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Residual Graph G,
. Augmenting Path
. Ford-Fulkerson Algorithm
- While the residual graph contains an augmenting path
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Running time

Assumption. Capacities are integers between 1 and C.

Integrality invariant. Throughout the algorithm, the flow values f(e)
and the residual capacities c;(e) are integers.

Theorem. The algorithm terminates in at most val (f*) < nC iterations.

Pf. Each augmentation increases the value by at least 1. \
Pseudo-polynomial

Corollary. The running time of Ford-Fulkerson is O@mn C).

Corollary. If C =1, the running time of Ford-Fulkerson is OGmnn).

Integrality theorem. Then exists a max-flow f* for which every
flow value f*(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =



Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.
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Bad case for Ford-Fulkerson

Q.

A.

Is generic Ford-Fulkerson algorithm poly-time in input size?

\ m, n, and log C

No. If max capacity is C, then algorithm can take = C iterations.
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7.3 Choosing Good Augmenting Paths
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed to

terminatel

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

. Max bottleneck capacity.
. Sufficiently large bottleneck capacity.

. Fewest number of edges.



Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases

flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.

. Maintain scaling parameter A.
. Let 6¢(A) be the subgraph of the residual graph consisting of only

arcs with capacity at least A.

SN SN

110 102 110 102
1
122 170 122 170

G, 6, (100)

12



Capacity Scaling
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Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
- By integrality invariant, when A =1 = G¢(A) = 64
. Upon termination of A = 1 phase, there are no augmenting
paths. =

Fact: The algorithm terminates in polynomial tfime in n, m and
log(C)

Proof: Homework 6! (We provide the hints you provide the
proof)



7.5 Bipartite Matching
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Matching

Matching.
. Input: undirected graph G = (V, E).
. M c E is a matching if each node appears in at most edge in M.
. Max matching: find a max cardinality matching.
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Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph 6 = (L U R, E).
. M c E is a matching if each node appears in at most edge in M.
. Max matching: find a max cardinality matching.
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Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph 6 = (L U R, E).
. M c E is a matching if each node appears in at most edge in M.
. Max matching: find a max cardinality matching.

max matching
1-1', 2-2', 3-3"' 4-4'
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Bipartite Matching

Max flow formulation.
. Create digraph G' = (LURuU{s, 1}, E").
. Direct all edges from L to R, and assign infinite (or unit) capacity.
. Add source s, and unit capacity edges from s to each node in L.
. Add sink T, and unit capacity edges from each node in R to 1.
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. <

. Given max matching M of cardinality k.

. Consider flow f that sends 1 unit along each of k paths.

. fisa flow, and has cardinality k.
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. >
. Let f be a max flow in G of value k.
. Integrality theorem = ks integral and can assume f is O-1.
. Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M
- |[M] = k: consider flow across the cut (Lus,Rut) =

®G
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Perfect Matching

Def. A matching M c E is perfect if each node appears in exactly one
edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
. Clearly we must have |L| = |R].
. What other conditions are necessary?
. What conditions are sufficient?
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Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?
. Generic augmenting path: O(m val(f*)) = O(mn).
. Capacity scaling: O(m? log C) = O(m?).
. Shortest augmenting path: O(m nl/2).

Non-bipartite matching.
. Structure of non-bipartite graphs is more complicated, but
well-understood. [Tutte-Berge, Edmonds-Galai]
. Blossom algorithm: O(n*). [Edmonds 1965]
. Best known: O(m nl/2). [Micali-Vazirani 1980]



Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G = (L UR, E), has a perfect

matching, then [N(S)| > |S| for all subsets S c L.
Pf. Each node in S has to be matched to a different node in N(S).

No perfect matching:

5={2,4,5}
N(s)={2',5"}.
L R
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Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935] Let 6= (L UR, E) bea
bipartite graph with |L| = |R|. Then, G has a perfect matching iff
IN(S)| = |S| for all subsets S c L.

Pf. = This was the previous observation.

No perfect matching:
S={2,4,5}
N(s)={2',5"}.
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Proof of Marriage Theorem

Pf. < Suppose G does not have a perfect matching.
. Formulate as a max flow problem and let (A, B) be min cut in G'.
. By max-flow min-cut, cap(A, B) < | L |.
. DefineL,=LnA, Lg=LnB, Ry=RnN A,
. Since min cut can't use « edges: N(L,) = Rg.
. cap(A, B) = |Lg |+ |R4 | (again, since min cut can't use « edges).
. INLAI < IR4 1 = cap(A, BY- I Lgl < [L]-1Lgl = [ Lyl

- Choose S=1L,. = L= (2.4 5)
A: I} I}
1/@ o0 Lg= {1, 3)

®) R,={2",5}
N(LA):{Z',

5}
@\’@
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