
1

Week 10.2, Wednesday, Oct 23

Homework 5 Due October 26 @ 11:59PM on Gradescope
Practice Midterm 2 Released Soon
Midterm 2 on October 30 (8-9:30PM) MTHW 210 and BRNG 2280

4.5 Minimum Spanning Tree

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

https://www.cs.princeton.edu/%7Ewayne/kleinberg-tardos/

3

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph G = (V, E)
with real-valued edge weights ce, an MST is a subset of the
edges T ⊆ E such that T is a spanning tree whose sum of edge
weights is minimized.

Cayley's Theorem. There are nn-2 spanning trees of Kn.

can't solve by brute force

5

23

10
21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) T, Σe∈T ce = 50

4

Applications

MST is fundamental problem with diverse applications.

 Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

 Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

 Indirect applications.
– max bottleneck paths
– LDPC codes for error correction
– image registration with Renyi entropy
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a

network

 Cluster analysis.

5

Greedy Algorithms

Kruskal's algorithm. Start with T = φ. Consider edges in ascending
order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in
descending order of cost. Delete edge e from T unless doing so would
disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree
T from s outward. At each step, add the cheapest edge e to T that has
exactly one endpoint in T.

Remark. All three algorithms produce an MST.

6

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge
belonging to C. Then the MST does not contain f.

f
C

S

e is in the MST

e

f is not in the MST

7

Cycles and Cuts

Cycle. Set of edges of the form a-b, b-c, c-d, …, y-z, z-a.

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8

1
3

8

2

6

7

4

5

Cutset. A cut is a subset of nodes S. The corresponding
cutset D is the subset of edges with exactly one endpoint in S.

8

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

Pf. (exchange argument)
 Suppose e does not belong to T*, and let's see what happens.
 Adding e to T* creates a cycle C in T*.
 Edge e is both in the cycle C and in the cutset D

corresponding to S ⇒ there exists another edge, say f,
that is in both C and D (even #edges in intersection).

 T' = T* ∪ { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction. ▪

9

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST T* contains e.

f

T*
e

S

10

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cycle property. Let C be any cycle in G, and let f be the max
cost edge belonging to C. Then the MST T* does not contain f.

Pf. (exchange argument)
 Suppose f belongs to T*, and let's see what happens.
 Deleting f from T* creates a cut S in T*.
 Edge f is both in the cycle C and in the cutset D

corresponding to S ⇒ there exists another edge, say e,
that is in both C and D.

 T' = T* ∪ { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction. ▪ f

T*
e

S

Clicker Question

Suppose we are given a graph G=(V,E) with distinct edge weights we on
each edge e. Which of the following claims are necessarily true?

A. The minimum weight spanning tree T cannot include the maximum
weight edge.

B. The minimum weight spanning tree T must include the minimum
weight edge.

C. For all nodes v the minimum weight spanning tree must include the
minimum weight edge incident to v

D. Options B and C are both true

E. Options A, B and C are all true

11

12

Clicker Question

Suppose we are given a graph G=(V,E) with distinct edge weights we on
each edge e. Which of the following claims are necessarily true?

A. The minimum weight spanning tree T cannot include the maximum
weight edge.

B. The minimum weight spanning tree T must include the minimum weight
edge.
(Proof: Let e={u,v} be min weight edge, set S = {u} and apply cut property)

C. For all nodes v the minimum weight spanning tree must include the
minimum weight edge incident to v

(Proof: set S = {v} and apply cut property)

D. Options B and C are both true

E. Options A, B and C are all true
13

u v
100

14

Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1959, Prim 1957]
 Initialize S = any node.
 Apply cut property to S.
 Add min cost edge in cutset corresponding to S to tree T, and add one

new explored node u to S.
Invariant: Only add edges that are in the optimal MST (by cut property)

S

Implementation. Use a priority queue ala Dijkstra.
 Maintain set of explored nodes S.
 For each unexplored node v, maintain attachment cost a[v] = cost of

cheapest edge v to a node in S.
 O(n2) with an array; O(m log n) with a binary heap;
 O(m + n log n) with Fibonacci Heap

15

Implementation: Prim's Algorithm

Prim(G, c) {
foreach (v ∈ V) a[v] ← ∞
Initialize an empty priority queue Q
foreach (v ∈ V) insert v onto Q
Initialize set of explored nodes S ← φ

while (Q is not empty) {
u ← delete min element from Q
S ← S ∪ { u }
foreach (edge e = (u, v) incident to u)

if ((v ∉ S) and (ce < a[v]))
decrease priority a[v] to ce

}

16

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]
 Consider edges in ascending order of weight.
 Case 1: If adding e to T creates a cycle C, discard e according to

cycle property. (ce is max on cycle C by ordering of edges)
 Case 2: Otherwise, insert e = (u, v) into T according to cut

property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e S

17

Implementation: Kruskal's Algorithm

Kruskal(G, c) {
Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm.
T ← φ

foreach (u ∈ V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets) {

T ← T ∪ {ei}
merge the sets containing u and v

}
return T

}

Implementation. Use the union-find data structure.
 Build set T of edges in the MST.
 Maintain set for each connected component.
 O(m log n) for sorting and O(m α(m, n)) for union-find.

