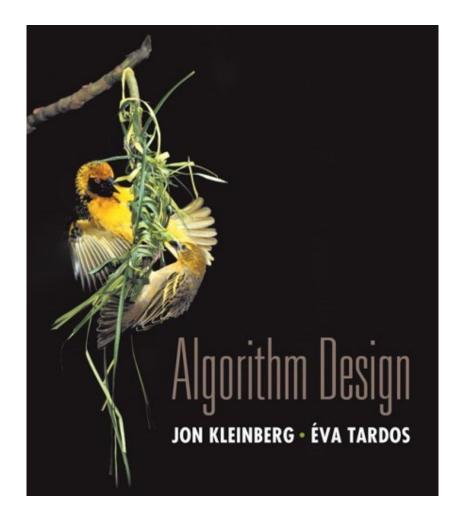
CS 381 – FALL 2019

Week 11.2, Wednesday, Oct 30

Midterm 2 Tonght! October 30 (8-9:30PM) MTHW 210 and BRNG 2280 Friday PSO → BRNG 2280 (Exam Capacity 62) All Others → MTHW 210 (Exam Capacity 111) Practice Midterm 2 & Solutions on Piazza No PSOs this week (Due to Midterm)

Midterm 2

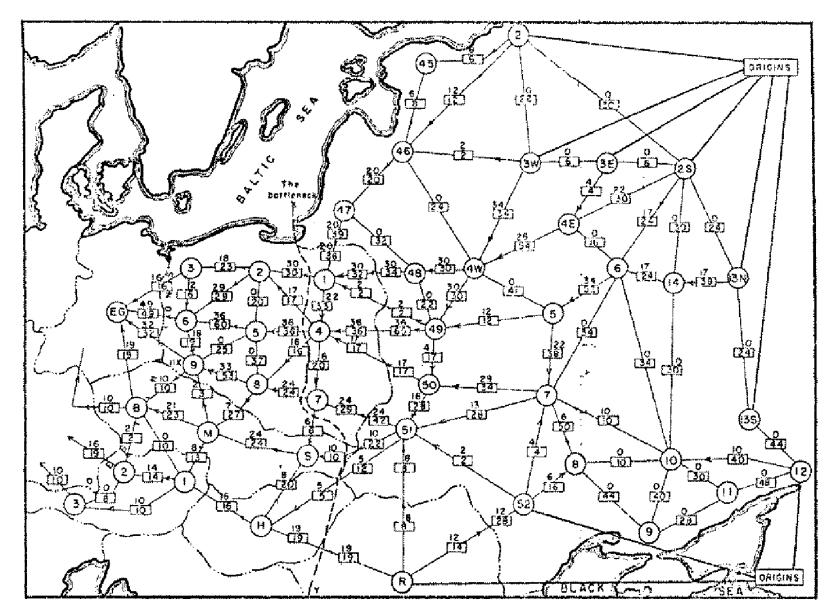
- Friday PSO → BRNG 2280 (Exam Capacity 62)
- □ All Others → MTHW 210 (Exam Capacity 111)
- Focus: Dynamic Programing and Graph Algorithms
 - Lectures 15 to 28
 - No Network Flow (today's lecture)
- Same Rules as Midterm 1
 - Allowed to prepare 1 page of handwritten notes
 - No calculators, phones, smartwatches etc...
 - Make sure your writing implement shows up clearly when scanned!
 - Number 2 pencils work



Network Flow

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Soviet Rail Network, 1955



Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut

Max flow and min cut.

- . Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.

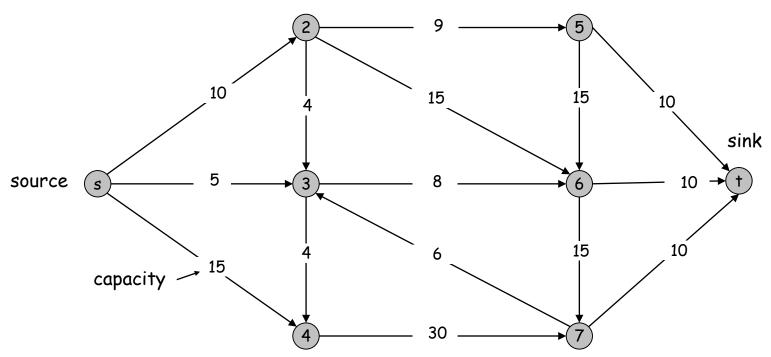
- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more ...

