not polynomial in input size!

Knapsack: FPTAS

Polynomial Time Approximation Scheme (PTAS): $(1 + \varepsilon)$ -approximation algorithm for any constant $\varepsilon > 0$.

Intuition for approximation algorithm.

- Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

W = 11

Item	Value	Weight
1	934,221	1
2	5,956,342	2
3	17,810,013	5
4	21,217,800	6
5	27,343,199	7

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

W = 11

original instance

rounded instance

iClicker Question

Assume $P \neq NP$. Which of the following claims are necessarily true? (Let n denote the number of variables in a 3SAT formula)

A. There is no algorithm that solves 3SAT in time $O(1.5^n)$

B. There is no algorithm that solves arbitrary 3SAT instances in time $O(n^{2000000})$

C. There is no algorithm running in time $O(n^2)$ that successfully solves most 3SAT instances (and occasionally outputs "I don't know" for hard instances that the algorithm cannot solve)

D.Claims B and C are both true

E. Claims A, B and C are all true.

iClicker Question

Assume $P \neq NP$. Which of the following claims are necessarily true? (Let n denote the number of variables in a 3SAT formula)

- A. There is no algorithm that solves 3SAT in time $O(1.5^n)$ A. [KS10] deterministic $O(1.439^n)$ algorithm for 3SAT B. [HMS11]: randomized time $O(1.321^n)$
- **B.** There is no algorithm that solves arbitrary 3SAT instances in time $O(n^{2000000})$

A. this would imply P=NP as $O(n^{2000000})$ is still polynomial time.

C. There is no algorithm running in time $O(n^2)$ that successfully solves most 3SAT instances (and occasionally outputs "I don't know" for hard instances that the algorithm cannot solve)

A.Heuristic solvers often work quite quickly in practice

D.Claims B and C are both true

GUROBI Z3 Research CPLE

E. Claims A, B and C are all true.

10.1 Finding Small Vertex Covers

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge (u, v) either $u \in S$, or $v \in S$, or both.

Finding Small Vertex Covers

Q. What if k is small?

Brute force. $O(k n^{k+1})$.

- Try all $\binom{n}{k} = O(n^k)$ subsets of size k.
- Takes O(kn) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to O(2^k k n).

```
Ex. n = 1,000, k = 10.
Brute. k n^{k+1} = 10^{34} \implies infeasible.
Better. 2^k k n = 10^7 \implies feasible.
```

Remark. If k is a constant, algorithm is poly-time; if k is a small constant, then it's also practical.

Finding Small Vertex Covers

Claim. Let u-v be an edge of G. G has a vertex cover of size $\leq k$ iff at least one of $G - \{u\}$ and $G - \{v\}$ has a vertex cover of size $\leq k-1$.

delete v and all incident edges

Pf. \Rightarrow

- Suppose G has a vertex cover S of size $\leq k$.
- S contains either u or v (or both). Assume it contains u.
- $S \{u\}$ is a vertex cover of $G \{u\}$.

Pf. ⇐

- Suppose S is a vertex cover of $G \{u\}$ of size $\leq k-1$.
- . Then $S \cup \{u\}$ is a vertex cover of G. $\, \bullet \,$

Claim. If G has a vertex cover of size k, it has \leq k(n-1) edges. Pf. Each vertex covers at most n-1 edges. • Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in O(2^k kn) time.

```
boolean Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains ≥ kn edges) return false
    let (u, v) be any edge of G
    a = Vertex-Cover(G - {u}, k-1)
    b = Vertex-Cover(G - {v}, k-1)
    return a or b
}
```

Pf.

- Correctness follows from previous two claims.
- There are ≤ 2^{k+1} nodes in the recursion tree; each invocation takes O(kn) time.