Midterm 2: Grading in progress
Homework 6: Planned Released on Monday, November 4th
Network Flow
Max Flow Recap

Max-Flow Problem, Min Cut Problem
- Definition of a s-t flow \(f(e) \) and a s-t cut \((A,B) \)
- Value of a flow \(f \)
- Capacity of a s-t cut \((A,B) \)

Weak Duality Lemma: For any flow \(f \) and s-t cut \(A,B \) we have \(v(f) \leq cap(A, B) \) (i.e., capacity of minimum cut is upper bound on max-flow)

Finding a Max-Flow:
- Greedy algorithm fails!
Towards a Max Flow Algorithm

Greedy algorithm.

- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get **stuck**.

\[\text{locally optimality } \neq \text{ global optimality}\]
Clicker Question: Greedy Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

For which of the following graphs is the greedy algorithm guaranteed to find the maximum flow?

A. Graph G_1 only B. Graph G_2 only C. Graph G_3 only
D. Graphs G_3 and G_2 E. None of them

\[\text{(G}_1) \] \[\text{(G}_2) \] \[\text{(G}_3) \]
Greedy algorithm.

- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

For which of the following graphs is the greedy algorithm guaranteed to find the maximum flow?

A. Graph G_1 only B. Graph G_2 only C. Graph G_3 only D. Graphs G_3 and G_2 E. None of them
Residual graph

Original edge: $e = (u, v) \in E$.
- Flow $f(e)$.
- Capacity $c(e)$.
Residual graph

Original edge: $e = (u, v) \in E$.
- Flow $f(e)$.
- Capacity $c(e)$.

Residual edge.
- "Undo" flow sent.
- $e = (u, v)$ and $e^R = (v, u)$.
- Residual capacity:

$$c_f(e) = \begin{cases}
 c(e) - f(e) & \text{if } e \in E \\
 f(e) & \text{if } e^R \in E
\end{cases}$$
Residual graph

Original edge: \(e = (u, v) \in E \).
- Flow \(f(e) \).
- Capacity \(c(e) \).

Residual edge.
- "Undo" flow sent.
- \(e = (u, v) \) and \(e^R = (v, u) \).
- Residual capacity:

\[
c_f(e) = \begin{cases}
 c(e) - f(e) & \text{if } e \in E \\
 f(e) & \text{if } e^R \in E
\end{cases}
\]

Residual graph: \(G_f = (V, E_f) \).
- Residual edges with positive residual capacity.
- \(E_f = \{ e : f(e) < c(e) \} \cup \{ e^R : f(e) > 0 \} \).
- Key property: \(f' \) is a flow in \(G_f \) iff \(f + f' \) is a flow in \(G \).
Augmenting path $s \rightarrow v \rightarrow u \rightarrow t$ with bottleneck capacity 5
Results in a flow of 30

$10 = f(u,v) - f'(v,u) = 15 - 5$
(flow negates on reverse edge)
Augmenting path

Def. An augmenting path is a simple $s \rightarrow t$ path P in the residual graph G_f.

Def. The bottleneck capacity of an augmenting P is the minimum residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G_f. Then f' is a flow and $\text{val}(f') = \text{val}(f) + \text{bottleneck}(G_f, P)$.

```
AUGMENT $(f, c, P)$

$b \leftarrow \text{bottleneck capacity of path } P.$

\textbf{FOREACH} edge $e \in P$

\textbf{IF} $(e \in E)$ $f(e) \leftarrow f(e) + b.$

\textbf{ELSE} $f(e^R) \leftarrow f(e^R) - b.$

\textbf{RETURN} $f.$
```
Ford-Fulkerson Algorithm

\[G: \]

\[s \] \quad 10 \quad 2 \quad 8 \quad 6 \quad 10 \quad \text{capacity} \quad \rightarrow \quad \text{t} \]

\[10 \quad 4 \quad 4 \quad 6 \quad 10 \]

\[10 \quad 9 \quad 5 \]