Minimum Cut Problem

Flow network.

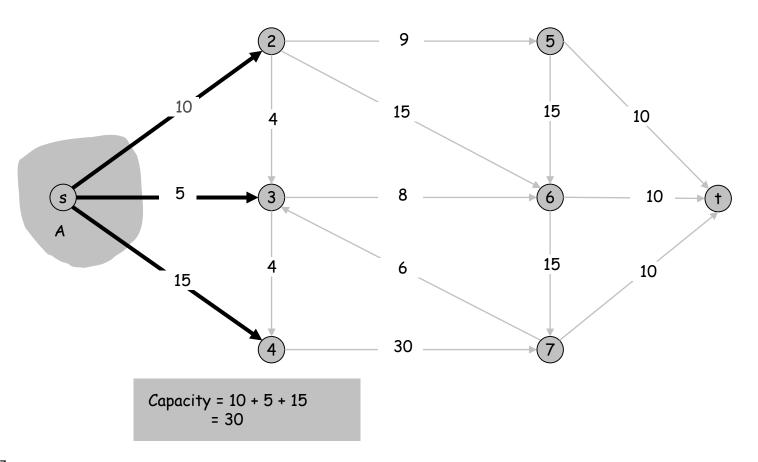
- Abstraction for material flowing through the edges.
- G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e.



Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

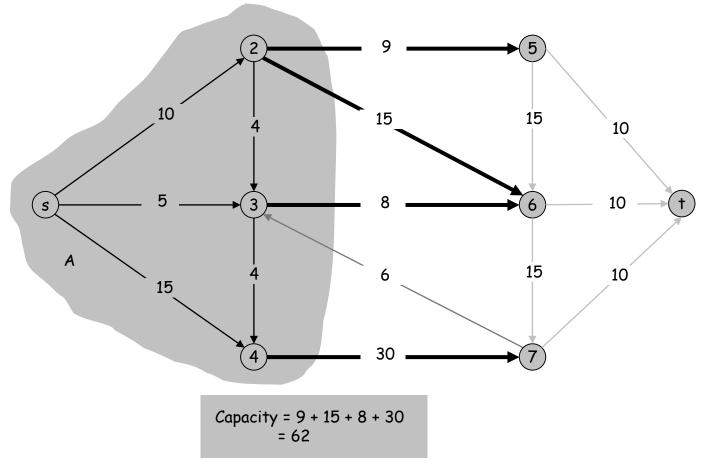
Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$



Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$



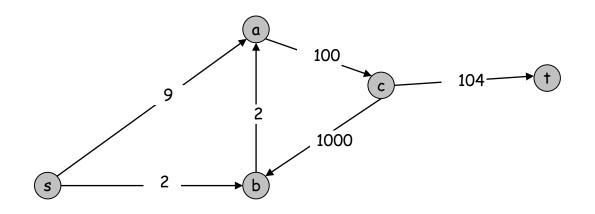
Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.



Capacity = 10 + 8 + 10 = 28

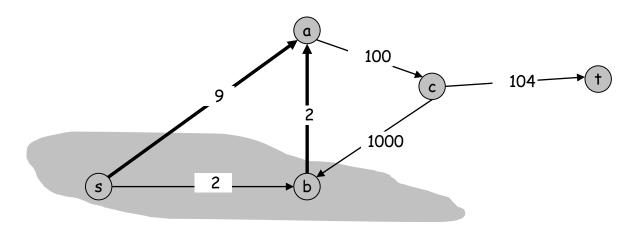
Clicker Question



Find the minimum capacity s-t cut (A, B=V\A)

