
1

Week 12.3, Friday, Nov 8

Homework 6 Due: November 14th at 11:59PM (Gradescope)

7.11 Project Selection

3

Project Selection

Projects with prerequisites.
 Set P of possible projects. Project v has associated revenue pv.

– some projects generate money: create interactive e-commerce interface,
redesign web page

– others cost money: upgrade computers, get site license
 Set of prerequisites E. If (v, w) ∈ E, can't do project v and unless

also do project w.
 A subset of projects A ⊆ P is feasible if the prerequisite of every

project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize
revenue.

can be positive or negative

4

Project Selection: Prerequisite Graph

Prerequisite graph.
 Include an edge from v to w if can't do v without also doing w.
 {v, w, x} is feasible subset of projects.
 {v, x} is infeasible subset of projects.

v

w

xv

w

x

feasible infeasible

5

Min cut formulation.
 Assign capacity ∞ to all prerequisite edge.
 Add edge (s, v) with capacity -pv if pv > 0.
 Add edge (v, t) with capacity -pv if pv < 0.
 For notational convenience, define ps = pt = 0.

s t

-pw

u

v

w

x

y z

Project Selection: Min Cut Formulation

∞

pv -px

∞

∞

∞
∞

∞py

pu

-pz

∞

6

Claim. (A, B) is min cut iff A − { s } is optimal set of projects.
 Infinite capacity edges ensure A − { s } is feasible.
 Max revenue because:

s t

-pw

u

v

w

x

y z

Project Selection: Min Cut Formulation

pv -px



cap(A, B) = p v
v∈ B: pv > 0

∑ + (− p v)
v∈ A: pv < 0

∑

= p v
v : pv > 0

∑

constant


− p v
v ∈ A
∑

py

pu

∞
∞

∞

A

7

Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns. Ex.
 Greedy. O(n log n) interval scheduling.
 Divide-and-conquer. O(n log n) Closest Pair of Points.
 Dynamic programming. O(n2) edit distance.
 Duality. O(n3) bipartite matching.
 Reductions. Circulation via Network Flow

Bipartite Matching via Network Flow
Baseball elimination
Project Selection

 Local search.
 Randomization.

Algorithm design anti-patterns.
 NP-completeness. O(nk) algorithm unlikely.
 PSPACE-completeness. O(nk) certification algorithm unlikely.
 Undecidability. No algorithm possible.

8.1 Polynomial-Time Reductions

9

Classify Problems According to Computational Requirements

Q. Which problems will we be able to solve in practice?

A working definition. [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin

1966]

Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover

10

Classify Problems

Desiderata. Classify problems according to those that can be solved in
polynomial-time and those that cannot.

Provably requires exponential-time.
 Given a Turing machine, does it halt in at most k steps?
 Given a board position in an n-by-n generalization of chess,

can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied
classification for decades.

This chapter. Show that these fundamental problems are "computationally
equivalent" and appear to be different manifestations of one really hard
problem.

11

Polynomial-Time Reduction

Desiderata'. Suppose we could solve X in polynomial-time. What
else could we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y if arbitrary
instances of problem X can be solved using:
 Polynomial number of standard computational steps, plus
 Polynomial number of calls to oracle that solves problem Y.

Notation. X ≤ P Y.

Example. Network Flow reduces to Linear Programming

Remarks.
 We pay for time to write down instances sent to black box ⇒

instances of Y must be of polynomial size.
 Note: Cook reducibility.

don't confuse with reduces from

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

in contrast to Karp reductions

12

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If X ≤ P Y and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

Establish intractability. If X ≤ P Y and X cannot be solved in
polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y.

up to cost of reduction

Reduction By Simple Equivalence

Basic reduction strategies.
 Reduction by simple equivalence.
 Reduction from special case to general case.
 Reduction by encoding with gadgets.

17

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ⊆ V such that |S| ≥ k, and for each edge at most
one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6? Yes.
Ex. Is there an independent set of size ≥ 7? No.

independent set

18

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge, at least
one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4? Yes.
Ex. Is there a vertex cover of size ≤ 3? No.

vertex cover

19

Vertex Cover and Independent Set

Claim. VERTEX-COVER ≡P INDEPENDENT-SET.
Pf. We show S is an independent set iff V − S is a vertex cover.

vertex cover

independent set

20

Vertex Cover and Independent Set

Claim. VERTEX-COVER ≡P INDEPENDENT-SET.
Pf. We show S is an independent set iff V − S is a vertex cover.
(G has VC of size k iff G has independent set of size v-k)

⇒
 Let S be any independent set.
 Consider an arbitrary edge (u, v).
 S independent ⇒ u ∉ S or v ∉ S ⇒ u ∈ V − S or v ∈ V − S.
 Thus, V − S covers (u, v).

⇐
 Let V − S be any vertex cover.
 Consider two nodes u ∈ S and v ∈ S.
 Observe that (u, v) ∉ E since V − S is a vertex cover.
 Thus, no two nodes in S are joined by an edge ⇒ S is an

independent set. ▪

Reduction from Special Case to General Case

Basic reduction strategies.
 Reduction by simple equivalence.
 Reduction from special case to general case.
 Reduction by encoding with gadgets.

