Week 12.1, Monday, Nov 4

Homework 6: Planning to Release Soon
Network Flow
Recap

Residual Graph G_f
- Augmenting Path
- Ford-Fulkerson Algorithm
 - While the residual graph contains an augmenting path
 - Increase Flow (Augment)
 - Update Residual Graph

Max Flow Min Cut

Integrality of Max Flow
Running time

Assumption. Capacities are integers between 1 and C.

Integrality invariant. Throughout the algorithm, the flow values $f(e)$ and the residual capacities $c_f(e)$ are integers.

Theorem. The algorithm terminates in at most $\text{val}(f^*) \leq nC$ iterations.
Proof. Each augmentation increases the value by at least 1.

Corollary. The running time of Ford-Fulkerson is $O(mnC)$.

Corollary. If $C = 1$, the running time of Ford-Fulkerson is $O(mn)$.

Integrality theorem. Then exists a max-flow f^* for which every flow value $f^*(e)$ is an integer.
Proof. Since algorithm terminates, theorem follows from invariant.
Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

\begin{itemize}
\item s
\item v
\item w
\item t
\end{itemize}

\begin{itemize}
\item C
\item 0
\item C
\item C
\end{itemize}

\begin{itemize}
\item 1
\item 0
\item 1
\item C
\end{itemize}

\begin{itemize}
\item m, n, and $\log C$
\end{itemize}
Bad case for Ford-Fulkerson

Q. Is generic Ford-Fulkerson algorithm poly-time in input size?

A. No. If max capacity is C, then algorithm can take $\geq C$ iterations.

- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \rightarrow w \rightarrow v \rightarrow t$
- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \rightarrow w \rightarrow v \rightarrow t$
- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \rightarrow w \rightarrow v \rightarrow t$

Each augmenting path sends only 1 unit of flow
($\# $ augmenting paths $= 2C$)
7.3 Choosing Good Augmenting Paths
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.
Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter \(\Delta \).
- Let \(G_f(\Delta) \) be the subgraph of the residual graph consisting of only arcs with capacity at least \(\Delta \).
Scaling-Max-Flow(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Δ ← smallest power of 2 greater than or equal to C //max capacity
 Gf ← residual graph

 while (Δ ≥ 1) {
 Gf(Δ) ← Δ-residual graph
 while (there exists augmenting path P in Gf(Δ)) {
 f ← augment(f, c, P)
 update Gf(Δ)
 }
 Δ ← Δ / 2
 }
 return f
}
Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Pf.
- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- Upon termination of $\Delta = 1$ phase, there are no augmenting paths. □

Fact: The algorithm terminates in polynomial time in n, m and $\log(C)$

Proof: Homework 6! (We provide the hints you provide the proof)
7.5 Bipartite Matching
Matching

- **Input:** undirected graph $G = (V, E)$.
- $M \subseteq E$ is a **matching** if each node appears in at most edge in M.
- **Max matching:** find a max cardinality matching.
Bipartite matching.

- **Input**: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- **Max matching**: find a max cardinality matching.
Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Max matching: find a max cardinality matching.

max matching
1-1', 2-2', 3-3', 4-4'
Max flow formulation.

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

![Graph representation](image)
Theorem. Max cardinality matching in \(G = \) value of max flow in \(G' \).

Pf. \(\leq \)

- Given max matching \(M \) of cardinality \(k \).
- Consider flow \(f \) that sends 1 unit along each of \(k \) paths.
- \(f \) is a flow, and has cardinality \(k \). □
Theorem. Max cardinality matching in $G = \text{value of max flow in } G'$.

Pf. ≥

- Let f be a max flow in G' of value k.
- Integrality theorem \Rightarrow k is integral and can assume f is 0-1.
- Consider $M = \text{set of edges from } L \text{ to } R \text{ with } f(e) = 1$.
 - each node in L and R participates in at most one edge in M
 - $|M| = k$: consider flow across the cut $(L \cup s, R \cup t)$.

\[21\]
Def. A matching $M \subseteq E$ is perfect if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
- Clearly we must have $|L| = |R|$.
- What other conditions are necessary?
- What conditions are sufficient?
Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?

- Generic augmenting path: $O(m \text{ val}(f^*)) = O(mn)$.
- Capacity scaling: $O(m^2 \log C) = O(m^2)$.
- Shortest augmenting path: $O(m n^{1/2})$.

Non-bipartite matching.

- Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
- Blossom algorithm: $O(n^4)$. [Edmonds 1965]
- Best known: $O(m n^{1/2})$. [Micali-Vazirani 1980]
Notation. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$, has a perfect matching, then $|N(S)| \geq |S|$ for all subsets $S \subseteq L$.

Pf. Each node in S has to be matched to a different node in $N(S)$.

No perfect matching:

$S = \{ 2, 4, 5 \}$

$N(S) = \{ 2', 5' \}$.

![Perfect Matching Diagram](image-url)
Marriage Theorem. [Frobenius 1917, Hall 1935] Let $G = (L \cup R, E)$ be a bipartite graph with $|L| = |R|$. Then, G has a perfect matching iff $|N(S)| \geq |S|$ for all subsets $S \subseteq L$.

Pf. \Rightarrow This was the previous observation.

No perfect matching:
$S = \{ 2, 4, 5 \}$
$N(S) = \{ 2', 5' \}$.

\[\begin{array}{cc}
1 & 1' \\
2 & 2' \\
3 & 3' \\
4 & 4' \\
\end{array} \]

\[\begin{array}{cc}
L & 5 \\
5' & R \\
\end{array} \]
Proof of Marriage Theorem

Pf. \(\Leftarrow\) Suppose \(G\) does not have a perfect matching.

- Formulate as a max flow problem and let \((A, B)\) be min cut in \(G'\).
- By max-flow min-cut, \(\text{cap}(A, B) < |L|\).
- Define \(L_A = L \cap A, \ L_B = L \cap B, \ R_A = R \cap A\).
- Since min cut can’t use \(\infty\) edges: \(N(L_A) \subseteq R_A\).
- \(\text{cap}(A, B) = |L_B| + |R_A|\) (again, since min cut can’t use \(\infty\) edges).
- \(|N(L_A)| \leq |R_A| = \text{cap}(A, B) - |L_B| < |L| - |L_B| = |L_A|\).
- Choose \(S = L_A\). ▪

\[
\begin{align*}
L_A &= \{2, 4, 5\} \\
L_B &= \{1, 3\} \\
R_A &= \{2', 5'\} \\
N(L_A) &= \{2', 5'\}
\end{align*}
\]