Choice A: $A=\{s,b\}, B=\{a,c,t\}$ Choice B: $A=\{s,a\}, B=\{b,c,t\}$ Choice C: $A=\{s,a,b\}, B=\{c,t\}$ Choice D: $A=\{s,a,b,c,t\}, B=\{\}$ Choice E: $A=\{a,b\}, B=\{s,c,t\}$

Clicker Question



Find the minimum capacity s-t cut (A, $B=V\setminus A$)

Choice	A :	A={s,b},	B={a,c,t}	
Choice I	B:	A={s,a},	B={b,c, t}	
Choice (C:	A={s,a,b},	B={c, t}	
Choice I	D:	A={s,a,b,c,t},	B={}	(Not a s-t cut)
Choice l	E:	A={a,b},	B={s,c,t}	(Not a s-t cut)

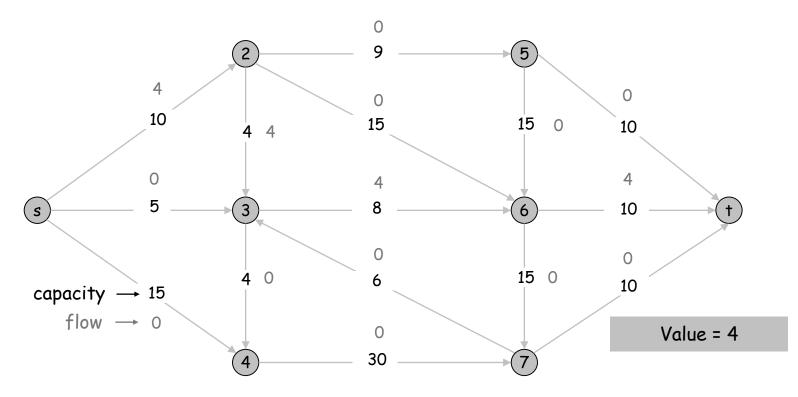
Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

[capacity] [conservation]

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.



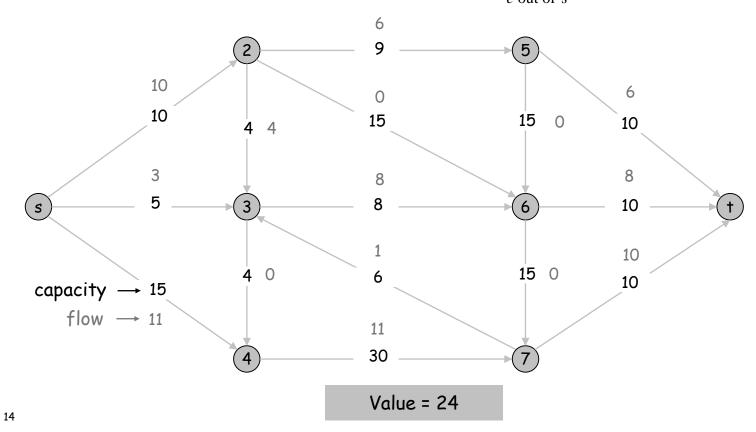
Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

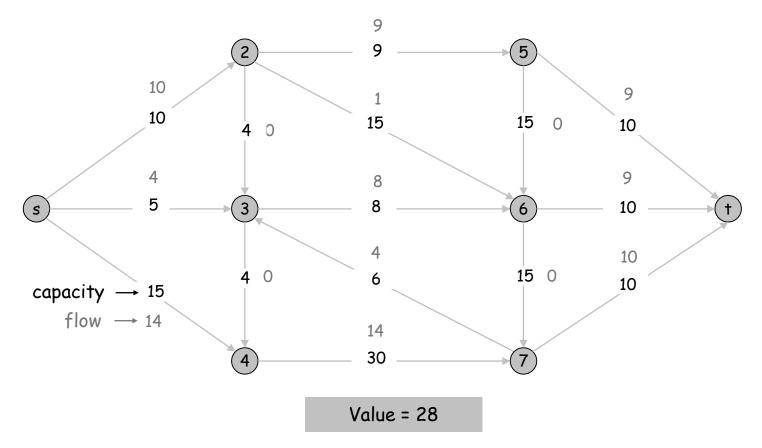
[capacity] [conservation]

