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Week 15.1,  Monday, Nov 25

Homework 7 Due Tomorrow: November 26th at 11:59PM on Gradescope

Monday Office Hours (Today):    2:30-3:30PM 5:30-6:30PM
No Class on Wed/Fri (Happy Thanksgiving!)
No PSOs this Week



iClicker

Assume P ≠ NP. Which of the following problems are not in NP ∩ co-NP?

A.FACTOR
FACTOR is in NP ∩ co-NP (but not known to be in P)
(prime factorization is either a witness/disqualifier)

B. PRIMES
 Primes is in P (contained in NP ∩ co-NP)

C. 3COLOR
If 3COLOR is in co-NP then co-NP = NP since 3COLOR is NP-Complete
More precise problems statement: ``Assume coNP ≠ NP”

D.BIPARTITE MATCHING (Given a bipartite graph G and integer k is 
there a matching that contains at least k edges)?
Primes is in P (contained in NP ∩ co-NP)

E.All of the problems are in NP ∩ co-NP
–This is actually true if NP = co-NP! 
–(Full Credit if you picked choice E since we don’t know)
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Should have assumed coNP ≠ NP
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Partition

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is 
there a subset that adds up to exactly W?

PARTITION. Given natural numbers v1, …, vm , can they be partitioned 
into two subsets that add up to the same value? 

Claim.  SUBSET-SUM ≤ P PARTITION.
Pf.  Let W, w1, …, wn be an instance of SUBSET-SUM.

n Create instance of PARTITION with m = n+2 elements.
– v1 = w1, v2 = w2, …, vn = wn,   vn+1 = 2 Σi wi - W,   vn+2 = Σi wi + W

n There exists a subset that sums to W iff there exists a partition 
since two new elements cannot be in the same partition.  ▪

vn+2 =  Σi wi + W

vn+1 = 2 Σi wi - W              

Σi wi - W

W subset A

subset B

½ Σi vi
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Assume co-NP ≠ NP. Which of the following claims are necessarily true?
1. PARTITION is not in P
2. PRIMES is in co-NP
3. TAUTOLOGY is in coNP

A. Claim 1 only

B. Claim 2 only

C. Claim 3 only

D.Claims 1 and 3

E.All of the claims are true
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Assume co-NP ≠ NP. Which of the following claims are necessarily true?
1. PARTITION is not in P
2. PRIMES is in co-NP
3. TAUTOLOGY is in coNP

A. Claim 1 only
 If PARTITION were in P then P=NP since PARTITION is NP-

Complete. This would imply co-NP=NP. 
B. Claim 2 only
 PRIMES is in P which is contained in co-NP. 

C. Claim 3 only
 TAUTOLOGY is in coNP
 We could also conclude that TAUTOLOGY is not in NP (otherwise we 

would have co-NP = NP since TAUTOLOGY is coNP-complete)
D.Claims 1 and 3

E.All of the claims are true
6
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Let G be an undirected graph. A clique of size k is a complete 
graph on k vertices.  

Clique (decision) problem: 
Given G and an integer k, does G contain a subgraph that is a 
clique of size k?

k=3 k=5

K4: Clique of size 4
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Claim: The clique problem is NP-complete
Proof:
1. The clique problem is in NP.

• The certificate is a set of k vertices.  
• We need to check whether the k vertices induce a 

complete graph of size k in G. Check that all possible 
edges between these k vertices are present. 

2. Choose an NP-complete problem: 3-SAT 
3. Show that 3-SAT ≤ poly Clique

..)..(.......)..(.. ∨∨∧∧∨∨ ≤poly
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Transformation
• Given is a 3-SAT formula C consisting of p clauses
• For every clause, create three vertices and label them 

with the literals in the clause 
• creates 3p vertices 

• Form the edges: Connect each vertex to the literals in 
other clauses that are not the negation of it

• Set k=p

Is a polynomial time transformation generating from 
formula C an undirected graph G and an integer k



10



(x1 ∨ x1 ∨ x1) ∧ (¬x1 ∨ ¬x1 ∨ x2) ∧(x2 ∨ x2 ∨ x2) ∧ (¬x2 ∨ ¬x2 ∨ x1)

x1

x1

x2

x2

¬x1 ¬x1

¬x2 ¬x2

x1 x2

x2

x1
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Graph G has a clique of size k iff formula C can be 
satisfied.

