
1

Week 12.1, Monday, Nov 4

Homework 6: Planning to Release Soon

2

Chapter 7

Network Flow

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

3

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source

sink

Recap

Residual Graph Gf

 Augmenting Path
 Ford-Fulkerson Algorithm

– While the residual graph contains an augmenting path
 Increase Flow (Augment)
 Update Residual Graph

Max Flow Min Cut

Integrality of Max Flow

4

Pseudo-polynomial

5

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

s

v

w

t

C

C

0 0

0 0

0

C

C

1 s

v

w

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

6

7.3 Choosing Good Augmenting Paths

11

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
 Some choices lead to exponential algorithms.
 Clever choices lead to polynomial algorithms.
 If capacities are irrational, algorithm not guaranteed to

terminate!

Goal: choose augmenting paths so that:
 Can find augmenting paths efficiently.
 Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
 Max bottleneck capacity.
 Sufficiently large bottleneck capacity.
 Fewest number of edges.

12

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
 Don't worry about finding exact highest bottleneck path.
 Maintain scaling parameter ∆.
 Let Gf (∆) be the subgraph of the residual graph consisting of only

arcs with capacity at least ∆.

110

s

4

2

t1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

13

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e ∈ E f(e) ← 0
∆ ← smallest power of 2 greater than or equal to C //max capacity
Gf ← residual graph

while (∆ ≥ 1) {
Gf(∆) ← ∆-residual graph
while (there exists augmenting path P in Gf(∆)) {

f ← augment(f, c, P)
update Gf(∆)

}
∆ ← ∆ / 2

}
return f

}

14

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
 By integrality invariant, when ∆ = 1 ⇒ Gf(∆) = Gf.
 Upon termination of ∆ = 1 phase, there are no augmenting

paths. ▪

Fact: The algorithm terminates in polynomial time in n, m and
log(C)

Proof: Homework 6! (We provide the hints you provide the
proof)

7.5 Bipartite Matching

16

Matching.
 Input: undirected graph G = (V, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching: find a max cardinality matching.

Matching

17

Bipartite Matching

Bipartite matching.
 Input: undirected, bipartite graph G = (L ∪ R, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching: find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'

RL

18

Bipartite Matching

Bipartite matching.
 Input: undirected, bipartite graph G = (L ∪ R, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching: find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

RL

max matching

1-1', 2-2', 3-3' 4-4'

19

Max flow formulation.
 Create digraph G' = (L ∪ R ∪ {s, t}, E').
 Direct all edges from L to R, and assign infinite (or unit) capacity.
 Add source s, and unit capacity edges from s to each node in L.
 Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

RL

G'

20

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. ≤
 Given max matching M of cardinality k.
 Consider flow f that sends 1 unit along each of k paths.
 f is a flow, and has cardinality k. ▪

Bipartite Matching: Proof of Correctness

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞1

3

5

1'

3'

5'

2

4

2'

4'

G'
G

21

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. ≥
 Let f be a max flow in G' of value k.
 Integrality theorem ⇒ k is integral and can assume f is 0-1.
 Consider M = set of edges from L to R with f(e) = 1.

– each node in L and R participates in at most one edge in M
– |M| = k: consider flow across the cut (L ∪ s, R ∪ t) ▪

Bipartite Matching: Proof of Correctness

1

3

5

1'

3'

5'

2

4

2'

4'

G

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞G'

22

Def. A matching M ⊆ E is perfect if each node appears in exactly one
edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
 Clearly we must have |L| = |R|.
 What other conditions are necessary?
 What conditions are sufficient?

Perfect Matching

23

Which max flow algorithm to use for bipartite matching?
 Generic augmenting path: O(m val(f*)) = O(mn).
 Capacity scaling: O(m2 log C) = O(m2).
 Shortest augmenting path: O(m n1/2).

Non-bipartite matching.
 Structure of non-bipartite graphs is more complicated, but

well-understood. [Tutte-Berge, Edmonds-Galai]
 Blossom algorithm: O(n4). [Edmonds 1965]
 Best known: O(m n1/2). [Micali-Vazirani 1980]

Bipartite Matching: Running Time

24

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G = (L ∪ R, E), has a perfect
matching, then |N(S)| ≥ |S| for all subsets S ⊆ L.
Pf. Each node in S has to be matched to a different node in N(S).

Perfect Matching

No perfect matching:
S = { 2, 4, 5 }
N(S) = { 2', 5' }.

1

3

5

1'

3'

5'

2

4

2'

4'

L R

25

Marriage Theorem. [Frobenius 1917, Hall 1935] Let G = (L ∪ R, E) be a
bipartite graph with |L| = |R|. Then, G has a perfect matching iff
|N(S)| ≥ |S| for all subsets S ⊆ L.

Pf. ⇒ This was the previous observation.

Marriage Theorem

1

3

5

1'

3'

5'

2

4

2'

4'

L R

No perfect matching:
S = { 2, 4, 5 }
N(S) = { 2', 5' }.

26

Pf. ⇐ Suppose G does not have a perfect matching.
 Formulate as a max flow problem and let (A, B) be min cut in G'.
 By max-flow min-cut, cap(A, B) < | L |.
 Define LA = L ∩ A, LB = L ∩ B , RA = R ∩ A.
 Since min cut can't use ∞ edges: N(LA) ⊆ RA.
 cap(A, B) = | LB | + | RA | (again, since min cut can’t use ∞ edges).
 |N(LA)| ≤ | RA | = cap(A, B) - | LB | < | L | - | LB | = | LA |.
 Choose S = LA. ▪

Proof of Marriage Theorem

LA = {2, 4, 5}
LB = {1, 3}
RA = {2', 5'}
N(LA) = {2',
5'}s

1

3

5

1'

3'

5'

t

2

4

4'

1 ∞

2'

1

1

1

A
∞G'

∞

27

	CS 381 – Fall 2019
	Chapter 7��Network Flow
	Slide Number 3
	Slide Number 4
	Ford-Fulkerson: Exponential Number of Augmentations
	Slide Number 6
	7.3 Choosing Good Augmenting Paths
	Choosing Good Augmenting Paths
	Capacity Scaling
	Capacity Scaling
	Capacity Scaling: Correctness
	7.5 Bipartite Matching
	Matching
	Bipartite Matching
	Bipartite Matching
	Bipartite Matching
	Bipartite Matching: Proof of Correctness
	Bipartite Matching: Proof of Correctness
	Perfect Matching
	Bipartite Matching: Running Time
	Perfect Matching
	Marriage Theorem
	Proof of Marriage Theorem
	Slide Number 27

