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Week 1.3,  Friday, August 23



 create the sorted sequence in an incremental way 
 start with a sorted sequence of length 1 and insert 

one more element in each iteration

INSERTION-SORT (A, n)
for j ←2 to n do

key ←A[ j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
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Which of the following claims about insertion sort are 
true?
Claim 1: On input 1,2,3,4,…,n the algorithm will 
finish after O 𝑛𝑛 steps
Claim 2: On input n,n-1,…,1 the algorithm will 

finish after O 𝑛𝑛2 steps
Claim 3: On input 1,…,n/2, n,n-1,…n/2+1, the 

algorithm will finish after O 𝑛𝑛 𝑛𝑛 steps

A. All of the above. B. None of the above. C. Claim 1 
only. D. Claim 3 only. E. Claims 1 and 2 only.



Which of the following claims about insertion sort are 
true?
Claim 1: On input 1,2,3,4,…,n the algorithm will 
finish after 𝐎𝐎 𝒏𝒏 steps
Claim 2: On input n,n-1,…,1 the algorithm will 

finish after 𝐎𝐎 𝒏𝒏𝟐𝟐 steps
Claim 3: On input 1,…,n/2, n,n-1,…n/2+1, the 

algorithm will finish after O 𝑛𝑛 𝑛𝑛 steps

A. All of the above. B. None of the above. C. Claim 1 
only. D. Claim 3 only. E. Claims 1 and 2 only.



Number of times the while-loop is executed 
depends on the input

 increasingly sorted input is fast; decreasing is 
slow.  

 Worst case?  ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 < 𝑛𝑛2

 Average  case? 
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What all do we count/have to count 
when analyzing time? 

 In (internal) sorting algorithm we 
generally count the number of 
comparison 



Pseudo code has two nested loops
 while loop moves left from j to 1
 total time won’t be more than quadratic.  

Note: A doubly nested loop does not necessarily 
result in quadratic time
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Worst case:  T(n) = O(n2)
 Work is bounded by summing the first 

n-1 integers which is equal to n(n-1)/2
 Time is proportional to n2

 Also, T(n) = Θ (n2)



INSERTION-SORT (A, n)
for j ←2 to n do

Pre-Condition: A[1]≤ A[2] … ≤ 𝑨𝑨[𝒋𝒋 − 𝟏𝟏]
key ←A[ j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ 𝐀𝐀[𝒋𝒋]
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INSERTION-SORT (A, n)
for j ←2 to n do

Pre-Condition: A[1]≤ A[2] … ≤ 𝑨𝑨[𝒋𝒋 − 𝟏𝟏]
key ←A[ j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ 𝐀𝐀[𝒋𝒋]

Post-Condition when j=n  entire array A is sorted.
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Pre-Condition: A[1]≤ A[2] … ≤ A[𝑗𝑗 − 1]
key ←A[ j]
i ←j –1
Define Aorig[1,…,j-1] :=A[1,…,j-1]
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1
Invariant: A[1,…,i-1]= Aorig[1,…,i-1]   (untouched)

A[i+2,…,j] = Aorig[i+1,…,j-1] (shift once*) 
key < A[i+2]

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ A[𝑗𝑗]
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Let T(n) be a claim in which n is a positive integer.
Prove claim T(n) correct.

Common proof methods
 Direct proof
 Indirect proof

 By contraposition, by contradiction
 Mathematical induction 

 weak and strong induction
 Invariants
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 Claim of a run time
Could be a recurrence for a recursive 
solution, a sum for an iterative solution, an 
amortized analysis, etc.

