CS 381 – FALL 2019

Week 12.1, Monday, Nov 4

Homework 6: Planning to Release Soon

Network Flow

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Recap

Residual Graph G_f

- Augmenting Path
- Ford-Fulkerson Algorithm
 - While the residual graph contains an augmenting path
 - Increase Flow (Augment)
 - 🥟 Update Residual Graph

Assumption. Capacities are integers between 1 and C.

Integrality invariant. Throughout the algorithm, the flow values f(e) and the residual capacities $c_f(e)$ are integers.

Theorem. The algorithm terminates in at most $val(f^*) \le nC$ iterations. Pf. Each augmentation increases the value by at least 1.

Corollary. The running time of Ford-Fulkerson is O(m n C). Corollary. If C = 1, the running time of Ford-Fulkerson is O(m n).

Integrality theorem. Then exists a max-flow f^* for which every flow value $f^*(e)$ is an integer.

Pf. Since algorithm terminates, theorem follows from invariant.

Pseudo-polynomial

Ford-Fulkerson: Exponential Number of Augmentations

- Q. Is generic Ford-Fulkerson algorithm polynomial in input size? m, n, and log C
- A. No. If max capacity is C, then algorithm can take C iterations.

Bad case for Ford-Fulkerson

Q. Is generic Ford-Fulkerson algorithm poly-time in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take $\geq C$ iterations.

S

• $s \rightarrow v \rightarrow w \rightarrow t$ • $s \rightarrow w \rightarrow v \rightarrow t$ • $s \rightarrow v \rightarrow w \rightarrow t$ • $s \rightarrow w \rightarrow v \rightarrow t$

7.3 Choosing Good Augmenting Paths

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- . Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter $\Delta.$
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .

Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e \in E f(e) \leftarrow 0
   \Delta \leftarrow smallest power of 2 greater than or equal to C //max capacity
   G_f \leftarrow residual graph
   while (\Delta \ge 1) {
        G_f(\Delta) \leftarrow \Delta-residual graph
       while (there exists augmenting path P in G_f(\Delta)) {
            f \leftarrow augment(f, c, P)
           update G_f(\Delta)
       \Delta \leftarrow \Delta / 2
   return f
}
```

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow. Pf.

- By integrality invariant, when $\Delta = 1 \implies G_f(\Delta) = G_f$.
- Upon termination of Δ = 1 phase, there are no augmenting paths. -

Fact: The algorithm terminates in polynomial time in n, m and log(C)

Proof: Homework 6! (We provide the hints you provide the proof)

7.5 Bipartite Matching

Matching

Matching.

- Input: undirected graph G = (V, E).
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Max flow formulation.

- Create digraph G' = (L \cup R \cup {s, t}, E').
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'. Pf. \leq

- Given max matching M of cardinality k.
- . Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has cardinality k. •

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'. Pf. \geq

- Let f be a max flow in G' of value k.
- Integrality theorem \Rightarrow k is integral and can assume f is 0-1.
- Consider M = set of edges from L to R with f(e) = 1.
 - each node in L and R participates in at most one edge in M
 - |M| = k: consider flow across the cut (L \cup s, R \cup t) -

Perfect Matching

Def. A matching $M \subseteq E$ is perfect if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly we must have |L| = |R|.
- What other conditions are necessary?
- What conditions are sufficient?

Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?

- Generic augmenting path: O(m val(f*)) = O(mn).
- Capacity scaling: $O(m^2 \log C) = O(m^2)$.
- Shortest augmenting path: $O(m n^{1/2})$.

Non-bipartite matching.

- Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
- Blossom algorithm: O(n⁴). [Edmonds 1965]
- Best known: O(m n^{1/2}). [Micali-Vazirani 1980]

Perfect Matching

R

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$, has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$. Pf. Each node in S has to be matched to a different node in N(S).

<u>No perfect matching:</u> S = { 2, 4, 5 } N(S) = { 2', 5' }.

Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935] Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then, G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

R

Pf. \Rightarrow This was the previous observation.

<u>No perfect matching:</u> S = { 2, 4, 5 } N(S) = { 2', 5' }.

Proof of Marriage Theorem

- Pf. \leftarrow Suppose G does not have a perfect matching.
 - Formulate as a max flow problem and let (A, B) be min cut in G'.
 - By max-flow min-cut, cap(A, B) < |L|.
 - Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$.
 - Since min cut can't use ∞ edges: $N(L_A) \subseteq R_A$.
 - $cap(A, B) = |L_B| + |R_A|$ (again, since min cut can't use ∞ edges).
 - $|N(L_A)| \le |R_A| = cap(A, B) |L_B| < |L| |L_B| = |L_A|.$
 - Choose $S = L_A$. •

