CS 381 - FALL 2019

Week 14.3, Friday, Nov 22

Homework 7 Due: November 26th at 11:59PM on Gradescope Monday Office Hours (November 25th): 2:30-3:30PM 5:30-6:30PM

SUBSET SUM

SUBSET SUM:

Instance: n integers $x_1, ..., x_n$ and a separate integer k **Question:** Does there exist a subset $S \subseteq \{1, ..., n\}$ s.t. $\sum_{i \in S} x_i = k$

Example 1: (YES Instance)

Instance: $x_1 = 4, x_2 = 5, x_3 = 8, x_4 = 9$ and k=14

Witness: $S = \{2,4\} \rightarrow \sum_{i \in S} x_i = 5 + 9 = 14 = k$

Example 2: (NO Instance)

Instance: $x_1 = 4, x_2 = 5, x_3 = 8, x_4 = 9$ and k=15

FACT: SUBSET SUM is NP-Complete

We give a polynomial reduction f mapping 3SAT Φ instances to SUBSET SUM instances.

Goal: Φ has satisfying assignment if and only if $(y_1, \dots, y_{n'}, k) = f(\Phi)$ is satisfiable (i.e., there exist a subset $S \subseteq \{1, \dots, n'\}$ s.t. $\sum_{i \in S} x_i = k$)

Reduction: Φ has n variables x_1, \dots, x_n and m clauses

m + n + 1 digits (m ``clause" digits & n ``variable" digits + padding) (1) Set k = 3333...311...111110

(2) Let $S_i \subseteq \{1, ..., m\}$ be the clauses that contain the literal x_i for $i \leq n$

Example: Clauses m-1 and 1 contain
$$x_i$$
 ($S_i = \{1, m-1\}$)
 $y_i = 10^i + \sum_{j \in S_i} 10^{n+j}$ $y_i = 010...0100...010$

Reduction: Φ has n variables x_1, \dots, x_n and m clauses

m +n digits (m clause digits & n literal digits + padding) (1) Set k = 3333...311...1110

(2) Let $S_i \subseteq \{1, ..., m\}$ be the clauses that contain the literal x_i for $i \le n$ Example: Clauses m-1 and 1 contain x_i $y_i = 10^i + \sum_{j \in S_i} 10^{n+j}$ $y_i = 010...0100...010$

(3) Let $S_{i+n} \subseteq \{1, ..., m\}$ be the clauses that contain the literal \bar{x}_i for $i \leq n$

$$y_{i+n} = 10^{i} + \sum_{j \in S_{i+n}} 10^{n+j}$$

Example: Clauses m and 2 contain \bar{x}_i ($S_{i+n} = \{2, m\}$)
 $y_{i+n} = 100...1000...010..000$

(4) For each clause C_i add two numbers $y_{i,1} = y_{i,2} = 10^{n+i} = 0 \dots 010 \dots 00 \dots 00$

Observation 1: No Overflows/Carries (even if we sum every number) $y_1 + \dots + y_{2n} + y_{i,1} + \dots + y_{m,1} + y_{i,2} \dots + y_{m,2} = 5555\dots522\dots2220$ Only y_i and y_{i+n} contain a 1 at digit i (1) Set k = 3333\dots311\dots1110

(2) Let $S_i \subseteq \{1, ..., m\}$ be the clauses that contain the literal x_i for $i \leq n$

Example: Clauses m-1 and 1 contain
$$x_i$$

 $y_i = 10^i + \sum_{j \in S_i} 10^{n+j}$
 $y_i = 010...0100...010...000$

(3) Let $S_{i+n} \subseteq \{1, ..., m\}$ be the clauses that contain the literal \bar{x}_i for $i \leq n$

Example: Clauses m and 2 contain \bar{x}_i

$$y_{i+n} = 10^i + \sum_{j \in S_{i+n}} 10^{n+j}$$
 $y_{i+n} = 100...1000...010..000$

(4) For each clause C_i add two numbers $y_{i,1} = y_{i,2} = 10^{n+i} = 0 \dots 010 \dots 00 \dots 00$

