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Week 14.2,  Wed, Nov 20

Homework 7 Due: November 26th at 11:59PM on Gradescope

Q1b Typo: if there is a directed from 𝑣𝑣ℓ to 𝑣𝑣�ℓ AND from 𝑣𝑣�ℓ to 𝑣𝑣ℓ then the 
2-SAT instance is not satisfiable.



iClicker

Jane is excited! She thinks she has proved that P=NP. In particular, 
she claims to have proved that 2-SAT is NP-Complete by showing 
that 2SAT≤𝑝𝑝3SAT. She has a reduction f which maps 2-SAT 
instances (Φ2𝑆𝑆𝑆𝑆𝑆𝑆) to 3-SAT instances (Φ3𝑆𝑆𝑆𝑆𝑆𝑆) in polynomial time. She 
proved that if Φ2𝑆𝑆𝑆𝑆𝑆𝑆 is satisfiable then Φ3𝑆𝑆𝑆𝑆𝑆𝑆 = f(Φ2𝑆𝑆𝑆𝑆𝑆𝑆) is 
satisfiable. What mistakes (if any) did Jane make?

A. Proving that 2-SAT is NP-Complete would not imply P=NP.
• 2SAT is in P (see homework 7). This would imply P=NP.

B. Jane still needs to show that if Φ3𝑆𝑆𝑆𝑆𝑆𝑆 is satisfiable then Φ2𝑆𝑆𝑆𝑆𝑆𝑆 is 
satisfiable to conclude that 2SAT≤𝑝𝑝3SAT.
• Otherwise f(Φ2𝑆𝑆𝑆𝑆𝑆𝑆) could ignore the input Φ2𝑆𝑆𝑆𝑆𝑆𝑆 and always

output a satisfiable 3SAT formula 
C. The reduction is in the wrong direction to conclude that P=NP.

• Jane would need to prove that 3SAT≤𝑝𝑝2SAT
D. Claims B and C are both true.
E. Jane’s logic is sound! She can claim the $1,000,000 prize!
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NP-hard vs NP-Complete
A problem A is NP-hard if and only if a 
polynomial-time algorithm for A implies a 
polynomial-time algorithm for every problem in 
NP.
• NP-hard problems are at least as hard as

NP-complete problems
• NP-hard includes the optimization version of 

decision versions
• An NP-hard problem may not be in NP (have 

no polynomial time verification)

NP-complete
A problem is NP-complete if it is NP-hard and 
it is in NP 
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Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.
n Packing problems:  SET-PACKING, INDEPENDENT SET.
n Covering problems:  SET-COVER, VERTEX-COVER.
n Constraint satisfaction problems:  SAT, 3-SAT.
n Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
n Partitioning problems: 3D-MATCHING, 3-COLOR.
n Numerical problems:  SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions.  Factoring, graph isomorphism, Nash equilibrium.

Thm [Ladner 75]: If P ≠ NP then there are some “NP-intermediate” decision 
problems X ∈ NP i.e., X ∉ 𝑃𝑃 and X is not NP-Complete. 
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SUBSET SUM

SUBSET SUM:  
Instance: n integers 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 and a separate integer 𝑘𝑘
Question: Does there exist a subset 𝑆𝑆 ⊆ {1, … , 𝑛𝑛} s.t. ∑𝑖𝑖∈𝑆𝑆 𝑥𝑥𝑖𝑖 = 𝑘𝑘

Example 1: (YES Instance)

Instance: 𝑥𝑥1 = 4, 𝑥𝑥2 = 5, 𝑥𝑥3 = 8, 𝑥𝑥4 = 9 and k=14

Witness: 𝑆𝑆 = 2,4 → ∑𝑖𝑖∈𝑆𝑆 𝑥𝑥𝑖𝑖 = 5 + 9 = 14 = 𝑘𝑘

Example 2: (NO Instance)

Instance: 𝑥𝑥1 = 4, 𝑥𝑥2 = 5, 𝑥𝑥3 = 8, 𝑥𝑥4 = 9 and k=15

FACT: SUBSET SUM is NP-Complete
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3-Colorability

3-COLOR:  Given an undirected graph G does there exists a way to 
color the nodes red, green, and blue so that no adjacent nodes have 
the same color?

yes instance

?

no instance
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Register Allocation

Register allocation.  Assign program variables to machine register 
so that no more than k registers are used and no two program 
variables that are needed at the same time are assigned to the 
same register.

Interference graph.  Nodes are program variables names, edge
between u and v if there exists an operation where both u and 
v are "live" at the same time.

Observation.  [Chaitin 1982] Can solve register allocation problem 
iff interference graph is k-colorable.

Fact.  3-COLOR ≤ P k-REGISTER-ALLOCATION for any constant k ≥ 3.
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3-Colorability

Claim.  3-SAT ≤ P 3-COLOR.

