
1

Week 10.3, Friday, Oct 25
Homework 5 Due October 26 @ 11:59PM on Gradescope
Midterm 2 on October 30 (8-9:30PM) MTHW 210 and BRNG 2280
Practice Midterm 2 Released
No PSOs next week (Due to Midterm)
No class on Monday, October 28th

Review Session: Monday, October 28th from 7-9PM (WALC 1018)

 Friday PSO BRNG 2280 (Exam Capacity 62)
 All Others MTHW 210 (Exam Capacity 111)
 Focus: Dynamic Programing and Graph

Algorithms
 Content covered today is fair game
 No Network Flow

 Same Rules as Midterm 1
 Allowed to prepare 1 page of handwritten notes
 No calculators, phones, smartwatches etc…
 Make sure your writing implement shows up clearly

when scanned!
 Number 2 pencils work

3.6 DAGs and Topological Ordering

4

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (vi, vj) means vi must precede vj.

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG

a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Clicker: The numbers in the vertices
are claimed to be in topological order.

Are they?

A. Yes
B. No
C. Don’t know

6

A. Yes
B. No
C. Don’t know

Clicker: The numbers in the vertices
are claimed to be in topological order.

Are they?

8

Precedence Constraints

Precedence constraints. Edge (vi, vj) means task vi must occur before vj.

Applications.
 Course prerequisite graph: course vi must be taken before vj.
 Compilation: module vi must be compiled before vj.
 Pipeline of computing jobs: output of job vi needed to determine

input of job vj.
 Shortest Path Computation is Faster in a DAG

9

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)
 Suppose that G has a topological order v1, …, vn and that G also has a

directed cycle C. Let's see what happens.
 Let vi be the lowest-indexed node in C, and let vj be the node just

before vi; thus (vj, vi) is an edge.
 By our choice of i, we have i < j.
 On the other hand, since (vj, vi) is an edge and v1, …, vn is a

topological order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

10

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

11

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
 Suppose that G is a DAG and every node has at least one incoming

edge. Let's see what happens.
 Pick any node v, and begin following edges backward from v. Since v

has at least one incoming edge (u, v) we can walk backward to u.
 Then, since u has at least one incoming edge (x, u), we can walk

backward to x.
 Repeat until we visit a node, say w, twice.
 Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle. ▪

w x u v

12

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
 Base case: true if n = 1.
 Given DAG on n > 1 nodes, find a node v with no incoming edges.
 G - { v } is a DAG, since deleting v cannot create cycles.
 By inductive hypothesis, G - { v } has a topological ordering.
 Place v first in topological ordering; then append nodes of G - {v}

in topological order. This is valid since v has no incoming edges. ▪

DAG

v

play

13

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n)
time.

Pf.
 Maintain the following information:

– count[w] = remaining number of incoming edges
– S = set of remaining nodes with no incoming edges

 Initialization: O(m + n) via single scan through graph.
 Update: to delete v

– remove v from S
– decrement count[w] for all edges from v to w, and

add w to S if c count[w] hits 0
– this is O(1) per edge ▪

Shortest Path in a DAG

Input: DAG G=(V,E) (adjacency list), edge costs ce and source s
Precondition: Assume nodes are v1,…,vn topologically sorted
• O(n + m) additional work to satisfy pre-condition
Output: array D s.t D[v] denotes the minimum cost path from s to v

(predecessor array PRED s.t. PRED[w] = v if (v,w) is the last
edge on the shortest path from s to w)

For v=1,…,n
D[v]:= ∞ //No path from s to v found yet

D[s]:=0

For v=1,…,n
Foreach edge (v,w) in E

if D[w] > D[v]+ cvw

D[w] := D[v]+ cvw

PRED[w]:=v

14

O(m) time --- each edge considered once

15

Minimum Spanning Tree (Recap)

Minimum spanning tree. Given a connected graph G = (V, E)
with real-valued edge weights ce, an MST is a subset of the
edges T ⊆ E such that T is a spanning tree whose sum of edge
weights is minimized.

Cayley's Theorem. There are nn-2 spanning trees of Kn.

can't solve by brute force

5

23

10
21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) T, Σe∈T ce = 50

16

Recap: Greedy Algorithms for MST

Kruskal's algorithm. Start with T = φ. Consider edges in ascending
order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in
descending order of cost. Delete edge e from T unless doing so would
disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree
T from s outward. At each step, add the cheapest edge e to T that has
exactly one endpoint in T.