⇐ Assume G contains a clique of size k
• To have a clique of size k, every triplet of vertices 

corresponding to a clause must contribute exactly one 
vertex (no edges connecting this triplet)

• If a vertex in the clique corresponds to an unnegated
variable, set xi = true; if negated, set it to false.  

• no edges between ¬xi and xi assignment is consistent 
This gives an assignment that makes every one of the k=p 
clauses true and thus formula C is satisfiable.
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Graph G has a clique of size k iff formula C can be 
satisfied.

⇒ Assume the formula is satisfiable
Then, at least one literal in every clause is true.
Since x and its negation cannot be true at the same time, 
graph G contains an edge between every pair of literals 
set true.
Hence, we have a clique of size p=k.

⇒ (For each clause pick one ``true” node from the 
corresponding triplet)



Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems: 3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.5  Sequencing Problems
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V.

YES:  vertices and faces of a dodecahedron.
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V.

1

3

5

1'

3'

2

4

2'

4'

NO:  bipartite graph with odd number of nodes.
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

All 13,509 cities in US with a population of at least 500
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

11,849 holes to drill in a programmed logic array
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

HAM-CYCLE:  given a graph G = (V, E), does there exists a simple cycle 
that contains every node in V?

Claim.  HAM-CYCLE ≤ P TSP.
Pf.

n Given instance G = (V, E) of HAM-CYCLE, create n cities with 
distance function

n TSP instance has tour of length ≤ n iff G is Hamiltonian.  ▪

Remark.  TSP instance in reduction satisfies ∆-inequality.

 

d(u, v)  =  
 1 if (u, v) ∈  E
 2 if (u, v) ∉  E
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Directed Hamiltonian Cycle

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple 
directed cycle Γ that contains every node in V?

Claim.  DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf.  Given a directed graph G = (V, E), construct an undirected graph G' 
with 3n nodes.

v

a

b

c

d

e
vin

aout

bout

cout

din

ein

G G'
v vout

… …
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  ⇒
n Suppose G has a directed Hamiltonian cycle Γ (e.g., (u,w,v).
n Then G' has an undirected Hamiltonian cycle (same order).

– For each node v in directed path cycle replace v with vin,v,vout

vu

w

vin

wout

uin

win

G

G'

v vout

u
uout

w
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  ⇒
n Suppose G has a directed Hamiltonian cycle Γ.
n Then G' has an undirected Hamiltonian cycle (same order).

– For each node v in directed path cycle replace v with vin,v,vout

Pf.  ⇐
n Suppose G' has an undirected Hamiltonian cycle Γ'.
n Γ' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, … 
…, B, R, G, B, R, G, B, R, G, B, … 

n Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or 
reverse of one.   ▪
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More Hard Computational Problems

Aerospace engineering:  optimal mesh partitioning for finite elements.
Biology:  protein folding.
Chemical engineering:  heat exchanger network synthesis.
Civil engineering:  equilibrium of urban traffic flow.
Economics:  computation of arbitrage in financial markets with friction.
Electrical engineering:  VLSI layout. 
Environmental engineering:  optimal placement of contaminant sensors.
Financial engineering:  find minimum risk portfolio of given return.
Game theory:  find Nash equilibrium that maximizes social welfare.
Genomics:  phylogeny reconstruction.
Mechanical engineering:  structure of turbulence in sheared flows.
Medicine:  reconstructing 3-D shape from biplane angiocardiogram.
Operations research:  optimal resource allocation. 
Physics:  partition function of 3-D Ising model in statistical mechanics.
Politics:  Shapley-Shubik voting power.
Pop culture:  Minesweeper consistency.
Statistics:  optimal experimental design.
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