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

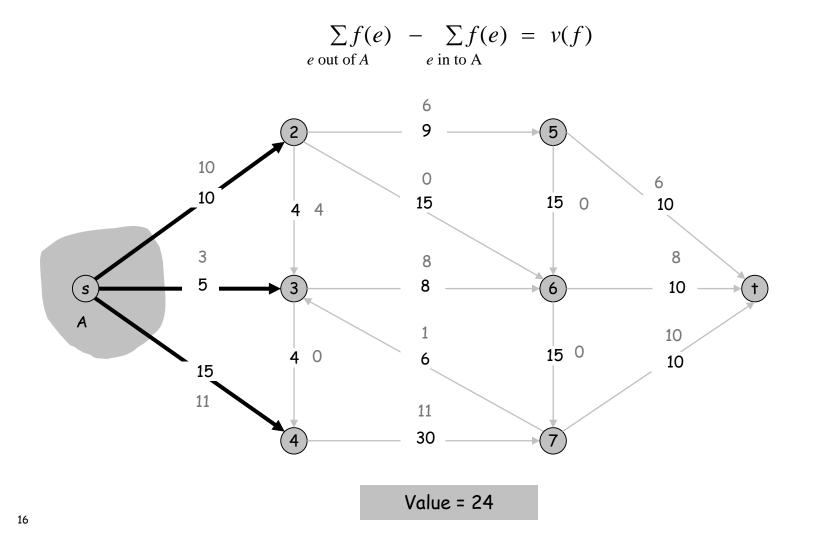


Maximum Flow Problem

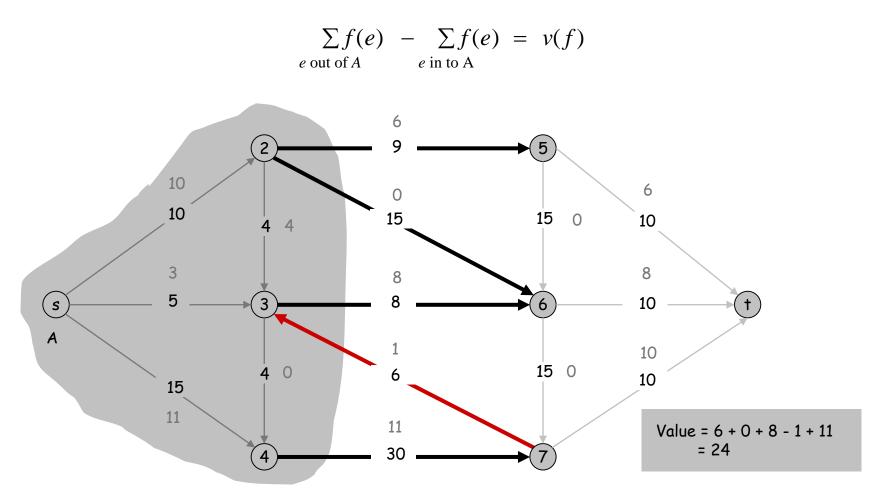
Max flow problem. Find s-t flow of maximum value.



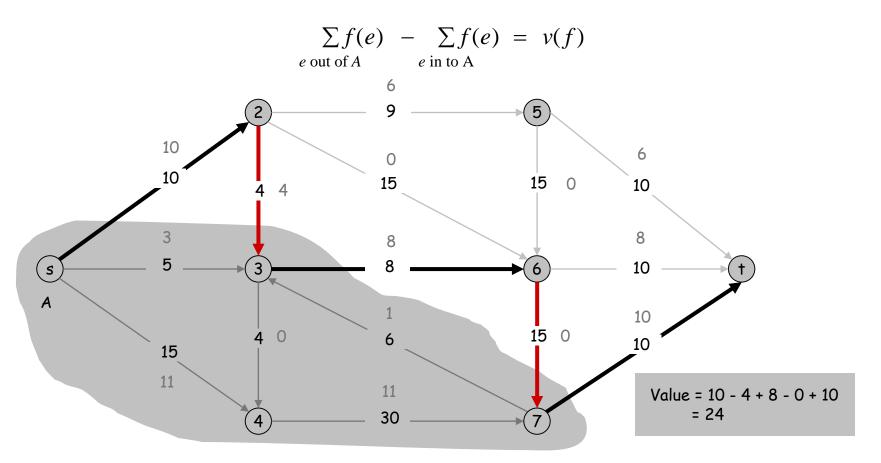
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.



Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

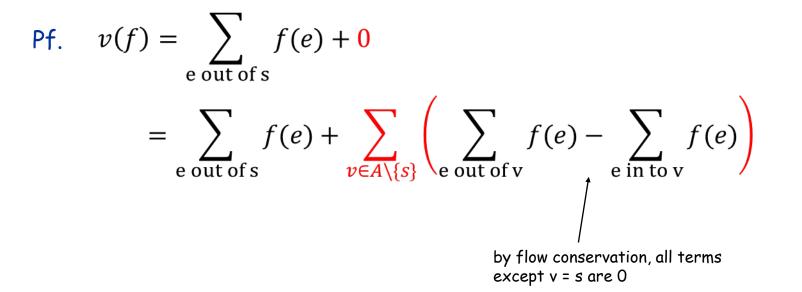


Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.



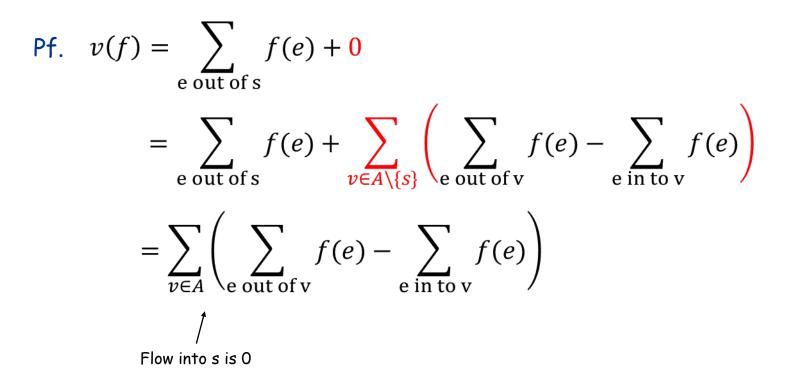
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

 $\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$



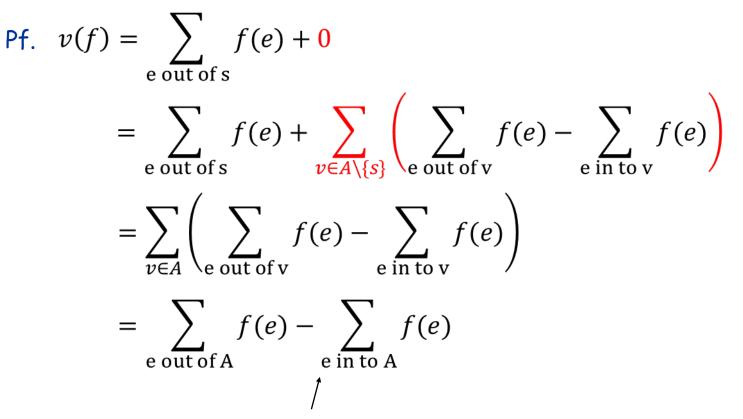
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

 $\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$



Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

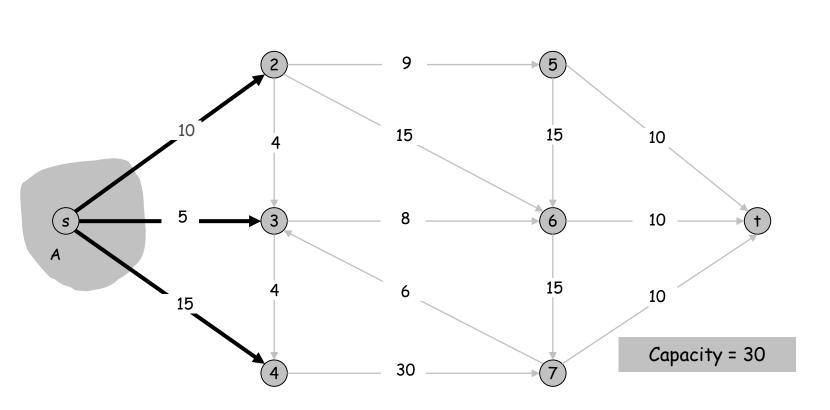
 $\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$