are u and v in different connected components?

merge two components

m ≤ n2 ⇒ log m is O(log n) essentially a constant

18

Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct: perturb all
edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise
comparisons. If perturbations are sufficiently small, MST with
perturbed costs is MST with original costs.

boolean less(i, j) {
if (cost(ei) < cost(ej)) return true
else if (cost(ei) > cost(ej)) return false
else if (i < j) return true
else return false

}

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n2

Implementation. Can handle arbitrarily small perturbations
implicitly by breaking ties lexicographically, according to index.

19

MST Algorithms: Theory

Deterministic comparison based algorithms.
 O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
 O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]
 O(m β(m, n)). [Fredman-Tarjan 1987]
 O(m log β(m, n)). [Gabow-Galil-Spencer-Tarjan 1986]
 O(m α (m, n)). [Chazelle 2000]

Holy grail. O(m).

Notable.
 O(m) randomized. [Karger-Klein-Tarjan 1995]
 O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.
 2-d: O(n log n). compute MST of edges in Delaunay
 k-d: O(k n2). dense Prim

3.6 DAGs and Topological Ordering

21

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (vi, vj) means vi must precede vj.

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG

a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

22

Precedence Constraints

Precedence constraints. Edge (vi, vj) means task vi must occur before vj.

Applications.
 Course prerequisite graph: course vi must be taken before vj.
 Compilation: module vi must be compiled before vj. Pipeline of

computing jobs: output of job vi needed to determine input of job vj.
 Shortest Path Computation is Faster in a DAG

23

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)
 Suppose that G has a topological order v1, …, vn and that G also has a

directed cycle C. Let's see what happens.
 Let vi be the lowest-indexed node in C, and let vj be the node just

before vi; thus (vj, vi) is an edge.
 By our choice of i, we have i < j.
 On the other hand, since (vj, vi) is an edge and v1, …, vn is a

topological order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

24

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

25

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
 Suppose that G is a DAG and every node has at least one incoming

edge. Let's see what happens.
 Pick any node v, and begin following edges backward from v. Since v

has at least one incoming edge (u, v) we can walk backward to u.
 Then, since u has at least one incoming edge (x, u), we can walk

backward to x.
 Repeat until we visit a node, say w, twice.
 Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle. ▪

w x u v

26

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
 Base case: true if n = 1.
 Given DAG on n > 1 nodes, find a node v with no incoming edges.
 G - { v } is a DAG, since deleting v cannot create cycles.
 By inductive hypothesis, G - { v } has a topological ordering.
 Place v first in topological ordering; then append nodes of G - {v}

in topological order. This is valid since v has no incoming edges. ▪

DAG

v

play

27

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n)
time.

Pf.
 Maintain the following information:

– count[w] = remaining number of incoming edges
– S = set of remaining nodes with no incoming edges

 Initialization: O(m + n) via single scan through graph.
 Update: to delete v

– remove v from S
– decrement count[w] for all edges from v to w, and

add w to S if c count[w] hits 0
– this is O(1) per edge ▪

Shortest Path in a DAG

Input: DAG G=(V,E) (adjacency list), edge costs ce and source s
Precondition: Assume nodes are v1,…,vn topologically sorted
• O(n + m) additional work to satisfy pre-condition
Output: array D s.t D[v] denotes the minimum cost path from s to v

(predecessor array PRED s.t. PRED[v] = w if (w,v) is the last
edge on the shortest path from w to v)

For v=1,…,n
D[v]:= ∞ //No path from s to v found yet

D[s]:=0

For v=1,…,n
Foreach edge (v,w) in E

if D[w] > D[v]+ cvw

D[w] := D[v]+ cvw

PRED[w]:=v

28

O(m) time --- each edge considered once

	CS 381 – Fall 2019
	4.5 Minimum Spanning Tree
	Minimum Spanning Tree
	Applications
	Greedy Algorithms
	Greedy Algorithms
	Cycles and Cuts
	Cycle-Cut Intersection
	Greedy Algorithms
	Greedy Algorithms
	Clicker Question
	Slide Number 12
	Clicker Question
	Prim's Algorithm: Proof of Correctness
	Implementation: Prim's Algorithm
	Kruskal's Algorithm: Proof of Correctness
	Implementation: Kruskal's Algorithm
	Lexicographic Tiebreaking
	MST Algorithms: Theory
	3.6 DAGs and Topological Ordering
	Directed Acyclic Graphs
	Precedence Constraints
	Directed Acyclic Graphs
	Directed Acyclic Graphs
	Directed Acyclic Graphs
	Directed Acyclic Graphs
	Topological Sorting Algorithm: Running Time
	Shortest Path in a DAG

