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Week 12.1,  Monday, Nov 4

Homework 6: Planning to Release Soon



2

Chapter 7

Network Flow

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.
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Residual Graph Gf

 Augmenting Path
 Ford-Fulkerson Algorithm

– While the residual graph contains an augmenting path
 Increase Flow (Augment)
 Update Residual Graph

Max Flow Min Cut

Integrality of Max Flow
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Pseudo-polynomial 
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Ford-Fulkerson:  Exponential Number of Augmentations

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size?

A.   No.  If max capacity is C, then algorithm can take C iterations.  
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7.3  Choosing Good Augmenting Paths
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
 Some choices lead to exponential algorithms.
 Clever choices lead to polynomial algorithms.
 If capacities are irrational, algorithm not guaranteed to 

terminate!

Goal:  choose augmenting paths so that:
 Can find augmenting paths efficiently.
 Few iterations.

Choose augmenting paths with:  [Edmonds-Karp 1972, Dinitz 1970]
 Max bottleneck capacity.
 Sufficiently large bottleneck capacity.
 Fewest number of edges.
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Capacity Scaling

Intuition.  Choosing path with highest bottleneck capacity increases 
flow by max possible amount.
 Don't worry about finding exact highest bottleneck path.
 Maintain scaling parameter ∆.
 Let Gf (∆) be the subgraph of the residual graph consisting of only 

arcs with capacity at least ∆.
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Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e ∈ E  f(e) ← 0
∆ ← smallest power of 2 greater than or equal to C //max capacity
Gf ← residual graph

while (∆ ≥ 1) {
Gf(∆) ← ∆-residual graph
while (there exists augmenting path P in Gf(∆)) {

f ← augment(f, c, P)
update Gf(∆)

}
∆ ← ∆ / 2

}
return f

}
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Capacity Scaling:  Correctness

Assumption.  All edge capacities are integers between 1 and C. 

Integrality invariant.  All flow and residual capacity values are 
integral.

Correctness.  If the algorithm terminates, then f is a max flow.
Pf.
 By integrality invariant, when ∆ = 1  ⇒ Gf(∆) = Gf.
 Upon termination of ∆ = 1 phase, there are no augmenting 

paths.  ▪

Fact: The algorithm terminates in polynomial time in n, m and 
log(C)

Proof: Homework 6! (We provide the hints you provide the 
proof)



7.5  Bipartite Matching
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Matching.
 Input:  undirected graph G = (V, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching:  find a max cardinality matching.

Matching
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Bipartite Matching

Bipartite matching.
 Input:  undirected, bipartite graph G = (L ∪ R, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching:  find a max cardinality matching.
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Bipartite Matching

Bipartite matching.
 Input:  undirected, bipartite graph G = (L ∪ R, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching:  find a max cardinality matching.
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Max flow formulation.
 Create digraph G' = (L ∪ R ∪ {s, t},  E' ).
 Direct all edges from L to R, and assign infinite (or unit) capacity.
 Add source s, and unit capacity edges from s to each node in L.
 Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching
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Theorem.  Max cardinality matching in G = value of max flow in G'.
Pf.  ≤
 Given max matching M of cardinality k.
 Consider flow f that sends 1 unit along each of k paths.
 f is a flow, and has cardinality k.   ▪

Bipartite Matching:  Proof of Correctness
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Theorem.  Max cardinality matching in G = value of max flow in G'.
Pf.  ≥
 Let f be a max flow in G' of value k.
 Integrality theorem  ⇒ k is integral and can assume f is 0-1.
 Consider M = set of edges from L to R with f(e) = 1.

– each node in L and R participates in at most one edge in M
– |M| = k:  consider flow across the cut (L ∪ s, R ∪ t)   ▪

Bipartite Matching:  Proof of Correctness
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Def.  A matching M ⊆ E is perfect if each node appears in exactly one 
edge in M.

Q.  When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings. 
 Clearly we must have |L| = |R|.
 What other conditions are necessary?
 What conditions are sufficient?

Perfect Matching
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Which max flow algorithm to use for bipartite matching?
 Generic augmenting path:  O(m val(f*) ) = O(mn).
 Capacity scaling:  O(m2 log C )  = O(m2).
 Shortest augmenting path:  O(m n1/2).

Non-bipartite matching.
 Structure of non-bipartite graphs is more complicated, but

well-understood.  [Tutte-Berge, Edmonds-Galai]
 Blossom algorithm:  O(n4).   [Edmonds 1965]
 Best known:  O(m n1/2).        [Micali-Vazirani 1980]

Bipartite Matching:  Running Time
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Notation.  Let S be a subset of nodes, and let N(S) be the set of nodes 
adjacent to nodes in S.

Observation.  If a bipartite graph G = (L ∪ R, E), has a perfect 
matching, then |N(S)| ≥ |S| for all subsets S ⊆ L.
Pf.  Each node in S has to be matched to a different node in N(S).

Perfect Matching

No perfect matching:
S = { 2, 4, 5 }
N(S) = { 2', 5' }.
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Marriage Theorem.  [Frobenius 1917, Hall 1935] Let G = (L ∪ R, E) be a 
bipartite graph with |L| = |R|. Then, G has a perfect matching iff 
|N(S)| ≥ |S| for all subsets S ⊆ L.

Pf.  ⇒ This was the previous observation.

Marriage Theorem
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Pf.  ⇐ Suppose G does not have a perfect matching.
 Formulate as a max flow problem and let (A, B) be min cut in G'.
 By max-flow min-cut, cap(A, B) < | L |.
 Define LA = L ∩ A,  LB = L ∩ B ,  RA = R ∩ A.
 Since min cut can't use ∞ edges:  N(LA) ⊆ RA.
 cap(A, B)  =  | LB | + | RA | (again, since min cut can’t use ∞ edges).
 |N(LA )| ≤ | RA |  =  cap(A, B) - | LB |  <  | L | - | LB |  =  | LA |.
 Choose S = LA.  ▪

Proof of Marriage Theorem

LA = {2, 4, 5}
LB = {1, 3}
RA = {2', 5'}
N(LA) = {2', 
5'}s
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