If e=(u,v) with u and v in A then f(e) was added & subtracted in prior sum

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = 30 \implies Flow value \leq 30



By Flow value lemma.

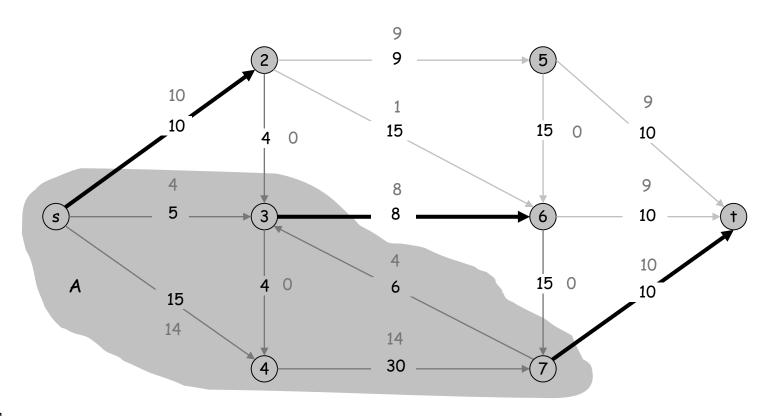
Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Pf.
$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$
$$\leq \sum_{e \text{ out of } A} f(e) \leq \sum_{e \text{ out of } A} c(e)$$
$$= cap(A, B)$$

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

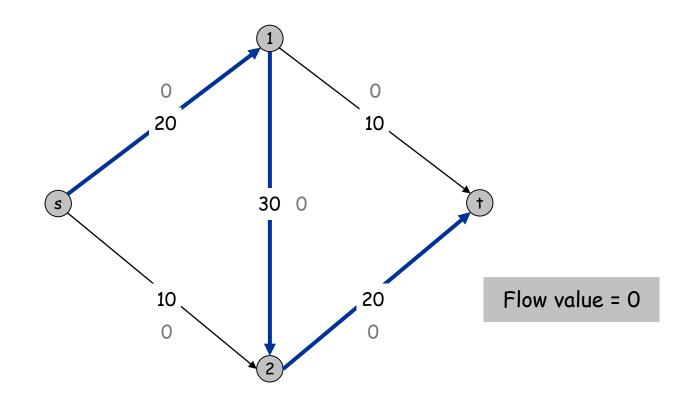
> Value of flow = 28 Cut capacity = 28 \Rightarrow Flow value \leq 28



Towards a Max Flow Algorithm

Greedy algorithm.

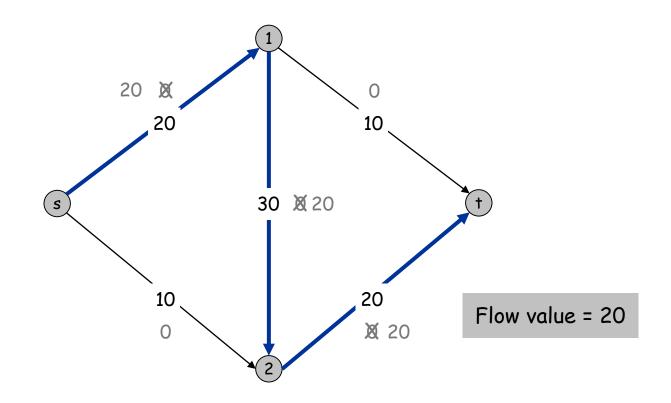
- . Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



Towards a Max Flow Algorithm

Greedy algorithm.

- . Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

 $^{\checkmark}$ locally optimality \Rightarrow global optimality

