FALL 2019

6.1, Monday, December 2"

inal Exam: Wednesday, December 4"
Os This Week: Review for Final Exam
No Class on Friday, December 6"




| me know what you liked and what
could be improved

= “NP is too hard”
loses December 8t at 11:59PM

= Feedback is anonymous and will have no
impact on final grades

CS38100 LE1
Intro Analysis Algor



http://www.purdue.edu/idp/courseevaluations/CE_Students.html

- EVA TARDOS

PEARSON

e —

Addison
Wesley




Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should T do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
. Solve problem to optimality.
. Solve problem in polynomial time.
. Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that arise in
practice.

Example: Knapsack is NP-Hard
Can find solutions that are very close to optimal in polynomial time
Can efficiently solve instances when all weights are small
Can also efficiently solve instances when all values are small...(next slide)



Knapsack Problem: Dynamic Programming IT

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value

exactly v.
. Case 1: OPT does not select item i.
- OPT selects best of 1, ..., i-1 that achieves exactly value v

. Case 2: OPT selects item i.
- adds weight w;, new value needed = v - v,

- OPT selects best of 1, ..., i-1 that achieves value exactly v - v;
0 if v=0
_ 00 if i=0,v>0
OPT(i, V) =1 _ _
OPT(i-1,v) if v;>v
| Min{OPT(i-1,v), w;+ OPT(i-1,v—-v;)} otherwise

V*<nv

/ max
Running time. O(n V*) = O(n? v, ,,).
. V* = optimal value = maximum v such that OPT(n, v) < W.
. Not polynomial in input sizel



Knapsack: FPTAS

Polynomial Time Approximation Scheme (PTAS): (1 + ¢)-approximation
algorithm for any constant ¢ > O,

Intuition for approximation algorithm.
. Round all values up to lie in smaller range.
. Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

1 934,221 1 1 1 1

2 5,956,342 2 2 6 2

3 17 810,013 5 ) 3 18 5

4 21,217,800 6 4 22 6

5 27,343,199 7 5 28 7
W= 11 W= 11

original instance rounded instance



iClicker Question

Assume P=NP. Which of the following claims are necessarily true?
(Let n denote the number of variables in a 3SAT formula)
A .There is no algorithm that solves 3SAT in time 0(1.5™)

B. There is no algorithm that solves arbitrary 3SAT instances in fime
O(nZOOOOOOO)

C. There is no algorithm running in time 0(n*) that successfully solves
most 3SAT instances (and occasionally outputs "I don't know" for
hard instances that the algorithm cannot solve)

D.Claims B and C are both true

E. Claims A, B and C are all true.






iClicker Question

Assume P=NP. Which of the following claims are necessarily true?
(Let n denote the number of variables in a 3SAT formula)

A .There is no algorithm that solves 3SAT in time 0(1.5™)
A.[KSIO] deterministic 0(1.439™) algorithm for 3SAT
B. [HMS11]: randomized time 0(1.321™)

B. There is no algorithm that solves arbitrary 3SAT instances in time
0 (n20000000)

A .this would imply P=NP as 0(n*°°°9999) s still polynomial time.

C. There is no algorithm running in time 0(n?) that successfully solves
most 3SAT instances (and occasionally outputs "I don't know" for
hard instances that the algorithm cannot solve)

A .Heuristic solvers often work quite quickly in practice
D.claims B and € are both true @ GUros! 73 = P

IIIIIIIIIIII

E. Claims A, B and C are all true.



10.1 Finding Small Vertex Covers




Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S c V such that |S| <k, and for each edge (u, v)
eitheru e S,orv e S, or both.

]
® S={3,6,7,10}

1



12

Finding Small Vertex Covers

Q. What if k is small?

Brute force. O(k nk*1).
- Try dll (}) = 0(n*) subsets of size k.
. Takes O(kn) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to O(2k k n).

Ex. n=1,000, k = 10.
Brute. knk! =1034 = infeasible.
Better. 2kkn =107 = feasible.

Remark. If kis a constant, algorithm is poly-time; if k is a small
constant, then it's also practical.



Finding Small Vertex Covers

Claim. Let u-v be an edge of G. G has a vertex cover of size < k iff

at least one of G —{u} and G — {v} has a vertex cover of size < k-1.
N

delete v and all incident edges

Pf. =
. Suppose G has a vertex cover S of size < k.
. S contains either u or v (or both). Assume it contains u.
. S—{u}isavertex cover of G-{u}.

Pf. <
. Suppose S is a vertex cover of 6 — {u} of size < k-1.
. Then Su{u}isavertex cover of G. =

Claim. If G has a vertex cover of size k, it has < k(n-1) edges.
Pf. Each vertex covers at most n-1 edges. =

13



Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex
cover of size < k in O(2k kn) time.

boolean Vertex-Cover (G, k) {
if (G contains no edges) return true
if (G contains 2 kn edges) return false

let (u, v) be any edge of G

a = Vertex-Cover (G - {u}, k-1)
b = Vertex-Cover (G - {v}, k-1)
return a or b

Pf.
. Correctness follows from previous two claims.
. There are < 2k! nodes in the recursion tree; each
invocation takes O(kn) time. =

14