Observation 1: No Overflows/Carries (even if we sum every number) $y_1 + \dots + y_{2n} + y_{i,1} + \dots + y_{m,1} + y_{i,2} \dots + y_{m,2} = 5555 \dots 522 \dots 2220$ At most five different y values have a 1 at digit n+j; all other y's have 0 at this digit (1) Set k = <u>3333...311...11110</u> → $y_{j,1} = y_{j,2} = 10^{n+j}$ (1 at digit n+j) \rightarrow Clause C_i has 3 literals (2) Let $S_i \subseteq \{1, ..., m\}$ be the clauses that contain the literal x_i for $i \leq n$ Example: Clauses, m-1 and 1 contain x_i $y_i = 10^i + \sum_{i \in S_i} 10^{n+j}$ $y_i = 010...0100...010..000$ (3) Let $S_{i+n} \subseteq \{1, ..., m\}$ be the clauses that contain the literal \bar{x}_i for $i \leq n$ Example: Clauses m and 2 contain \bar{x}_i $y_{i+n} = 100...1000...010..000$ $y_{i+n} = 10^i + \sum_{i \in S_i} 10^{n+j}$

(4) For each clause C_i add two numbers $y_{i,1} = y_{i,2} = 10^{n+i} = 0 \dots 010 \dots 00 \dots 00$

Observation 1: No Overflows/Carries (even if we sum every number) $y_1 + \dots + y_{2n} + y_{1,1} + \dots + y_{m,1} + y_{1,2} \dots + y_{m,2} = 5555\dots 522\dots 2220$

Suppose that there is a satisfying assignment e.g., $x_1=1, x_2=0,...$

 $1\dot{0}^i$

 y_i

Build subset S as follows 1) If x_i is true then include y_i otherwise include y_{i+n} 2) Add 3-t; items from the set $\{y_{i,1}, y_{i,2}\}$ where t; 0 denotes number of true literals in clause C_i (Note that $3 - t_i \le 3$)

$$\sum_{y \in S} y = ??????11...11110$$

$$1 \times 10^{i} \text{ comes from } y_{i} \text{ or } y_{i+n}$$
(5 includes exactly one of these values)
$$y_{i+n} = ????????00...010..000$$

$$y_{i} = ????????00...010..000$$

Observation 1: No Overflows/Carries (even if we sum every number) $y_1 + \dots + y_{2n} + y_{1,1} + \dots + y_{m,1} + y_{1,2} \dots + y_{m,2} = 5555\dots522\dots2220$

Suppose that there is a satisfying assignment e.g., $x_1=1, x_2=0,...$

Build subset S as follows
1) If x_i is true then include y_i otherwise include y_{i+n}

2) Add 3-t_j items from the set $\{y_{i,1}, y_{i,2}\}$ where t_j>0 denotes number of true literals in clause C_j (Note that 3-t_j ≤ 3)

$$\sum_{y \in S} y = ???3???11...11110$$

$$1 \times 10^{n+j} \text{ appears in three y values from S}$$

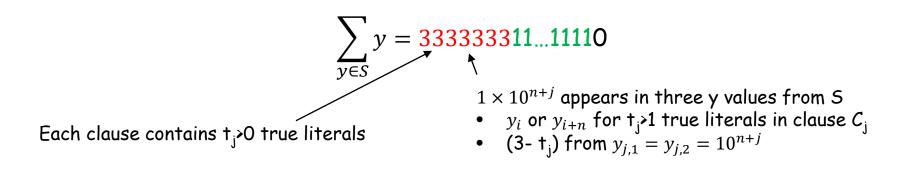
$$y_i \text{ or } y_{i+n} \text{ for } t_j > 1 \text{ true literals in clause } C_j$$

$$(3 - t_j) \text{ from } y_{j,1} = y_{j,2} = 10^{n+j}$$

Observation 1: No Overflows/Carries (even if we sum every number) $y_1 + \dots + y_{2n} + y_{1,1} + \dots + y_{m,1} + y_{1,2} \dots + y_{m,2} = 5555\dots522\dots2220$