Pf.  Given 3-SAT instance Φ, we construct an instance 𝐺𝐺Φ of 3-COLOR
that is 3-colorable iff Φ is satisfiable.

Construction (𝐺𝐺Φ).
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect 

each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

T

B

F

 

x1

 

x1

 

x2

 

x2

 

xn

 

xn

 

x3

 

x3

true false

base



Clause Gadget

For each clause, add gadget of 6 nodes and 13 edges.
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T F

B
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x2

 

x3

  

 

Ci = x1 V x2 V x3

6-node gadget

true false



Clause Gadget

For each clause, add gadget of 6 nodes and 13 edges.
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x3

true false
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6-node gadget

  

 

Ci = x1 V x2 V x3
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Suppose Φ has n variables and m clauses. How many nodes/edges does 
𝐺𝐺Φ have? 

A.O(n) nodes, O(m) edges
B.O(m) nodes, O(n) edges
C. O(m+n) nodes and O(m+n) edges
D.O(m) nodes and O(mn) edges
E.O(mn) nodes and O(mn) edges
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T
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x3

true false

base

6-node gadget

  

 

Ci = x1 V x2 V x3
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Suppose Φ has n variables and m clauses. How many nodes/edges does 
𝐺𝐺Φ have? 

A.O(n) nodes, O(m) edges
B.O(m) nodes, O(n) edges
C. O(m+n) nodes and O(m+n) edges
D.O(m) nodes and O(mn) edges
E.O(mn) nodes and O(mn) edges
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T

B

F

 

x1

 

x1

 

x2

 

x2

 

xn

 

xn

 

x3

 

x3

true false

base

6-node gadget

  

 

Ci = x1 V x2 V x3



15

3-Colorability

Claim.  Graph 𝐺𝐺Φ is 3-colorable iff Φ is satisfiable.

Pf.  ⇒ Suppose graph 𝐺𝐺Φ is 3-colorable.
n Consider assignment that sets all T literals (nodes have same color as T) to 

true.
n (ii) triangle ensures each literal is T or F (cannot be same color as base).
n (iii) edge between 𝑥𝑥𝑖𝑖 and �𝑥𝑥𝑖𝑖 ensures a literal and its negation are have 

opposite colors.

T
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x3

 

x3

true false
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇒ Suppose graph is 3-colorable.
n Consider assignment that sets all T literals to true.
n (ii) ensures each literal is T or F.
n (iii) ensures a literal and its negation are opposites.
n (iv) clause gadget ensures at least one literal in each clause is T.

T F

B

 

x1

 

x2

 

x3

  

 

Ci = x1 V x2 V x3

6-node gadget

true false
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇒ Suppose graph is 3-colorable.
n Consider assignment that sets all T literals to true.
n (ii) ensures each literal is T or F.
n (iii) ensures a literal and its negation are opposites.
n (iv) ensures at least one literal in each clause is T.

  

 

Ci = x1 V x2 V x3

T F

B

 

x1

 

x2

 

x3

not 3-colorable if all are red

true false

contradiction
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇐ Suppose 3-SAT formula Φ is satisfiable.
n Color all true literals T.
n Color node below green node F, and node below that B.
n Color remaining middle row nodes B.
n Color remaining bottom nodes T or F as forced.  ▪

T F

B

 

x1

 

x2

 

x3

a literal set to true in 3-SAT assignment

  

 

Ci = x1 V x2 V x3

true false

Can be red or green
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇐ Suppose 3-SAT formula Φ is satisfiable.
n Color all true literals T.
n Color node below green node F, and node below that B.
n Color remaining middle row nodes B.
n Color remaining bottom nodes T or F as forced.  ▪

T F

B

 

x1

 

x3
a literal set 
to true in 
3-SAT 
assignment

  

 

Ci = x1 V x2 V x3

true false

 

x2
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇐ Suppose 3-SAT formula Φ is satisfiable.
n Color all true literals T.
n Color node below green node F, and node below that B.
n Color remaining middle row nodes B.
n Color remaining bottom nodes T or F as forced.  ▪

T F

B

 

x3
a literal set 
to true in 
3-SAT 
assignment

  

 

Ci = x1 V x2 V x3

true false

 

x2

 

x1
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3-Colorability

Claim.  3-SAT ≤ P 3-COLOR.

This shows 3-COLOR is NP-Hard.

Still need to show 3-COLOR is in NP to conclude problem is NP-Complete

Witness: a coloring c(v) in {red, green, blue} for each node v

Certifier: C(G,c)
• For each edge (u,v) check that c(u)≠c(v)
• check that each color c(v) is red, green, blue
• If all checks pass then output ACCEPT; otherwise REJECT

Claim 1: if G is three colorable then there exists a witness c tha the 
certifier accepts i.e., C(G,c)=ACCEPT.

