

JON KLEINBERG - EVA TARDOS

PEARSON

e —

Addison
Wesley

Max Flow Recap

Max-Flow Problem, Min Cut Problem
Definition of a s-t flow f(e) and a s-t cut (A,B)
Value of a flow f
Capacity of a s-t cut (A,B)

Weak Duality Lemma: For any flow f and s-t cut A,B we

have v(f) < cap(4, B) (i.e., capacity of minimum cut is upper
bound on max-flow)

/@ 9 » 5
Finding a Max-Flow: 0 \
' 4

Greedy algorithm fails!

sink
) 4) 4
source (s 5 »(3) 8 »(6) 10

4 6 15 10

. 15
capacity = \
4) 30 (7

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e € E.
. Find an s-1 path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.

N locally optimality # global optimality

Clicker Question: Greedy Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.

For which of the following graphs is the greedy algorithm
guaranteed to find the maximum flow?

A. Graph 6, only B. Graph 6, only C. Graph 65 only
D. Graphs 6; and 6, E. None of them

%5@ C{fj@ qu;@

e

Clicker Question: Greedy Max Flow Algorithm

Greedy algorithm.
. Start with f(e) = 0 for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.

For which of the following graphs is the greedy algorithm
guaranteed to find the maximum flow?

A. Graph 6, only B. Graph 6, only C. Graph G5 only
D. Graphs 6; and 6, E. None of them

(61) |20 (6.) 0 (63)
@J\ZO 10 @J\ZO 10 20 100 |10
4020 >@ 3010 >@ 3010 :z@
10 20 10 20 G)<1o
N % N £ | 10 20
20 10 \‘é

Residual graph

Original edge: e=(u,v) € E. original graph G

* Flow f(e). (—— 6/17—(V)

» Capacity c(e). / N\

flow capacity

Residual graph

Original edge: e=(u,v) € E.
* Flow f(e).
* Capacity c(e).

Residual edge.
« "Undo"” flow sent.
* e=(u,v) and eR = (v, u).
« Residual capacity:

c.(e) =J"'(€)_.f(f‘) if e€E
@

if e"eE

original graph G

@—/6 / 1,:;_.@

flow capacity

residual graph Gr residual
4 capacity
(u) 11 7 (V)

Residual graph

Original edge: e=(u,v) € E.
* Flow f(e).
* Capacity c(e).

Residual edge.
« "Undo"” flow sent.
* e=(u,v) and eR = (v, u).
« Residual capacity:

c.(e) =Ji7(f-‘)—_f(€) if e€FE
e Lf(f‘-') if e"eE

Residual graph: G;=(V,Ej).

« Residual edges with positive residual capacity.

- Ef: {e:fle)< c(e)} U {eR:f(e) > 0}.

original graph G

@— —

flow capacity

residual graph Gr residual

(u) 11‘/7 »(V)
\ 6—.{/

where flow on a reverse edge

/ negates flow on a forward edge

* Key property: f'is a flow in G;iff f+f'is a flow in G.

fof

20

20

10

10

Augmenting path

@ S>V-ou->t

Vv

with bottleneck

10
K capacity 5
Results in a flow of
30 30
10
20 10=f(u,v) - f'(v,u) = 15-5
20

(flow negates on reverse edge

1

Augmenting path

Def. An augmenting path is a simple s~z path P in the residual graph G;.

Def. The bottleneck capacity of an augmenting P is the minimum
residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G;.
Then f'is a flow and val(f') = val(f) + bottleneck(Gy, P).

AUGMENT (f, ¢, P)

b < bottleneck capacity of path P.
FOREACH edge e € P

IF(e€FE) f(e) — f(e) + b.
ELSE f(e®) «— f(e®) — b.
RETURN f.

15

Ford-Fulkerson Algorithm

/ ! h
$ capacity
G: \ /
10 2 8\6 10
play

Initialize: f(e)=0 //empty flow
While there remains an augmenting path P // s-t path in residual graph 6;

Augment(f,c P) // Increases v(f)

Update G;

16

Augmenting Path Algorithm

forward edge

reverse edge

17

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(ii) = (iii) We show contrapositive.

. Let f be a flow. If there exists an augmenting path, then we
can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii) = (i)

(No augmenting paths relative to f > cap(A,B)=v(g) for some cut A,B)
. Let f be a flow with no augmenting paths.
. Let A be set of vertices reachable from s in residual graph.

. By definition of A, s € A. Must be O since there is no
. By definitionof f, 1 ¢ A Edge from A to B in residual graph

W=) fEe-) Fo
eoutof A einto A
\

Must be c(e) since there is no edge
from A to B in residual graph

original network

18

19

Proof of Max-Flow Min-Cut Theorem

(iii) = (i)
Let f be a flow with no augmenting paths.
. Let A be set of vertices reachable from s in residual graph.
. By definition of A, s € A.

Must be O si th is
- By definition of f, t ¢ A. ust be U since There Is no

Edge frcy\ A to B in residual graph

v(H=) fE@-) fE)

eout of A einto A

= Z c(e)

e out of A

= cap(A,B)

original network

Running time

Assumption. Capacities are integers between 1 and C.

Integrality invariant. Throughout the algorithm, the flow values f(e)
and the residual capacities c;(e) are integers.

Theorem. The algorithm terminates in at most val (f*) < nC iterations.

Pf. Each augmentation increases the value by at least 1. \
Pseudo-polynomial

Corollary. The running time of Ford-Fulkerson is O@mn C).

Corollary. If C =1, the running time of Ford-Fulkerson is OGmnn).

Integrality theorem. Then exists a max-flow f* for which every
flow value f*(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =

20

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1 91 1 ¥XO

21

Bad case for Ford-Fulkerson

Q.

A.

Is generic Ford-Fulkerson algorithm poly-time in input size?

\ m, n, and log C

No. If max capacity is C, then algorithm can take = C iterations.

S—=V—=w—>/
S—=W—v—f
S—=V—=>w—>/

§—wW—1v—>f

S—=v—=w—/

§—W—v—f

——

each augmenting path
sends only 1 unit of flow
(# augmenting paths = 20)

C

®_c>@

c—@

A

1 C

7.3 Choosing Good Augmenting Paths

24

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed to terminatel!

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
. Max bottleneck capacity.
. Sufficiently large bottleneck capacity.
. Fewest number of edges e.g., BFS in residual graph.

Interested in knowing more about MaxFlow?

2014 CACM Review paper by Goldberg and Tarjan posted on Piazza
http://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms/abstract

http://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms/abstract

	CS 381 – Fall 2019
	Chapter 7��Network Flow
	Max Flow Recap
	Towards a Max Flow Algorithm
	Clicker Question: Greedy Max Flow Algorithm
	Slide Number 6
	Clicker Question: Greedy Max Flow Algorithm
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Example
	Slide Number 13
	Ford-Fulkerson Algorithm
	Augmenting Path Algorithm
	Max-Flow Min-Cut Theorem
	Proof of Max-Flow Min-Cut Theorem
	Proof of Max-Flow Min-Cut Theorem
	Slide Number 20
	Ford-Fulkerson: Exponential Number of Augmentations
	Slide Number 22
	7.3 Choosing Good Augmenting Paths
	Choosing Good Augmenting Paths

