CS 381 – FALL 2019

Week 1.3, Friday, August 23

Insertion Sort

create the sorted sequence in an incremental way
 start with a sorted sequence of length 1 and insert one more element in each iteration

```
INSERTION-SORT (A, n)
for j \leftarrow 2 to n do
    key \leftarrow A[j]
    i \leftarrow j - 1
    while i > 0 and A[i] > key do
        A[i+1] \leftarrow A[i]
                                          1
        i \leftarrow i - 1
                                                                                          \mathcal{H}
    A[i+1] = key
                                                         key
                                    sorte
```

Clicker Question

Which of the following claims about insertion sort are true?

Claim 1: On input 1,2,3,4,...,n the algorithm will finish after O(n) steps

Claim 2: On input n,n-1,...,1 the algorithm will finish after $O(n^2)$ steps

Claim 3: On input 1,...,n/2, n,n-1,...n/2+1, the algorithm will finish after $O(n\sqrt{n})$ steps

A. All of the above. **B.** None of the above. **C.** Claim 1 only. **D.** Claim 3 only. **E.** Claims 1 and 2 only.

Clicker Question

Which of the following claims about insertion sort are true?

- Claim 1: On input 1,2,3,4,...,n the algorithm will finish after O(n) steps
- Claim 2: On input n,n-1,...,1 the algorithm will finish after $O(n^2)$ steps
- Claim 3: On input 1,...,n/2, n,n-1,...n/2+1, the algorithm will finish after $O(n\sqrt{n})$ steps

A. All of the above. **B.** None of the above. **C.** Claim 1 only. **D.** Claim 3 only. **E.** Claims 1 and 2 only.

What is the running time of Insertion Sort?

- Number of times the while-loop is executed depends on the input
- increasingly sorted input is fast; decreasing is slow.
- Worst case? $\sum_{j=2}^{n} j < n^2$
- Average case?
- What all do we count/have to count when analyzing time?
- In (internal) sorting algorithm we generally count the number of comparison

Asymptotic Performance

Pseudo code has two nested loops
while loop moves left from j to 1
total time won't be more than quadratic.
Note: A doubly nested loop does not necessarily result in quadratic time

Worst case: $T(n) = O(n^2)$

Work is bounded by summing the first n-1 integers which is equal to n(n-1)/2
 Time is proportional to n²
 Also, T(n) = Θ (n²)

Insertion Sort: Correctness

```
INSERTION-SORT (A, n)
for j \leftarrow 2 to n do
   Pre-Condition: A[1] \le A[2] \dots \le A[j-1]
   key \leftarrow A[j]
   i \leftarrow j - 1
   while i \ge 0 and A[i] \ge key do
      A[i+1] \leftarrow A[i]
      i \leftarrow i - 1
   A[i+1] = key
   Post-Condition: A[1] \le A[2] \dots \le A[j]
```

Insertion Sort: Correctness

INSERTION-SORT (A, n)for $i \leftarrow 2$ to n do Pre-Condition: $A[1] \le A[2] \dots \le A[j-1]$ key $\leftarrow A[j]$ $i \leftarrow j - 1$ while i > 0 and A[i] > key do $A[i+1] \leftarrow A[i]$ $i \leftarrow i - 1$ A[i+1] = keyPost-Condition: $A[1] \le A[2] \dots \le A[j]$

Post-Condition when $j=n \rightarrow$ entire array A is sorted.

```
Insertion Sort: Correctness
Pre-Condition: A[1] \le A[2] \dots \le A[j-1]
key \leftarrow A[j]
i \leftarrow j - 1
Define A_{orig}[1,...,j-1] := A[1,...,j-1]
while i > 0 and A[i] > key do
   A[i+1] \leftarrow A[i]
   i \leftarrow i - 1
   Invariant: A[1,...,i-1]= A<sub>orig</sub>[1,...,i-1] (untouched)
                 A[i+2,...,j] = A_{orig}[i+1,...,j-1] (shift once*)
                 key < A[i+2]
A[i+1] = key
```

Post-Condition: $A[1] \le A[2] \dots \le A[j]$

Proofs

Let T(n) be a claim in which n is a positive integer. Prove claim T(n) correct.

Common proof methods
Direct proof
Indirect proof

By contraposition, by contradiction

Mathematical induction

weak and strong induction

Invariants

What do we need to prove in 381?