Suppose that there is a satisfying assignment e.g., $x_1=1, x_2=0, ...$

Build subset S as follows
1) If x_i is true then include y_i otherwise include y_{i+n}
2) Add 3-t_j items from the set {y_{i,1}, y_{i,2}} where t_j>0 denotes number of true literals in clause C_j (Note that 3-t_j≤ 3)



Suppose S is a valid subset sum solution s.t.

$$\sum_{y \in S} y = 333333311...11110$$

We define a truth assignment as follows: Set x_i =true if y_i is included S and x_i =false if y_{i+n} is included S

Observe that S must contain exactly one of y_i and y_{i+n} (only numbers with a 1 at digit i) \rightarrow consistent/complete truth assignment

Claim: Each clause C_j has a true literal. Proof: (sketch) Consider clause $C_j = x_i \forall \bar{x}_j \forall x_k$ \rightarrow only 5 numbers contain a 1 at digit n+j y_i, y_{j+n}, y_k , and $y_{j,1} = y_{j,2} = 10^{n+j}$ \uparrow S must include at least one of these numbers to ensure that digit n+j is set to 3 \rightarrow at least one of the literals x_i, \bar{x}_j or x_k is true

SUBSET SUM in NP

SUBSET SUM:

Instance: n integers $x_1, ..., x_n$ and a separate integer k **Question:** Does there exist a subset $S \subseteq \{1, ..., n\}$ s.t. $\sum_{i \in S} x_i = k$

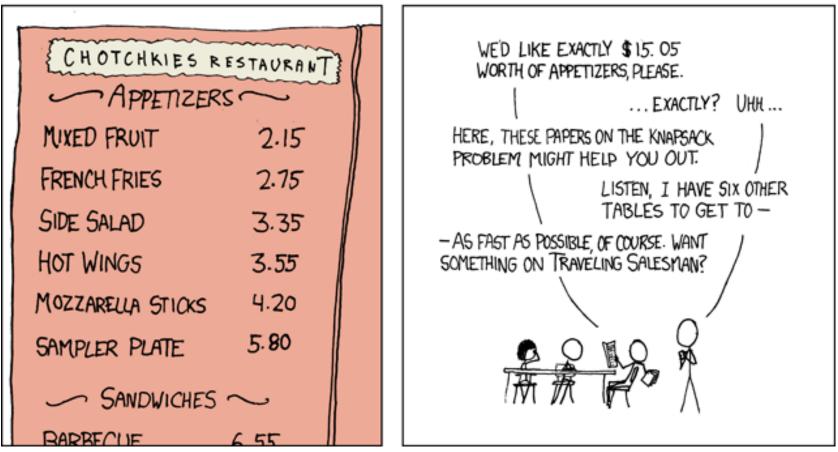
Witness: S Certifier: $C((x_1, ..., x_n, k), S)$ if $\sum_{i \in S} x_i = k$ output ACCEPT; otherwise output REJECT

Example: (YES Instance) Instance: $x_1 = 4, x_2 = 5, x_3 = 8, x_4 = 9$ and k=14 Witness: $S = \{2,4\} \rightarrow \sum_{i \in S} x_i = 5 + 9 = 14 = k$

Obs 1: Every YES instance (x_1, \dots, x_n, k) contains a valid witness S

Obs 2: If I=(x₁, ..., x_n,k) is a NO instance then C(I,w)=REJECT for all ``witnesses" w.

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS



Randall Munro: http://xkcd.com/c287.html

8.9 co-NP and the Asymmetry of NP

Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1. SAT vs. TAUTOLOGY.

- Can prove a CNF formula is satisfiable by giving such an assignment.
- . How could we prove that a formula is not satisfiable?

Ex 2. HAM-CYCLE vs. NO-HAM-CYCLE.

- Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
- . How could we prove that a graph is not Hamiltonian?

