CS 381 – FALL 2019

Week 15.1, Monday, Nov 25

Homework 7 Due Tomorrow: November 26th at 11:59PM on Gradescope

Monday Office Hours (Today): 2:30-3:30PM 5:30-6:30PM No Class on Wed/Fri (Happy Thanksgiving!) No PSOs this Week

iClicker

Assume $P \neq NP$. Which of the following problems are not in NP \cap co-NP? Should have assumed coNP \neq NP

A.FACTOR

FACTOR is in NP \cap co-NP (but not known to be in P)

(prime factorization is either a witness/disqualifier)

B. PRIMES

Primes is in P (contained in NP \cap co-NP)

C. 3COLOR

If 3COLOR is in co-NP then co-NP = NP since 3COLOR is NP-Complete

More precise problems statement: ``Assume coNP ≠ NP"

D.BIPARTITE MATCHING (Given a bipartite graph G and integer k is there a matching that contains at least k edges)?

Primes is in P (contained in NP \cap co-NP)

E. All of the problems are in NP \cap co-NP

This is actually true if NP = co-NP!

-(Full Credit if you picked choice E since we don't know)

Partition

SUBSET-SUM. Given natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

PARTITION. Given natural numbers $v_1, ..., v_m$, can they be partitioned into two subsets that add up to the same value? $\sum_{i=1}^{n} \sum_{i=1}^{n} v_i$

Claim. SUBSET-SUM \leq_{P} PARTITION.

Pf. Let W, w_1 , ..., w_n be an instance of SUBSET-SUM.

- Create instance of PARTITION with m = n+2 elements.
 - $-v_1 = w_1, v_2 = w_2, ..., v_n = w_n, v_{n+1} = 2 \Sigma_i w_i W, v_{n+2} = \Sigma_i w_i + W$
- There exists a subset that sums to W iff there exists a partition since two new elements cannot be in the same partition.

v_{n+1} = 2 $\Sigma_i w_i$ - W	W	subset A
$v_{n+2} = \Sigma_i w_i + W$	$\Sigma_i w_i - W$	subset B

iClicker

Assume co-NP \neq NP. Which of the following claims are necessarily true?

- 1. PARTITION is not in P
- 2. PRIMES is in co-NP
- 3. TAUTOLOGY is in coNP

A. Claim 1 only

B. Claim 2 only

C. Claim 3 only

D.Claims 1 and 3

E. All of the claims are true

iClicker

Assume co-NP \neq NP. Which of the following claims are necessarily true?

- 1. PARTITION is not in P
- 2. PRIMES is in co-NP
- 3. TAUTOLOGY is in coNP
- A. Claim 1 only
- If PARTITION were in P then P=NP since PARTITION is NP-Complete. This would imply co-NP=NP.
- B. Claim 2 only
 - PRIMES is in P which is contained in co-NP.
- C. Claim 3 only
 - TAUTOLOGY is in coNP
- We could also conclude that TAUTOLOGY is not in NP (otherwise we would have co-NP = NP since TAUTOLOGY is coNP-complete)
 Claims 1 and 3

E. All of the claims are true

Let G be an undirected graph. A clique of size k is a complete graph on k vertices.

Clique (decision) problem:

Given G and an integer k, does G contain a subgraph that is a clique of size k?

Claim: The clique problem is NP-complete Proof:

- 1. The clique problem is in NP.
 - The certificate is a set of k vertices.
 - We need to check whether the k vertices induce a complete graph of size k in G. Check that all possible edges between these k vertices are present.
- 2. Choose an NP-complete problem: 3-SAT
- 3. Show that $3-SAT \leq poly$ Clique

 $(..\vee..\vee..)\wedge...\wedge(..\vee..\vee..)$

Transformation

- Given is a 3-SAT formula C consisting of p clauses
- For every clause, create three **vertices** and label them with the literals in the clause
 - creates 3p vertices
- Form the **edges**: Connect each vertex to the literals in other clauses that are not the negation of it
- Set k=p

Is a polynomial time transformation generating from formula C an undirected graph G and an integer k

$\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

 $(\mathbf{X}_1 \lor \mathbf{X}_1 \lor \mathbf{X}_1) \land (\neg \mathbf{X}_1 \lor \neg \mathbf{X}_1 \lor \mathbf{X}_2) \land (\mathbf{X}_2 \lor \mathbf{X}_2 \lor \mathbf{X}_2) \land (\neg \mathbf{X}_2 \lor \neg \mathbf{X}_2 \lor \mathbf{X}_1)$

Graph G has a clique of size k iff formula C can be satisfied.

 \Leftarrow Assume G contains a clique of size k

- To have a clique of size k, every triplet of vertices corresponding to a clause must contribute exactly one vertex (no edges connecting this triplet)
- If a vertex in the clique corresponds to an unnegated variable, set $x_i = true$; if negated, set it to false.
- no edges between $\neg x_i$ and $x_i \rightarrow assignment$ is consistent This gives an assignment that makes every one of the k=p clauses true and thus formula C is satisfiable.

Graph G has a clique of size k iff formula C can be satisfied.

- ⇒ Assume the formula is satisfiable
 Then, at least one literal in every clause is true.
 Since x and its negation cannot be true at the same time, graph G contains an edge between every pair of literals set true.
 - Hence, we have a clique of size p=k.
- ⇒ (For each clause pick one ``true" node from the corresponding triplet)

8.5 Sequencing Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

NO: bipartite graph with odd number of nodes.

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length \leq D?

All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Optimal TSP tour Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

11,849 holes to drill in a programmed logic array Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Optimal TSP tour Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length \leq D?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V?

Claim. HAM-CYCLE \leq_{P} TSP. Pf.

Given instance G = (V, E) of HAM-CYCLE, create n cities with distance function $\begin{bmatrix} 1 & \text{if } (u, v) \end{bmatrix} \in E$

 $d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$

TSP instance has tour of length \leq n iff G is Hamiltonian. •

Remark. TSP instance in reduction satisfies Δ -inequality.

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V?

Claim. DIR-HAM-CYCLE \leq_{P} HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes.

Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

Pf. \Rightarrow

- Suppose G has a directed Hamiltonian cycle Γ (e.g., (u,w,v).
- Then G' has an undirected Hamiltonian cycle (same order).
 - For each node v in directed path cycle replace v with v_{in} , v, v_{out}

Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

Pf. \Rightarrow

- Suppose G has a directed Hamiltonian cycle Γ .
- Then G' has an undirected Hamiltonian cycle (same order).
 - For each node v in directed path cycle replace v with v_{in} , v, v_{out}

Pf. ⇐

- Suppose G' has an undirected Hamiltonian cycle Γ' .
- $\ \ \Gamma'$ must visit nodes in G' using one of following two orders:

..., B, G, R, B, G, R, B, G, R, B, ...

..., B, R, G, B, R, G, B, R, G, B, ...

Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one. \bullet

More Hard Computational Problems

Aerospace engineering: optimal mesh partitioning for finite elements. Biology: protein folding.

- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction. Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.