Claim 2: if G is not three colorable then C(G,c)=REJECT for all witnesses t



Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems: 3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.5  Sequencing Problems
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V.

YES:  vertices and faces of a dodecahedron.
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V.

1

3

5

1'

3'

2

4

2'

4'

NO:  bipartite graph with odd number of nodes.
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Directed Hamiltonian Cycle

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple 
directed cycle Γ that contains every node in V?

Claim.  DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf.  Given a directed graph G = (V, E), construct an undirected graph G' 
with 3n nodes.

v

a

b

c

d

e
vin

aout

bout

cout

din

ein

G G'
v vout

… …
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  ⇒
n Suppose G has a directed Hamiltonian cycle Γ (e.g., (u,w,v).
n Then G' has an undirected Hamiltonian cycle (same order).

– For each node v in directed path cycle replace v with vin,v,vout

vu

w

vin

wout

uin

win

G

G'

v vout

u
uout

w
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  ⇒
n Suppose G has a directed Hamiltonian cycle Γ.
n Then G' has an undirected Hamiltonian cycle (same order).

– For each node v in directed path cycle replace v with vin,v,vout

Pf.  ⇐
n Suppose G' has an undirected Hamiltonian cycle Γ'.
n Γ' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, … 
…, B, R, G, B, R, G, B, R, G, B, … 

n Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or 
reverse of one.   ▪
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More Hard Computational Problems

Aerospace engineering:  optimal mesh partitioning for finite elements.
Biology:  protein folding.
Chemical engineering:  heat exchanger network synthesis.
Civil engineering:  equilibrium of urban traffic flow.
Economics:  computation of arbitrage in financial markets with friction.
Electrical engineering:  VLSI layout. 
Environmental engineering:  optimal placement of contaminant sensors.
Financial engineering:  find minimum risk portfolio of given return.
Game theory:  find Nash equilibrium that maximizes social welfare.
Genomics:  phylogeny reconstruction.
Mechanical engineering:  structure of turbulence in sheared flows.
Medicine:  reconstructing 3-D shape from biplane angiocardiogram.
Operations research:  optimal resource allocation. 
Physics:  partition function of 3-D Ising model in statistical mechanics.
Politics:  Shapley-Shubik voting power.
Pop culture:  Minesweeper consistency.
Statistics:  optimal experimental design.



Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

Numerical Problems



3D-Matching

Input: X ∪ Y ∪ Z, subset T ⊆ 𝑋𝑋 × 𝑌𝑌 × 𝑍𝑍 of 
triples (hyperedges) and an integer k.

Output: YES if there is a 3Dmatching of 
size k, NO otherwise

Matching: M ⊆ T. 
- Each node v in X ∪ Y ∪ Z is contained in 

at most one triple in M

Fact: 3D-Matching is NP-Complete

31



32

Subset Sum (proof from book)

Construction.  Let X ∪ Y ∪ Z be a instance of 3D-MATCHING with 
triplet set T. Let n = |X| = |Y| = |Z| and m = |T|.

n Let X = { x1, x2, x3 x4 },  Y = { y1, y2, y3, y4 } ,  Z = { z1, z2, z3, z4 }
n For each triplet t= (xi, yj, zk ) ∈ T, create an integer wt with 3n digits 

that has a 1 in positions i, n+j, and 2n+k.

Claim. 3D-matching iff some subset sums to W = 111,…, 111.

100,010,001

1,010,001,000

1,010,000,010

1,010,000,100

10,001,000,001

100,010,001,000

10,000,010,100

100,001,000,010

100,100,001

x2 y2 z4

x4 y3 z4

x3 y1 z2

x3 y1 z3

x3 y1 z1

x4 y4 z4

x1 y2 z3

x2 y4 z2

x1 y1 z1

Triplet ti wi

0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 1

x1 x2 x3 x4 y1 y2 y3 y4 z1 z2 z3 z4

111,111,111,111

use base m+1
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Partition

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is 
there a subset that adds up to exactly W?

PARTITION. Given natural numbers v1, …, vm , can they be partitioned 
into two subsets that add up to the same value? 

Claim.  SUBSET-SUM ≤ P PARTITION.
Pf.  Let W, w1, …, wn be an instance of SUBSET-SUM.

n Create instance of PARTITION with m = n+2 elements.
– v1 = w1, v2 = w2, …, vn = wn,   vn+1 = 2 Σi wi - W,   vn+2 = Σi wi + W

n There exists a subset that sums to W iff there exists a partition 
since two new elements cannot be in the same partition.  ▪

vn+2 =  Σi wi + W

vn+1 = 2 Σi wi - W              

Σi wi - W

W subset A

subset B

½ Σi vi
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Randall Munro
http://xkcd.com/c287.html

http://xkcd.com/c287.html
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