eek 10.1, Monday, Oct 21

mework 5 Due October 26 @ 11:59PM on Gradescope

6.8 Shortest Paths
(with Negative Weights)

Shortest Paths

Shortest path problem. Given a directed graph 6 = (V, E), with edge
weights c,,,, find shortest path from node s to node t.

allow negative weights

Ex. Nodes represent agents in a financial setting and c,,, is cost of
transaction in which we buy from agent v and sell immediately to w.

10
9/@

Clicker Question

For which of the following directed graphs will Dijkstra find the
shortest path from s to 1?

A O 3

@()@ @()@
\@/

C /@\

S @<

3\@/
E: None of the above

o

O
"~
O
~a"

Clicker Question

For which of the following directed graphs will Dijkstra find the
shortest path from s to 1?

A O 3

@()@ @()@
\@/

C /@\

S @<

3\@/
E: None of the above

o

O
"~
O
~a"

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest v-t path P using at most i edges.
i-1 edges

. Case 1. P uses at most i-1 edges.
- OPT(i, v) = OPT(i-1, v) dges —®
. Case 2: P uses exactly i edges. @@O -©
est w-

- if (v, w) is first edge, then OPT uses (v, w), and then selects b
path using at most i-1 edges

(0 i=0p=¢t
0o I=0,v#t

OPT(i,v) =4 . . ; . :
min {OPT(I —1,v), (ml)l’éE{OPT(l —1,w)+ CVW}} otherwise
v,w

\

Remark. By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

Fact: If there is a negative cycle then OPT(n,v) < OPT(n-1,v) for some node v

Shortest Paths: Implementation

Shortest-Path(G, t) {

foreach node v € V
M[O, V] « M[i-1,v] no longer used

M[O, t] « O

for 1 =1 to n-1
foreach node v € V
MLEi, v] « M[i-1, v]
foreach edge (v, w) € E
M[1, v] « min { M[1, v], M[i-1, w] + c,, }

Analysis. ®(mn) time, ®(n?) space.

Finding the shortest paths. Maintain a "successor" for each
table entry i.e. if (v,w) is the first edge on the shortest i-
edge path P from v to t then Successor[v] = w

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
foreach node v € V {
M[V] « o — . Maintain only one array M[v] =
shortest v-t path that we have
found so far.

successor[v] « ¢

+
No need to check edges of the
M[t] = O form (v, w) unless M[w] changed
for i =1 to n-1 { in previous iteration.
foreach node w € V {
1T (M[w] has been updated in previous iteration){
foreach node v such that (v, w) € E {
it (MLvl > M[w] + c,,) {
MLv] « M[w] + c,,
successor[v] « w
+
+
+
+
IT no M[w] value changed iIn iteration i, stop.
+

}

Shortest Paths: Practical Improvements

Practical improvements.
. Maintain only one array M[v] = shortest v-t path that we have
found so far.
- No need to check edges of the form (v, w) unless M[w] changed
In previous iteration.

Theorem. Throughout the algorithm, M[v] is length of some v-t path, and
after i rounds of updates, the value M[v] is no larger than the length of
shortest v-t path using < i edges.

Overall impact.
- Memory: O(n) additional memory beyond O(m+n) for input (adjacency list).
. Running time: O(mn) worst case, but substantially faster in practice.

Detect Negative Cycle.
. Run Outer Loop for n iterations (for 1 = 1 to A-% n)
IT any M[v]changes i1n iteration n - negative cycle

10

All Pairs Shortest Path

Input:
Graph G=(V,E), directed and weighted, with weights w(e)
Output:

Shortest path matrix D, where d(u,v) represents the cost of
the shortest paths fromutov
e The vertices on a shortest path are typically generated on a

need basis

One solution: solve n single—source problems

* No negative weights: O(nm +n’logn) time using Dijkstra

How do we get started on a dynamic
programming formulation?

2 entries of matrix D

* We compute n

* We do not know how many edges the shortest path from
u to v contains

* We do not know in what order vertices are visited

* The principle of optimality holds for subpaths in a
shortest path

= 0 =y

How do we build up solutions in a systematic way?

/

A First DP Solution

Input Is adjacency matrix A; no negative cycles

d(1,])" = cost of shortest path from 1 to |

using at most r edges

We know

C

C

C

(1,)9 = 0 and d(i,j)° = oo for i#]
etermine d(i,))" from earlier computed values

(i,))" represent the shortest paths

<r -1 edges
O(n°m) time to fill in DP table
= \NI __ . . r_l .
d(i,j)" = min {d(, k)" +wk)
(or k=}) y

Floyd-Warshall algorithm

Define ¢ = weight of a shortest path from i to
with intermediate vertices belonging
totheset {1, 2, ..., k}.

J

Thus, &(i, j) = ¢;".

Copyright © 2001-5 by Erik D. Demaine and
Charles E. Leiserson

Ve
Floyd-Warshall all-pair shortest paths

Input is an adjacency matrix A

c(i,j)* = cost of the shortest path from i to j with intermediate
vertices belonging to set {1, 2, 3, ..., k}

o i)’ = AG)

* c(i,j)"is the final answer

Recursive formulation:

c(ib,j)* = min { c(i,j)*", c(ik)<" + c(k,j)<"}

O(n’) time algorithm

-

Floyd-Warshall recurrence

C..(K) = min, {C (k=1) Ciy (k-1) + C, (k—l)}

Case 1:path P only uses intermediate
vertices from {1,..., k-1}

P := shortest path from 1 to j such that

Intermediate vertices are inset {1, 2, ...

K}

Pseudocode for Floyd-Warshall

fork <« 1ton
dofori <« 1ton
do for <« 1ton

do If Cjj > Cjy + C; } relaxation

then Cij < Cik + ij

* Can drop the superscripts (extra relaxations can’t hurt)
* O(n’) time.
* Simple to code.

	CS 381 – Fall 2019
	6.8 Shortest Paths �(with Negative Weights)
	Shortest Paths
	Clicker Question
	Slide Number 5
	Clicker Question
	Shortest Paths: Dynamic Programming
	Shortest Paths: Implementation
	Bellman-Ford: Efficient Implementation
	Shortest Paths: Practical Improvements
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Floyd-Warshall algorithm
	Slide Number 16
	Floyd-Warshall recurrence
	Pseudocode for Floyd-Warshall