Remark. SAT is NP-complete and SAT \equiv_{P} TAUTOLOGY, but how do we classify TAUTOLOGY? Φ is TAUTOLOGY if and only $\neg \Phi$ is a unsatisfiable not even known to be in NP

NP and co-NP

- NP. Decision problems for which there is a poly-time certifier. Ex. SAT, HAM-CYCLE, COMPOSITES.
- Def. Given a decision problem X, its complement \overline{X} is the same problem with the yes and no answers reverse.
- Ex. PRIMES = { 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, ... } PRIMES = { 2, 3, 5, 7, 11, 13, 17, 23, 29, ... }

co-NP. Complements of decision problems in NP. Ex. TAUTOLOGY, NO-HAM-CYCLE, PRIMES.

NP. YES instances have succinct witness/certificate co-NP. NO instances have succinct disqualifier (e.g., an assignment s.t. Φ evaluates to false $\rightarrow \Phi$ is not a TAUTOLOGY) NP = co-NP?

Fundamental question. Does NP = co-NP?

- . Do ${\tt yes}$ instances have succinct certificates iff ${\tt no}$ instances do?
- Consensus opinion: no.

Theorem. If NP \neq co-NP, then P \neq NP. Pf idea.

- P is closed under complementation.
- If P = NP, then NP is closed under complementation.
- In other words, NP = co-NP.
- . This is the contrapositive of the theorem.

Good Characterizations

Good characterization. [Edmonds 1965] NP \cap co-NP.

- If problem X is in both NP and co-NP, then:
 - for $_{\ensuremath{\text{yes}}}$ instance, there is a succinct certificate
 - for ${\tt no}$ instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching.

- If yes, can exhibit a perfect matching.
- If no, can exhibit a set of nodes S such that |N(S)| < |S|.

Good Characterizations

Observation. $P \subseteq NP \cap co-NP$.

- Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in P.
- Sometimes finding a good characterization seems easier than finding an efficient algorithm.

can break RSA cryptosystem

Fundamental open question. Does $P = NP \cap co-NP$?

- Mixed opinions.
- Many examples where problem found to have a non-trivial good characterization, but only years later discovered to be in P.
 - linear programming [Khachiyan, 1979]
 - primality testing [Agrawal-Kayal-Saxena, 2002]

Fact. Factoring is in NP \cap co-NP, but not known to be in P. if poly-time algorithm for factoring,

FACTOR is in NP \cap co-NP

FACTORIZE. Given an integer x, find its prime factorization. FACTOR. Given two integers x and y, does x have a nontrivial factor less than y?

Theorem. FACTOR = $_{P}$ FACTORIZE.

```
Theorem. FACTOR is in NP \cap co-NP. Pf.
```

- Certificate: a factor p of x that is less than y.
- **Disqualifier:** the prime factorization of x (where each prime factor is greater than y)
 - Can validate prime factorization of x since PRIMES is in P.

iClicker

Assume P \neq NP. Which of the following problems are not in NP \cap co-NP?

A.FACTOR

B. PRIMES

C. 3COLOR

D.BIPARTITE MATCHING (Given a bipartite graph G and integer k is there a matching that contains at least k edges)?

E. All of the problems are in NP \cap co-NP

iClicker

Assume $P \neq NP$. Which of the following problems are not in NP \cap co-NP? Should have assumed coNP \neq NP

A.FACTOR

FACTOR is in NP \cap co-NP (but not known to be in P)

(prime factorization is either a witness/disqualifier)

B. PRIMES

Primes is in P (contained in NP \cap co-NP)

C. 3COLOR

If 3COLOR is in co-NP then co-NP = NP since 3COLOR is NP-Complete

More precise problems statement: ``Assume coNP ≠ NP"

D.BIPARTITE MATCHING (Given a bipartite graph G and integer k is there a matching that contains at least k edges)?

Primes is in P (contained in NP \cap co-NP)

E. All of the problems are in NP \cap co-NP

This is actually true if NP = co-NP!

-(Full Credit if you picked choice E since we don't know)