
1

Week 12.1, Monday, Nov 4

Homework 6: Planning to Release Soon

2

Chapter 7

Network Flow

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

3

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source

sink

Recap

Residual Graph Gf

 Augmenting Path
 Ford-Fulkerson Algorithm

– While the residual graph contains an augmenting path
 Increase Flow (Augment)
 Update Residual Graph

Max Flow Min Cut

Integrality of Max Flow

4

Pseudo-polynomial

5

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

s

v

w

t

C

C

0 0

0 0

0

C

C

1 s

v

w

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

6

7.3 Choosing Good Augmenting Paths

11

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
 Some choices lead to exponential algorithms.
 Clever choices lead to polynomial algorithms.
 If capacities are irrational, algorithm not guaranteed to

terminate!

Goal: choose augmenting paths so that:
 Can find augmenting paths efficiently.
 Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 Max bottleneck capacity.
 Sufficiently large bottleneck capacity.
 Fewest number of edges.

12

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
 Don't worry about finding exact highest bottleneck path.
 Maintain scaling parameter ∆.
 Let Gf (∆) be the subgraph of the residual graph consisting of only

arcs with capacity at least ∆.

110

s

4

2

t1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

13

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e ∈ E f(e) ← 0
∆ ← smallest power of 2 greater than or equal to C //max capacity
Gf ← residual graph

while (∆ ≥ 1) {
Gf(∆) ← ∆-residual graph
while (there exists augmenting path P in Gf(∆)) {

f ← augment(f, c, P)
update Gf(∆)

}
∆ ← ∆ / 2

}
return f

}

14

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
 By integrality invariant, when ∆ = 1 ⇒ Gf(∆) = Gf.
 Upon termination of ∆ = 1 phase, there are no augmenting

paths. ▪

Fact: The algorithm terminates in polynomial time in n, m and
log(C)

Proof: Homework 6! (We provide the hints you provide the
proof)

7.5 Bipartite Matching

16

Matching.
 Input: undirected graph G = (V, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching: find a max cardinality matching.

Matching

17

Bipartite Matching

Bipartite matching.
 Input: undirected, bipartite graph G = (L ∪ R, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching: find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'

RL

18

Bipartite Matching

Bipartite matching.
 Input: undirected, bipartite graph G = (L ∪ R, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching: find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

RL

max matching

1-1', 2-2', 3-3' 4-4'

19

Max flow formulation.
 Create digraph G' = (L ∪ R ∪ {s, t}, E').
 Direct all edges from L to R, and assign infinite (or unit) capacity.
 Add source s, and unit capacity edges from s to each node in L.
 Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

RL

G'

20

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. ≤
 Given max matching M of cardinality k.
 Consider flow f that sends 1 unit along each of k paths.
 f is a flow, and has cardinality k. ▪

Bipartite Matching: Proof of Correctness

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞1

3

5

1'

3'

5'

2

4

2'

4'

G'
G

21

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. ≥
 Let f be a max flow in G' of value k.
 Integrality theorem ⇒ k is integral and can assume f is 0-1.
 Consider M = set of edges from L to R with f(e) = 1.

– each node in L and R participates in at most one edge in M
– |M| = k: consider flow across the cut (L ∪ s, R ∪ t) ▪

Bipartite Matching: Proof of Correctness

1

3

5

1'

3'

5'

2

4

2'

4'

G

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞G'

22

Def. A matching M ⊆ E is perfect if each node appears in exactly one
edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
 Clearly we must have |L| = |R|.
 What other conditions are necessary?
 What conditions are sufficient?

Perfect Matching

23

Which max flow algorithm to use for bipartite matching?
 Generic augmenting path: O(m val(f*)) = O(mn).
 Capacity scaling: O(m2 log C) = O(m2).
 Shortest augmenting path: O(m n1/2).

Non-bipartite matching.
 Structure of non-bipartite graphs is more complicated, but

well-understood. [Tutte-Berge, Edmonds-Galai]
 Blossom algorithm: O(n4). [Edmonds 1965]
 Best known: O(m n1/2). [Micali-Vazirani 1980]

Bipartite Matching: Running Time

24

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G = (L ∪ R, E), has a perfect
matching, then |N(S)| ≥ |S| for all subsets S ⊆ L.
Pf. Each node in S has to be matched to a different node in N(S).

Perfect Matching

No perfect matching:
S = { 2, 4, 5 }
N(S) = { 2', 5' }.

1

3

5

1'

3'

5'

2

4

2'

4'

L R

25

Marriage Theorem. [Frobenius 1917, Hall 1935] Let G = (L ∪ R, E) be a
bipartite graph with |L| = |R|. Then, G has a perfect matching iff
|N(S)| ≥ |S| for all subsets S ⊆ L.

Pf. ⇒ This was the previous observation.

Marriage Theorem

1

3

5

1'

3'

5'

2

4

2'

4'

L R

No perfect matching:
S = { 2, 4, 5 }
N(S) = { 2', 5' }.

26

Pf. ⇐ Suppose G does not have a perfect matching.
 Formulate as a max flow problem and let (A, B) be min cut in G'.
 By max-flow min-cut, cap(A, B) < | L |.
 Define LA = L ∩ A, LB = L ∩ B , RA = R ∩ A.
 Since min cut can't use ∞ edges: N(LA) ⊆ RA.
 cap(A, B) = | LB | + | RA | (again, since min cut can’t use ∞ edges).
 |N(LA)| ≤ | RA | = cap(A, B) - | LB | < | L | - | LB | = | LA |.
 Choose S = LA. ▪

Proof of Marriage Theorem

LA = {2, 4, 5}
LB = {1, 3}
RA = {2', 5'}
N(LA) = {2',
5'}s

1

3

5

1'

3'

5'

t

2

4

4'

1 ∞

2'

1

1

1

A
∞G'

∞

27

	CS 381 – Fall 2019
	Chapter 7��Network Flow
	Slide Number 3
	Slide Number 4
	Ford-Fulkerson: Exponential Number of Augmentations
	Slide Number 6
	7.3 Choosing Good Augmenting Paths
	Choosing Good Augmenting Paths
	Capacity Scaling
	Capacity Scaling
	Capacity Scaling: Correctness
	7.5 Bipartite Matching
	Matching
	Bipartite Matching
	Bipartite Matching
	Bipartite Matching
	Bipartite Matching: Proof of Correctness
	Bipartite Matching: Proof of Correctness
	Perfect Matching
	Bipartite Matching: Running Time
	Perfect Matching
	Marriage Theorem
	Proof of Marriage Theorem
	Slide Number 27