 Correctness of your algorithm approach
often an inductive argument (even for 
iterative solutions) or a proof by 
contradiction

 NP-completeness of a problem
 Lower bound of a problem
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Weak Induction
 Basis: T(1) holds (basis is often 1 or 0, or a 

larger value)
 Induction hypothesis: for every n>1, assume 

T(n-1) holds 
 Using the induction hypothesis, show that T(n) 

holds. 
 It follows that T(n) holds for all n and the claim 

is proven.
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Basis for n=1: 2=0+2 true
Assume claim holds for n-1:  ∑𝒊𝒊=𝟏𝟏𝒏𝒏−𝟏𝟏 𝒊𝒊𝟐𝟐𝒊𝒊 = 𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐
Prove the claim for n:

∑𝒊𝒊=𝟏𝟏𝒏𝒏 𝒊𝒊𝟐𝟐𝒊𝒊 = 𝒏𝒏𝟐𝟐𝒏𝒏 + ∑𝒊𝒊=𝟏𝟏𝒏𝒏−𝟏𝟏 𝒊𝒊𝟐𝟐𝒊𝒊 (Split the sum)         
= 𝒏𝒏𝟐𝟐𝒏𝒏 + 𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (Inductive Hyp)
= 𝟐𝟐𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (algebra)
= 𝟐𝟐 𝒏𝒏 − 𝟏𝟏 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (algebra)
= 𝒏𝒏 − 𝟏𝟏 𝟐𝟐𝒏𝒏+𝟏𝟏 + 𝟐𝟐 (algebra)

QED
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Strong Induction
 Basis: T(1) holds 
 Induction hypothesis: For every n>1, assume 

the claim holds for k = 1, 2, 3, …, n-1 
 Using the induction hypothesis, show that T(n) 

holds.
 It follows that T(n) holds for all n and the claim 

is proven.



 Claim: Prove that every binary tree with n 
nodes has n-1 edges

 Let T(n) be the statement that any binary tree 
with n nodes has n-1 edges

 Base Case: n=1   (check)
 Inductive Hypothesis: For all j < n the 

statement T(j) holds
 Inductive Step: Prove that T(n) holds



 Let T be a tree with n > 1 nodes and let u be the 
root of the tree. 

 Case 1: u has 1 child v 
 Let 𝑇𝑇𝑣𝑣 be tree rooted at v. 
 Since, 𝑇𝑇𝑣𝑣 has n-1 nodes, by IH 𝑇𝑇𝑣𝑣 has n-2 edges.
 Total edges: 1+n-2=n-1 

 Case 2: u has 2 children w and v 
 Let 𝑇𝑇𝑤𝑤 (resp. 𝑇𝑇𝑣𝑣) be the corresponding trees with 𝑛𝑛𝑤𝑤

(resp. 𝑛𝑛𝑣𝑣) nodes with 𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − 1. 
 By (Strong) IH 𝑇𝑇𝑤𝑤 (resp. 𝑇𝑇𝑣𝑣) has 𝑛𝑛𝑤𝑤 − 1 edges (resp. 𝑛𝑛𝑣𝑣 −

1 edges).
 Total Edges: 2 + 𝑛𝑛𝑤𝑤 − 1 + 𝑛𝑛𝑣𝑣 − 1 = 𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − 1

QED
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 ∑i=1
n 𝑖𝑖

 ∑i=1
n 𝑖𝑖 2

 ∑i=1
n 𝑖𝑖𝑘𝑘 k constant

 ∑i=1
n 2𝑖𝑖

 ∑𝑘𝑘=1𝑛𝑛 𝑥𝑥𝑘𝑘
…

Exact bounds and asymptotic bounds 
CLRS, 182 Text, TCS Cheat Sheet, etc.
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Base case n=4
 4! = 24 > 24 = 16

Induction hypothesis: 
For any 𝑛𝑛 = 𝑘𝑘 > 3 it holds that 𝑘𝑘! > 2𝑘𝑘

Show the claim for k+1:
𝑘𝑘 + 1 ! = 𝑘𝑘 + 1 � 𝑘𝑘! > (𝑘𝑘 + 1) � 2𝑘𝑘 (by IH)

