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Week 10.1,  Monday, Oct 21

Homework 5 Due October 26 @ 11:59PM on Gradescope



6.8  Shortest Paths 
(with Negative Weights)
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Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge 
weights cvw, find shortest path from node s to node t.

Ex.  Nodes represent agents in a financial setting and cvw is cost of 
transaction in which we buy from agent v and sell immediately to w.
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Clicker Question

For which of the following  directed graphs will Dijkstra find the 
shortest path from s to t?
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Shortest Paths:  Dynamic Programming

Def.  OPT(i, v) = length of shortest v-t path P using at most i edges.

 Case 1:  P uses at most i-1 edges.
– OPT(i, v) = OPT(i-1, v)

 Case 2:  P uses exactly i edges.
– if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t 

path using at most i-1 edges

Remark. By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

Fact: If there is a negative cycle then OPT(n,v) < OPT(n-1,v) for some node v

OPT i, v =

0 𝑖𝑖 = 0, 𝑣𝑣 = 𝑡𝑡
∞ 𝑖𝑖 = 0, 𝑣𝑣 ≠ 𝑡𝑡

min OPT i − 1, v , min
(𝑣𝑣,𝑤𝑤)∈𝐸𝐸

OPT i − 1, w + cvw otherwise

v t…

i-1 edges

v t…w
i edges
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Shortest Paths:  Implementation

Analysis.  Θ(mn) time, Θ(n2) space.

Finding the shortest paths.  Maintain a "successor" for each 
table entry i.e. if (v,w) is the first edge on the shortest i-
edge path P from v to t then Successor[v] = w 

Shortest-Path(G, t) {
foreach node v ∈ V

M[0, v] ← ∞
M[0, t] ← 0

for i = 1 to n-1
foreach node v ∈ V

M[i, v] ← M[i-1, v]
foreach edge (v, w) ∈ E

M[i, v] ← min { M[i, v], M[i-1, w] + cvw }
}

M[i-1,v] no longer used
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Bellman-Ford:  Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
foreach node v ∈ V {

M[v] ← ∞
successor[v] ← φ

}

M[t] = 0
for i = 1 to n-1 {

foreach node w ∈ V {
if (M[w] has been updated in previous iteration){

foreach node v such that (v, w) ∈ E {
if (M[v] > M[w] + cvw) {

M[v] ← M[w] + cvw
successor[v] ← w

}
}

}
}
If no M[w] value changed in iteration i, stop.

}
}

Maintain only one array M[v] = 
shortest v-t path that we have
found so far.

No need to check edges of the 
form (v, w) unless M[w] changed
in previous iteration.
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Shortest Paths:  Practical Improvements

Practical improvements.
 Maintain only one array M[v] = shortest v-t path that we have

found so far.
 No need to check edges of the form (v, w) unless M[w] changed

in previous iteration.

Theorem.  Throughout the algorithm, M[v] is length of some v-t path, and 
after i rounds of updates, the value M[v] is no larger than the length of 
shortest v-t path using ≤ i edges.

Overall impact.
 Memory:  O(n) additional memory beyond O(m+n) for input (adjacency list).
 Running time:  O(mn) worst case, but substantially faster in practice.

Detect Negative Cycle.
 Run Outer Loop for n iterations (for i = 1 to n-1 n)
 If any M[v]changes in iteration n  negative cycle
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All Pairs Shortest Path
Input:
Graph G=(V,E), directed and weighted,  with weights w(e)
Output:
Shortest path matrix D, where d(u,v) represents the cost of 
the shortest paths from u to v
• The vertices on a shortest path are typically generated on a 

need basis

One solution: solve n single-source problems
• No negative weights: O(nm +n2logn) time using Dijkstra
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How do we get started on a dynamic 
programming formulation?

• We compute n2 entries of matrix D
• We do not know how many edges the shortest path from 

u to v contains
• We do not know in what order vertices are visited 
• The principle of optimality holds for subpaths in a 

shortest path

How do we build up solutions in a systematic way?

u v yx … …
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A First DP Solution
Input is adjacency matrix A; no negative cycles

d(i,j)r = cost of shortest path from i to j 

using at most r edges

We know 

• d(i,i)0 = 0 and d(i,j)0 = ∞ for i≠j

• determine d(i,j)r from earlier computed values

• d(i,j)n-1 represent the shortest paths



d(i, j)r = min
𝑘𝑘: (k,j)∈E
(or k=j)

d(i, k)r−1 + w(k, j)

i ji


k’s

≤ r – 1 edges
O(n2m) time to fill in DP table
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Floyd-Warshall algorithm

Define cij
(k) = weight of a shortest path from i to j

with intermediate vertices belonging 
to the set {1, 2, …, k}.

i ≤ k ≤ k ≤ k ≤ k j

Thus, δ(i, j) = cij
(n).  
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Floyd-Warshall all-pair shortest paths
Input is an adjacency matrix A

c(i,j)k = cost of the shortest path from i to j with intermediate

vertices belonging to set {1, 2, 3, …, k}

• c(i,j)0 = A(i,j) 

• c(i,j)n is the final answer

Recursive formulation:
c(i,j)k = min { c(i,j)k-1, c(i,k)k-1 + c(k,j)k-1 }

O(n3) time algorithm



Floyd-Warshall recurrence
cij

(k) = mink {cij
(k–1), cik

(k–1) + ckj
(k–1)}

P := shortest path from i to j such that 
intermediate vertices are in set {1, 2, …, k}

i j

k

i
cij

(k–1)

cik
(k–1) ckj

(k–1)

Case 1: path P only uses intermediate 
vertices from {1,…,k-1}

Case 2: path P includes node k



Pseudocode for Floyd-Warshall

for k ← 1 to n
do for i ← 1 to n

do for j ← 1 to n
do if cij > cik + ckj

then cij ← cik + ckj
relaxation

• Can drop the superscripts (extra relaxations can’t hurt)
• Θ(n3) time.
• Simple to code.
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