22

Set Cover

SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sm of
subsets of U, and an integer k, does there exist a collection of ≤ k of
these sets whose union is equal to U?

Sample application.
 m available pieces of software.
 Set U of n capabilities that we would like our system to have.
 The ith piece of software provides the set Si ⊆ U of capabilities.
 Goal: achieve all n capabilities using fewest pieces of software.

Ex:
U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 = {1, 2, 6, 7}

23

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER ≤ P SET-COVER.
Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a set
cover instance whose size equals the size of the vertex cover instance.

Construction.
 Create SET-COVER instance:

– k = k, U = E, Sv = {e ∈ E : e incident to v }
 Set-cover of size ≤ k iff vertex cover of size ≤ k. ▪

a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

24

Polynomial-Time Reduction

Basic strategies.
 Reduction by simple equivalence.
 Reduction from special case to general case.
 Reduction by encoding with gadgets.

8.2 Reductions via "Gadgets"

Basic reduction strategies.
 Reduction by simple equivalence.
 Reduction from special case to general case.
 Reduction via "gadgets."

26

Ex:

Yes: x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form: A propositional
formula Φ that is the conjunction of clauses.

SAT: Given CNF formula Φ, does it have a satisfying truth
assignment?

3-SAT: SAT where each clause contains (at most) 3 literals.

Satisfiability

C j = x1 ∨ x2 ∨ x3

xi or xi

Φ = C1 ∧ C2 ∧ C3 ∧ C4

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3()

each corresponds to a different variable

27

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT ≤ P INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff Φ is
satisfiable.

Construction.
 G contains 3 vertices for each clause, one for each literal.
 Connect 3 literals in a clause in a triangle.
 Connect literal to each of its negations.

x2

x3

x1

x1

x2

x4

x1

x2

x3

k = 3

G

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

28

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size k = |Φ| iff Φ is
satisfiable.

Pf. ⇒ Let S be independent set of size k.
 S must contain exactly one vertex in each triangle.
 Set these literals to true.
 Truth assignment is consistent and all clauses are satisfied.

x2

x3

x1

x1

x2

x4

x1

x2

x3

k = 3

G

and any other variables in a consistent way

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

29

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size k = |Φ| iff Φ is
satisfiable.

Pf. ⇒ Let S be independent set of size k.
 S must contain exactly one vertex in each triangle.
 Set these literals to true.
 Truth assignment is consistent and all clauses are satisfied.

x2

x3

x1

x1

x2

x4

x1

x2

x3

k = 3

G

and any other variables in a consistent way

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

Independent Set S has size k=3
 Set x3=true, x1=false and x2 = (arbitrary)

30

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size k = |Φ| iff Φ is
satisfiable.

Pf. ⇒ Let S be independent set of size k.
 S must contain exactly one vertex in each triangle.
 Set these literals to true.
 Truth assignment is consistent and all clauses are satisfied.

Pf ⇐ Given satisfying assignment, select one true literal from
each triangle. This is an independent set of size k. ▪

x2

x3

x1

x1

x2

x4

x1

x2

x3

k = 3

G

and any other variables in a consistent way

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

31

Review

Basic reduction strategies.
 Simple equivalence: INDEPENDENT-SET ≡ P VERTEX-COVER.
 Special case to general case: VERTEX-COVER ≤ P SET-COVER.
 Encoding with gadgets: 3-SAT ≤ P INDEPENDENT-SET.

Transitivity. If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.
Pf idea. Compose the two algorithms.

Ex: 3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-
COVER.

32

Self-Reducibility

Decision problem. Does there exist a vertex cover of size
≤ k?
Search problem. Find vertex cover of minimum cardinality.

Self-reducibility. Search problem ≤ P decision version.
 Applies to all (NP-complete) problems in this chapter.
 Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.
 (Binary) search for cardinality k* of min vertex cover.
 Find a vertex v such that G − { v } has a vertex cover of

size ≤ k* - 1.
– any vertex in any min vertex cover will have this

property
 Include v in the vertex cover.
 Recursively find a min vertex cover in G − { v }.

delete v and all incident edges

	CS 381 – Fall 2019
	7.11 Project Selection
	Project Selection
	Project Selection: Prerequisite Graph
	Project Selection: Min Cut Formulation
	Project Selection: Min Cut Formulation
	Algorithm Design Patterns and Anti-Patterns
	8.1 Polynomial-Time Reductions
	Classify Problems According to Computational Requirements
	Classify Problems
	Polynomial-Time Reduction
	Polynomial-Time Reduction
	Reduction By Simple Equivalence
	Independent Set
	Vertex Cover
	Vertex Cover and Independent Set
	Vertex Cover and Independent Set
	Reduction from Special Case to General Case
	Set Cover
	Vertex Cover Reduces to Set Cover
	Polynomial-Time Reduction
	8.2 Reductions via "Gadgets"
	Satisfiability
	3 Satisfiability Reduces to Independent Set
	3 Satisfiability Reduces to Independent Set
	3 Satisfiability Reduces to Independent Set
	3 Satisfiability Reduces to Independent Set
	Review
	Self-Reducibility