- Claim of a run time Could be a recurrence for a recursive solution, a sum for an iterative solution, an amortized analysis, etc.
- Correctness of your algorithm approach often an inductive argument (even for iterative solutions) or a proof by contradiction
- NP-completeness of a problem
- Lower bound of a problem

Weak Induction

- Basis: T(1) holds (basis is often 1 or 0, or a larger value)
- Induction hypothesis: for every n>1, assume T(n-1) holds
- Using the induction hypothesis, show that T(n) holds.
- It follows that T(n) holds for all n and the claim is proven.

Claim: $\sum_{i=1}^{n} i 2^i = (n-1)2^{n+1} + 2$

Basis for n=1: 2=0+2 true

Assume claim holds for n-1: $\sum_{i=1}^{n-1} i2^i = (n-2)2^n + 2$ Prove the claim for n:

 $\sum_{i=1}^{n} i2^{i} = n2^{n} + \sum_{i=1}^{n-1} i2^{i} \text{ (Split the sum)}$ = $n2^{n} + (n-2)2^{n} + 2 \text{ (Inductive Hyp)}$ = $(2n-2)2^{n} + 2 \text{ (algebra)}$ = $2(n-1)2^{n} + 2 \text{ (algebra)}$ = $(n-1)2^{n+1} + 2 \text{ (algebra)}$

Strong Induction

- Basis: T(1) holds
- Induction hypothesis: For every n>1, assume the claim holds for k = 1, 2, 3, ..., n-1
- Using the induction hypothesis, show that T(n) holds.
- It follows that T(n) holds for all n and the claim is proven.

Strong Induction Example

- Claim: Prove that every binary tree with n nodes has n-1 edges
- Let T(n) be the statement that any binary tree with n nodes has n-1 edges
- Base Case: n=1 (check)
- Inductive Hypothesis: For all j < n the statement T(j) holds</p>
- □ Inductive Step: Prove that T(n) holds

Strong Induction Example

- Let T be a tree with n > 1 nodes and let u be the root of the tree.
- Case 1: u has 1 child v
 - Let T_v be tree rooted at v.
 - Since, T_v has n-1 nodes, by IH T_v has n-2 edges.
 - Total edges: 1+n-2=n-1
- Case 2: u has 2 children w and v
 - Let T_w (resp. T_v) be the corresponding trees with n_w (resp. n_v) nodes with $n_w + n_v = n 1$.
 - By (Strong) IH T_w (resp. T_v) has $n_w 1$ edges (resp. $n_v 1$ edges).
 - Total Edges: $2 + n_w 1 + n_v 1 = n_w + n_v = n 1$ QED

Other Relevant/Common Sums

$$\sum_{i=1}^{n} i$$

$$\sum_{i=1}^{n} i^{2}$$

$$\sum_{i=1}^{n} i^{k} \text{ k constant}$$

$$\sum_{i=1}^{n} 2^{i}$$

$$\sum_{k=1}^{n} x^{k}$$

Exact bounds and asymptotic bounds CLRS, 182 Text, TCS Cheat Sheet, etc.

Claim: n! > 2ⁿ for n>3

Base case n=4 • $4! = 24 > 2^4 = 16$ Induction hypothesis: For any n = k > 3 it holds that $k! > 2^k$

Show the claim for k+1: $(k + 1)! = (k + 1) \cdot k! > (k + 1) \cdot 2^{k} \quad \text{(by IH)}$ $> 2 \cdot 2^{k} \quad (\text{since } k > 3)$ $\ge 2^{k+1}$

Analysis of Algorithms

Worst case analysis

in an asymptotic sense, the maximum time the algorithm takes on any input of size n.

Average case analysis

- expected time; often meaningful
- may need assumptions on the statistical distribution of input data

Best case analysis

does not mean much; generally easy to determine

In some case, the three bounds are identical

- means performance does not depend on the value of the data
- For some algorithms, average case performance is only known experimentally.

What do we count?