Initialize: \(f(e) = 0 \) \hspace{1cm} //empty flow

While there remains an augmenting path \(P \) \hspace{1cm} // s-t path in residual graph \(G_f \)

- **Augment** \((f,c,P) \) \hspace{1cm} // Increases \(v(f) \)
- **Update** \(G_f \)
Augmenting Path Algorithm

Augment\((f, c, P)\) {
 \(b \leftarrow \text{bottleneck}(P)\)
 \foreach e \in P { \begin{align*}
 \text{if } (e \in E) & \quad f(e) \leftarrow f(e) + b \\
 \text{else} & \quad f(e^R) \leftarrow f(e^R) - b
 \end{align*} \}
 \text{return } f
}

Ford-Fulkerson\((G, s, t, c)\) {
 \foreach e \in E \quad f(e) \leftarrow 0 \\
 G_f \leftarrow \text{residual graph}
 \text{while } (\text{there exists augmenting path } P) \{ \begin{align*}
 f & \leftarrow \text{Augment}(f, c, P) \\
 \text{update } G_f
 \end{align*} \}
 \text{return } f
}
Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow \(f \) is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:

(i) There exists a cut \((A, B)\) such that \(\nu(f) = \text{cap}(A, B) \).
(ii) Flow \(f \) is a max flow.
(iii) There is no augmenting path relative to \(f \).

(i) \(\Rightarrow \) (ii) This was the corollary to weak duality lemma.

(ii) \(\Rightarrow \) (iii) We show contrapositive.

- Let \(f \) be a flow. If there exists an augmenting path, then we can improve \(f \) by sending flow along path.
(iii) \Rightarrow (i)
(No augmenting paths relative to $f \Rightarrow \text{cap}(A,B)=v(g)$ for some cut A,B)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of A, $s \in A$.
- By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

Must be 0 since there is no edge from A to B in residual graph

Must be $c(e)$ since there is no edge from A to B in residual graph
Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
 - By definition of A, $s \in A$.
 - By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

Must be 0 since there is no Edge from A to B in residual graph

$$= \sum_{e \text{ out of } A} c(e)$$

$$= \text{cap}(A,B)$$
Running time

Assumption. Capacities are integers between 1 and C.

Integrality invariant. Throughout the algorithm, the flow values $f(e)$ and the residual capacities $c_f(e)$ are integers.

Theorem. The algorithm terminates in at most $\text{val}(f^*) \leq nC$ iterations.

Pf. Each augmentation increases the value by at least 1.

Corollary. The running time of Ford-Fulkerson is $O(mnC)$.

Corollary. If $C = 1$, the running time of Ford-Fulkerson is $O(mn)$.

Integrality theorem. Then exists a max-flow f^* for which every flow value $f^*(e)$ is an integer.

Pf. Since algorithm terminates, theorem follows from invariant.
Q. Is generic Ford-Fulkerson algorithm polynomial in input size?
A. No. If max capacity is C, then algorithm can take C iterations.
Bad case for Ford-Fulkerson

Q. Is generic Ford-Fulkerson algorithm poly-time in input size?

A. No. If max capacity is C, then algorithm can take $\geq C$ iterations.

- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \rightarrow w \rightarrow v \rightarrow t$
- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \rightarrow w \rightarrow v \rightarrow t$
- $s \rightarrow v \rightarrow w \rightarrow t$
- \ldots
- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \rightarrow w \rightarrow v \rightarrow t$

Each augmenting path sends only 1 unit of flow (# augmenting paths = 2C)

[Diagram showing a graph with nodes and edges labeled with capacities]
7.3 Choosing Good Augmenting Paths
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges e.g., BFS in residual graph.

Interested in knowing more about MaxFlow?
2014 CACM Review paper by Goldberg and Tarjan posted on Piazza
http://cacm.acm.org/magazines/2014/8/177011-efficient-maximum-flow-algorithms/abstract