Remark. All three algorithms produce an MST.

Proof with Distinct Edge Weights: Cut/Cycle property
• Min weight edge crossing cut must be included in MST
• Max weight edge in cycle must not be included in MST

17

Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct: perturb all edge
costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise comparisons.
If perturbations are sufficiently small, MST with perturbed costs is MST
with original costs.

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n3

Observation. For integers a and b we have 𝑎𝑎 < 𝑏𝑏 if and only if 𝑎𝑎 + 1 ≤ 𝑏𝑏

Notation: Let w(T) = Σe∈T ce (resp. w(T)) denote weight of tree T before
(resp. after) perturbing costs

Fact. If w(T) < w(T’) then w(T) < w(T’).

Proof: w(T) < w(T)+1 ≤ w(T’) ≤ w(T’)

n-1 edges each perturbed
by at most < 1 / n2

(by observation) Perturbations are positive

18

Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct: perturb all
edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise
comparisons. If perturbations are sufficiently small, MST with
perturbed costs is MST with original costs.

boolean less(i, j) {
if (cost(ei) < cost(ej)) return true
else if (cost(ei) > cost(ej)) return false
else if (i < j) return true
else return false

}

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n3

Implementation. Can handle arbitrarily small perturbations
implicitly by breaking ties lexicographically, according to index.

19

Implementation: Kruskal's Algorithm

Kruskal(G, c) {
Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm.
T ← φ

foreach (u ∈ V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets) {

T ← T ∪ {ei}
merge the sets containing u and v

}
return T

}

Implementation. Use the union-find data structure.
 Build set T of edges in the MST.
 Maintain set for each connected component.
 O(m log n) for sorting and O(m α(m, n)) for union-find.

are u and v in different connected components?

merge two components

m ≤ n2 ⇒ log m is O(log n) essentially a constant

Union-Find Operations

• Make(v)
• Add a new singleton set {v} with name v (canonical element)
• Kruskal: Sets represent connected components. Initially each node is in

its own connected component.
• Find(u)

• Input: u ∈ 𝑆𝑆
• Output: Name of the set A containing u
• Require: Find(u)=Find(v) if and only if u & v in the same set A then

(Kruskal: used to test if u and v are in same connected component)
• Union(A,B)

• Input: Names of sets A and B in the Union-Find data structure
• No Output: Merge the sets A and B into a single set 𝐴𝐴 ∪ 𝐵𝐵
• Require: If we had u ∈ 𝐴𝐴 and v ∈ 𝐵𝐵 then we require that Find(u)=Find(v)

after this operation is completed
(Kruskal: used to merge connected components after adding edge (u,v))

20

21

Implementation: Kruskal's Algorithm

Kruskal(G, c) {
Setup Union-Find run Make(v) for each node v
Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm.
T ← φ

foreach (u ∈ V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (Find(u)≠ Find(v)) {

T ← T ∪ {ei}
Union(u,v)

}
return T

}

Implementation. Use the union-find data structure.
• Make(.) called O(n) times (O(1) per operation with right implementation)
• Union(.) called O(n) times (O(1) per operation with right implementation)
• Find(.) called O(m) times (O(α(m, n)) per op with right implementation)

are u and v in different connected components?

merge two components

Initially each node is in own connected component

essentially a constant

22

Implementation: Kruskal's Algorithm

Kruskal(G, c) {
Setup Union-Find run Make(v) for each node v
Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm.
T ← φ

foreach (u ∈ V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (Find(u)≠ Find(v)) {

T ← T ∪ {ei}
Union(u,v)

}
return T

}

Implementation. Use the union-find data structure.
 Build set T of edges in the MST.
 Maintain set for each connected component.
 O(m log n) for sorting and O(m α(m, n)) for union-find.

are u and v in different connected components?

merge two components

m ≤ n2 ⇒ log m is O(log n) essentially a constant

Initially each node is in own connected component

Union Find Data-Structure

u w1 1

x null5

y 1

v 2

Represent sets as rooted trees

Example: Tree rooted at x below represents the set {x,u,w,v,y}

Canonical Element: the root of the tree
(u and w are in the same set if and only if they have the same root)

Pointer to parent in rooted tree
Size of subtree

Union-Find Implementation

SetupUnionFind(S)
Initialization: S={1,…,n}

……

25

1 null 2 n

Pointers to parent in rooted tree

1 null1 null1

Size of set

List<Node> Sets;