Time and space

- time in terms of number of basic operations on basic data types
- Ignore machine dependent factors, but remain realistic
- Random Access Model (RAM)
 - no concurrency
 - count instructions (arithmetic operation, comparison, data movement)
 - each instruction takes constant time
 - realistic assumption on the size of the numbers (to represent n, it takes log n bits)

Asymptotic notation: Big-O

 $O(g(n)) = \{f(n) \mid \text{there exist positive constants} \ c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c g(n) \text{ or all} \ n \ge n_0\}$

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

$4n + 23\log n - 28 = O(n)$

- Drops low-order terms
- Ignores leading constants
- May not hold for small values of n

f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$

such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

 $f(n) = 3n^{2} - 4n + 512$ $\leq 3n^{2} + 512$ $\leq 4n^{2} \text{ for } n \geq 23$

f(n) = O(n²)
 f(n)= O(n³) also holds
 f(n) = O(n) is false

CLRS text Figure 3.1

Which statements are true?

 $3n^3 + 90n^2 - 5n = O(n^3)$ $3n^3 + 90n^2 - 5n = O(2^n)$ $3n^3 + 90n^2 - 5n = O(n^2)$ $5 \log n = O(n)$ $\sqrt{n} = O(\log n^8)$ $n \log n = O(n)$ $4n = O(n \log n)$ $n/\log n = O(\sqrt{n})$

 $3n^3 + 90n^2 - 5n = O(n^3)$ $3n^3 + 90n^2 - 5n = O(2^n)$ $3n^3 + 90n^2 - 5n = O(n^2)$ $5 \log n = O(n)$ $\sqrt{n} = O(\log n^8)$ $n \log n = O(n)$ $4n = O(n \log n)$ $n/\log n = O(\sqrt{n})$

true true false true false false true false

Consider two running times: 4*n*log*n* and 8*nn*^{1/8}

Which relationships hold? 1. $4n\log n = O(8nn^{1/8})$ 2. $8nn^{1/8} = O(4n\log n)$ 3. $4n\log n = \Theta(8nn^{1/8})$ 4. $8nn^{1/8} = \Theta(4n\log n)$

A. None
B. 1
C. 2
D. 1 and 3
E. 4

Asymptotic Bounds

 $O(g(n)) = {f(n) |$ there exist positive constants *c* and n_0 such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0$ } O captures upper bounds

 $\Theta(g(n)) = \{ f(n) \mid \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

Θ captures upper and lower bounds

Examples

- $3n^3 + 90n^2 5n$ is $O(n^3)$ and $\Theta(n^3)$ is true
- $3n^3 + 90n^2 5n$ is $O(2^n)$ true, but $\Theta(2^n)$ false
- 5 log n is O(n) true, but Θ(n) false
 4n = O(n log n) is true, but Θ(n log n) false

Asymptotic Bounds

 $O(g(n)) = {f(n) |$ there exist positive constants *c* and n_0 such that $0 \le f(n) \le c g(n)$ for all *n*≥ n_0 } O captures upper bounds

 $\Theta(g(n)) = \{f(n) \mid \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \}$ Θ captures upper and lower bounds

 $\Omega(g(n)) = \{ f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \\ \text{such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}$ $\Omega \text{ captures lower bounds} \\ 4n \log n = \Omega(n)$

Note

- We will generally assume that n is "nice"
 - E.g., power of 2
 - We are not implementing the algorithms and only need to consider crucial the boundary/special cases
- When asked to design an efficient algorithm
 - sometimes you will be given a target asymptotic bound
 - other times you need to find the "best" one
- You can use known data structures
 - State how they are implemented and give time bounds of operations

How many times is F called?

Assume n is a power of 4 (n=4^k) while n > 1 do for i = 1 to n do F(i,n)n = n/4

 $\begin{array}{ll} O(n \log n) & \Theta(n \log n) \\ O(n^2) & \Theta(n^2) \\ O(n) & \Theta(n) \\ O(\log n) & \Theta(\log n) \end{array}$

How many times is F called?

Assume n is a power of 4 (n=4^k) while n > 1 do for i = 1 to n do F(i,n)n = n/4

 $\begin{array}{ll} O(n \log n) & \Theta(n \log n) \\ O(n^2) & \Theta(n^2) \\ O(n) & \Theta(n) \\ O(\log n) & \Theta(\log n) \end{array}$

Useful Fact: Geometric Series

Fact: Suppose 0 < x < 1 then $\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$

Example:
$$x < \frac{1}{4}$$
 we have $\sum_{i=0}^{\infty} \left(\frac{1}{4}\right)^{-i} = \frac{1}{1-\frac{1}{4}} = \frac{4}{3}$

How many times is F called?

Assume n is a power of 4 ($n=4^k$)

while n > 1 do for i = 1 to n do F(i,n)n = n/4

