Week 10.1, Monday, Oct 21

Homework 5 Due October 26 @ 11:59PM on Gradescope
6.8 Shortest Paths (with Negative Weights)
Shortest path problem. Given a directed graph $G = (V, E)$, with edge weights c_{vw}, find shortest path from node s to node t.

Ex. Nodes represent agents in a financial setting and c_{vw} is cost of transaction in which we buy from agent v and sell immediately to w.

![Graph diagram]
For which of the following directed graphs will Dijkstra find the shortest path from s to t?

A

B

C

D

E: None of the above
For which of the following directed graphs will Dijkstra find the shortest path from s to t?

E: None of the above
Shortest Paths: Dynamic Programming

Def.\(\text{OPT}(i, v) = \text{length of shortest } v-t \text{ path } P \text{ using at most } i \text{ edges.}\)

- **Case 1:** \(P\) uses at most \(i-1\) edges.
 - \(\text{OPT}(i, v) = \text{OPT}(i-1, v)\)

- **Case 2:** \(P\) uses exactly \(i\) edges.
 - if \((v, w)\) is first edge, then \(\text{OPT}\) uses \((v, w)\), and then selects best \(w-t\) path using at most \(i-1\) edges

\[
\text{OPT}(i, v) = \begin{cases}
0 & i = 0, v = t \\
\infty & i = 0, v \neq t \\
\min \left\{ \text{OPT}(i-1, v), \min_{(v,w) \in E} \{\text{OPT}(i-1, w) + c_{vw}\} \right\} & \text{otherwise}
\end{cases}
\]

Remark. By previous observation, if no negative cycles, then \(\text{OPT}(n-1, v) = \text{length of shortest } v-t \text{ path.}\)

Fact: If there is a negative cycle then \(\text{OPT}(n, v) < \text{OPT}(n-1, v)\) for some node \(v\)
Shortest Paths: Implementation

Analysis. $\Theta(mn)$ time, $\Theta(n^2)$ space.

Finding the shortest paths. Maintain a "successor" for each table entry i.e. if (v,w) is the first edge on the shortest i-edge path P from v to t then $\text{Successor}[v] = w$
Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
 \textbf{foreach} node v ∈ V {
 M[v] ← ∞
 successor[v] ← ϕ
 }
 M[t] = 0
 \textbf{for} i = 1 to n-1 {
 \textbf{foreach} node w ∈ V {
 if (M[w] has been updated in previous iteration) {
 \textbf{foreach} node v such that (v, w) ∈ E {
 if (M[v] > M[w] + c_{vw}) {
 M[v] ← M[w] + c_{vw}
 successor[v] ← w
 }
 }
 }
 }
 If no M[w] value changed in iteration i, stop.
 }
}
Practical improvements.

- Maintain only one array $M[v] = \text{shortest } v \rightarrow t \text{ path that we have found so far.}$
- No need to check edges of the form (v, w) unless $M[w]$ changed in previous iteration.

Theorem. Throughout the algorithm, $M[v]$ is length of some $v \rightarrow t$ path, and after i rounds of updates, the value $M[v]$ is no larger than the length of shortest $v \rightarrow t$ path using $\leq i$ edges.

Overall impact.

- Memory: $O(n)$ additional memory beyond $O(m+n)$ for input (adjacency list).
- Running time: $O(mn)$ worst case, but substantially faster in practice.

Detect Negative Cycle.

- Run Outer Loop for n iterations (for $i = 1 \rightarrow n-1$ n)
- If any $M[v]$ changes in iteration $n \rightarrow$ negative cycle
All Pairs Shortest Path

Input:
Graph $G=(V,E)$, directed and weighted, with weights $w(e)$

Output:
Shortest path matrix D, where $d(u,v)$ represents the cost of the shortest paths from u to v

- The vertices on a shortest path are typically generated on a need basis

One solution: solve n single-source problems
- No negative weights: $O(nm + n^2 \log n)$ time using Dijkstra
How do we get started on a dynamic programming formulation?

- We compute n^2 entries of matrix D
- We do not know how many edges the shortest path from u to v contains
- We do not know in what order vertices are visited
- The principle of optimality holds for subpaths in a shortest path

How do we build up solutions in a systematic way?
A First DP Solution

Input is adjacency matrix A; no negative cycles

\[d(i,j)^r = \text{cost of shortest path from } i \text{ to } j \]

using at most \(r \) edges

We know

- \(d(i,i)^0 = 0 \) and \(d(i,j)^0 = \infty \) for \(i \neq j \)
- determine \(d(i,j)^r \) from earlier computed values
- \(d(i,j)^{n-1} \) represent the shortest paths
\[d(i, j)^r = \min_{k: (k,j) \in E} \{ d(i, k)^{r-1} + w(k, j) \} \]

\(k \)'s

\(\leq r - 1 \) edges

O\((n^2 m) \) time to fill in DP table
Floyd-Warshall algorithm

Define $c_{ij}^{(k)} =$ weight of a shortest path from i to j with intermediate vertices belonging to the set \{1, 2, \ldots, k\}.

Thus, $\delta(i, j) = c_{ij}^{(n)}$.
Floyd-Warshall all-pair shortest paths

Input is an adjacency matrix A

$c(i,j)^k =$ cost of the shortest path from i to j with intermediate vertices belonging to set \{1, 2, 3, \ldots, k\}

- $c(i,j)^0 = A(i,j)$
- $c(i,j)^n$ is the final answer

Recursive formulation:

$$c(i,j)^k = \min \{ c(i,j)^{k-1}, c(i,k)^{k-1} + c(k,j)^{k-1} \}$$

$O(n^3)$ time algorithm
Floyd-Warshall recurrence

\[c_{ij}^{(k)} = \min_k \left\{ c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)} \right\} \]

Case 1: path P only uses intermediate vertices from \(\{1, \ldots, k-1\} \)

Case 2: path P includes node k

\[P := \text{shortest path from i to j such that intermediate vertices are in set } \{1, 2, \ldots, k\} \]
Pseudocode for Floyd-Warshall

for \(k \leftarrow 1 \) to \(n \)
 do for \(i \leftarrow 1 \) to \(n \)
 do for \(j \leftarrow 1 \) to \(n \)
 do if \(c_{ij} > c_{ik} + c_{kj} \)
 then \(c_{ij} \leftarrow c_{ik} + c_{kj} \) \(\} \)

- Can drop the superscripts (extra relaxations can’t hurt)
- \(\Theta(n^3) \) time.
- Simple to code.