> 2 � 2𝑘𝑘 (since 𝑘𝑘 > 3)
≥ 2𝑘𝑘+1
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Worst case analysis
 in an asymptotic sense, the maximum time the 

algorithm takes on any input of size n.
Average case analysis

 expected time; often meaningful
 may need assumptions on the statistical 

distribution of input data
Best case analysis

 does not mean much; generally easy to determine

In some case, the three bounds are identical 
 means performance does not depend on the value of 

the data 
 For some algorithms, average case performance is 

only known experimentally. 
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 Time and space
 time in terms of number of basic operations 

on basic data types
 Ignore machine dependent factors, but remain 

realistic
 Random Access Model (RAM) 

 no concurrency
 count instructions (arithmetic operation, 

comparison, data movement)
 each instruction takes constant time 
 realistic assumption on the size of the 

numbers (to represent n, it takes log n bits)
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O(g(n)) = { f (n)| there exist positive constants 
c and n0 such that 0 ≤ f (n) ≤ c g(n) or all 
n≥n0}

We write f(n) = O(g(n)) if there exist constants c> 
0, n0> 0 such that  0 ≤ f(n) ≤cg(n) for all n ≥ n0.

4n + 23log n –28 = O(n)
 Drops low-order terms
 Ignores leading constants
 May not hold for small values of n 
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f(n) = O(g(n)) if there exist constants c> 0, n0> 0 

such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

f(n) = 3n2 – 4n  + 512  
≤  3n2 +512  
≤  4n2  for n ≥ 23

 f(n) = O(n2)
 f(n)= O(n3) also holds 
 f(n) = O(n) is false 

CLRS text Figure 3.1
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3n3 + 90n2–5n = O(n3) 
3n3 + 90n2–5n = O(2n)
3n3 + 90n2–5n = O(n2) 
5 log n = O(n)  
√n = O(log n8)   
n log n = O(n) 
4n = O(n log n)
n/log n = O(√n) 
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3n3 + 90n2–5n = O(n3) true
3n3 + 90n2–5n = O(2n) true
3n3 + 90n2–5n = O(n2) false
5 log n = O(n)  true 
√n = O(log n8)   false 
n log n = O(n) false
4n = O(n log n) true 
n/log n = O(√n) false



Which relationships hold?
1. 4nlogn = O(8nn1/8)
2. 8nn1/8 = O(4nlogn)
3. 4nlogn = Θ(8nn1/8)
4. 8nn1/8 = Θ(4nlogn)

A. None
B. 1
C. 2
D. 1 and 3
E. 4
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O(g(n)) = { f (n)| there exist positive constants c and n0 
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2, 
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}

Θ captures upper and lower bounds
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 3n3 + 90n2–5n is O(n3) and Θ(n3) is true
 3n3 + 90n2–5n is O(2n) true, but Θ(2n) 

false 
 5 log n is O(n) true,  but Θ(n) false
 4n = O(n log n) is true, but Θ(n log n) 

false
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O(g(n)) = { f (n)| there exist positive constants c and n0 
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2, 
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}
Θ captures upper and lower bounds

Ω(g(n)) = { f(n)|there exist positive constants c and n0
such that 0 ≤cg(n) ≤f(n) for all n≥n0}

Ω captures lower bounds
4n log n = Ω (n)
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 We will generally assume that n is “nice”
 E.g., power of 2
 We are not implementing the algorithms and 

only need to consider crucial the 
boundary/special cases

 When asked to design an efficient algorithm
 sometimes you will be given a target asymptotic 

bound
 other times you need to find the “best” one

 You can use known data structures
 State how they are implemented and give time 

bounds of operations 
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Assume n is a 
power of 4 
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n) 
O(log n) Θ(log n)
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Assume n is a 
power of 4 
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n) 
O(log n) Θ(log n)



Fact: Suppose 0 < 𝑥𝑥 < 1 then ∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖 = 1
1−𝑥𝑥

Proof: ∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖 = 1−𝑥𝑥
1−𝑥𝑥

∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖+1

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=1

∞
𝑥𝑥𝑖𝑖 =

1
1 − 𝑥𝑥

Example: 𝑥𝑥 < 1
4

we have ∑𝑖𝑖=0∞ 1
4

−𝑖𝑖
= 1

1−14
= 4

3
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Assume n is a 
power of 4 (n=4k )

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)
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