SetupUnionFind(n)
for (i=1 to n) {

Node v;
v.Index = i;
v.Size = 1;
v.Parent = null;
Sets.Add(v)

}
}

Set 1 Set 2 Set n

struct Node {
int Index;
Node * Parent;
int Size;

}

Union-Find Implementation

MakeUnionFind(S)
Initialization: S={1,…,n}

……

26

1 null 2 n

Pointers to parent

1 null1 null1

Size of set

node Find(v) {
if (v.parent == null)

return v
else

vRoot =Find(v.parent)
return vRoot

}

Node 1 Node 2 Node n

Union-Find Implementation

Example: Find(v) = x

27

u v1 1

x null3

node Find(v) {
if (v.parent == null)

return v
else

vRoot =Find(v.parent)
return vRoot

}

Running time upper bounded
by height of the tree

Union-Find Implementation

Example: Union(u,v)

28

u w1 1

x null3

y 1

v null2

Union(Node u, Node v){
uRoot = Find(u), vRoot=Find(v)
if (uRoot=vRoot) return
else if (uRoot.size > vRoot.size)

vRoot.Parent = uRoot; uRoot.size+= vRoot.size;
else

uRoot.Parent = vRoot; vRoot.size+= uRoot.size;
}

uRoot is new root of
Merged set

vRoot is new root of
Merged set

Union-Find Implementation

Example: Union(u,v)

29

u w1 1

x null5

y 1

v 2

Union(Node u, Node v){
uRoot = Find(u), vRoot=Find(v)
if (uRoot=vRoot) return
else if (uRoot.size > vRoot.size)

vRoot.Parent = uRoot; uRoot.size+= vRoot.size;
else

uRoot.Parent = vRoot; vRoot.size+= uRoot.size;
}

Union by Size:
Height of tree
bounded by O(log n)

Path Compression

Example: Find(y)

30

u

w

1

1

x null5

y 1

v 2

node Find(v) {
if (v.parent == null)

return v
else

vRoot =Find(v.parent)
v.Parent = vRoot;
return vRoot

}

Path Compression

Example: Find(y) - every node on path from y to
root x now points directly to x

31

u

w

1

1

x null5

y 1

v 2

node Find(v) {
if (v.parent == null)

return v
else

vRoot =Find(v.parent)
v.Parent = vRoot;
return vRoot

}

Union Find: Running Time

(Path Compression + Union by Size)

• Union: O(1) per operation
• Find:

• Worst Case: O(log n) per operation
• Amortized: 𝑂𝑂 𝛼𝛼 𝑛𝑛 per operation

• 𝛼𝛼 𝑛𝑛 - Inverse Ackermann Function
(Grows Incredibly Slowly)

• 𝛼𝛼 𝑛𝑛 ≤ 5 for any value of n you will ever use!

• Could achieve same result with union by rank
(height of tree)

32

37

Tree before and after a Find(9) with path
compression

EXAMPLE
[Can weighted Union produce this tree?]

38

MST Algorithms: Theory

Deterministic comparison based algorithms.
 O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
 O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]
 O(m β(m, n)). [Fredman-Tarjan 1987]
 O(m log β(m, n)). [Gabow-Galil-Spencer-Tarjan 1986]
 O(m α (m, n)). [Chazelle 2000]

Holy grail. O(m).

Notable.
 O(m) randomized. [Karger-Klein-Tarjan 1995]
 O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.
 2-d: O(n log n). compute MST of edges in Delaunay
 k-d: O(k n2). dense Prim

	CS 381 – Fall 2019
	Midterm 2
	3.6 DAGs and Topological Ordering
	Directed Acyclic Graphs
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Precedence Constraints
	Directed Acyclic Graphs
	Directed Acyclic Graphs
	Directed Acyclic Graphs
	Directed Acyclic Graphs
	Topological Sorting Algorithm: Running Time
	Shortest Path in a DAG
	Minimum Spanning Tree (Recap)
	Recap: Greedy Algorithms for MST
	Lexicographic Tiebreaking
	Lexicographic Tiebreaking
	Implementation: Kruskal's Algorithm
	Union-Find Operations
	Implementation: Kruskal's Algorithm
	Implementation: Kruskal's Algorithm
	Union Find Data-Structure
	Union-Find Implementation
	Union-Find Implementation
	Union-Find Implementation
	Union-Find Implementation
	Union-Find Implementation
	Path Compression
	Path Compression
	Union Find: Running Time
	Slide Number 37
	MST Algorithms: Theory

