create the sorted sequence in an incremental way
start with a sorted sequence of length 1 and insert one more element in each iteration

INSERTION-SORT \((A, n)\)

for \(j \leftarrow 2\) to \(n\) do
 \(key \leftarrow A[j]\)
 \(i \leftarrow j - 1\)
 while \(i > 0\) and \(A[i] > key\) do
 \(A[i+1] \leftarrow A[i]\)
 \(i \leftarrow i - 1\)
 \(A[i+1] = key\)
Which of the following claims about insertion sort are true?

Claim 1: On input 1,2,3,4,…,n the algorithm will finish after $O(n)$ steps

Claim 2: On input n,n-1,…,1 the algorithm will finish after $O(n^2)$ steps

Claim 3: On input 1,…,n/2, n,n-1,…,n/2+1, the algorithm will finish after $O(n\sqrt{n})$ steps

A. All of the above. B. None of the above. C. Claim 1 only. D. Claim 3 only. E. Claims 1 and 2 only.
Which of the following claims about insertion sort are true?

Claim 1: On input 1,2,3,4,…,n the algorithm will finish after \(O(n) \) steps

Claim 2: On input n,n-1,…,1 the algorithm will finish after \(O(n^2) \) steps

Claim 3: On input 1,…,n/2, n,n-1,…n/2+1, the algorithm will finish after \(O(n\sqrt{n}) \) steps

A. All of the above. B. None of the above. C. Claim 1 only. D. Claim 3 only. E. Claims 1 and 2 only.
Number of times the while-loop is executed depends on the input
- increasingly sorted input is fast; decreasing is slow.
- Worst case? $\sum_{j=2}^{n} j < n^2$
- Average case?

What all do we count/have to count when analyzing time?
- In (internal) sorting algorithm we generally count the number of comparison
Asymptotic Performance

Pseudo code has two nested loops
- while loop moves left from j to 1
- total time won’t be more than quadratic.

Note: A doubly nested loop does not necessarily result in quadratic time

Worst case: $T(n) = O(n^2)$
- Work is bounded by summing the first $n-1$ integers which is equal to $\frac{n(n-1)}{2}$
- Time is proportional to n^2
- Also, $T(n) = \Theta(n^2)$
INSERTION-SORT \((A, n)\)

for \(j \leftarrow 2\) to \(n\) do

Pre-Condition: \(A[1] \leq A[2] \ldots \leq A[j - 1]\)

\[\text{key} \leftarrow A[j]\]

\[i \leftarrow j - 1\]

while \(i > 0\) and \(A[i] > \text{key}\) do

\[A[i+1] \leftarrow A[i]\]

\[i \leftarrow i - 1\]

\[A[i+1] = \text{key}\]

INSERTION-SORT \((A, n)\)
for \(j \leftarrow 2\) to \(n\) do

Pre-Condition: \(A[1] \leq A[2] \ldots \leq A[j - 1]\)

\(key \leftarrow A[j]\)

\(i \leftarrow j - 1\)

while \(i > 0\) and \(A[i] > key\) do

\(A[i+1] \leftarrow A[i]\)

\(i \leftarrow i - 1\)

\(A[i+1] = key\)

Post-Condition when j=n \Rightarrow entire array \(A\) is sorted.
Insertion Sort: Correctness


```
key ← A[j]
i ← j - 1
Define $A_{\text{orig}}[1, \ldots, j-1] := A[1, \ldots, j-1]
```

while $i > 0$ and $A[i] > key$ do

```
A[i+1] ← A[i]
i ← i - 1
```

Invariant: $A[1, \ldots, i-1] = A_{\text{orig}}[1, \ldots, i-1]$ (untouched)

```
A[i+2, \ldots, j] = A_{\text{orig}}[i+1, \ldots, j-1]$ (shift once*)
key < $A[i+2]
```

```
A[i+1] = key
```

Let $T(n)$ be a claim in which n is a positive integer. Prove claim $T(n)$ correct.

Common proof methods
- Direct proof
- Indirect proof
 - By contraposition, by contradiction
- Mathematical induction
 - weak and strong induction
 - Invariants
What do we need to prove in 381?

- Claim of a run time
 Could be a recurrence for a recursive solution, a sum for an iterative solution, an amortized analysis, etc.

- Correctness of your algorithm approach
 Often an inductive argument (even for iterative solutions) or a proof by contradiction

- NP-completeness of a problem

- Lower bound of a problem
Weak Induction

- Basis: $T(1)$ holds (basis is often 1 or 0, or a larger value)
- Induction hypothesis: for every $n>1$, assume $T(n-1)$ holds
- Using the induction hypothesis, show that $T(n)$ holds.
- It follows that $T(n)$ holds for all n and the claim is proven.
Claim: $\sum_{i=1}^{n} i2^i = (n - 1)2^{n+1} + 2$

Basis for n=1: $2=0+2$ true

Assume claim holds for n-1: $\sum_{i=1}^{n-1} i2^i = (n - 2)2^{n} + 2$

Prove the claim for n:

$$\sum_{i=1}^{n} i2^i = n2^n + \sum_{i=1}^{n-1} i2^i$$ (Split the sum)

$$= n2^n + (n - 2)2^{n} + 2$$ (Inductive Hyp)

$$= (2n - 2)2^{n} + 2$$ (algebra)

$$= 2(n - 1)2^{n} + 2$$ (algebra)

$$= (n - 1)2^{n+1} + 2$$ (algebra)

QED
Strong Induction

- Basis: $T(1)$ holds
- Induction hypothesis: For every $n > 1$, assume the claim holds for $k = 1, 2, 3, \ldots, n-1$
- Using the induction hypothesis, show that $T(n)$ holds.
- It follows that $T(n)$ holds for all n and the claim is proven.
Claim: Prove that every binary tree with \(n \) nodes has \(n-1 \) edges

Let \(T(n) \) be the statement that any binary tree with \(n \) nodes has \(n-1 \) edges

Base Case: \(n=1 \) (check)

Inductive Hypothesis: For all \(j < n \) the statement \(T(j) \) holds

Inductive Step: Prove that \(T(n) \) holds
Let T be a tree with \(n > 1 \) nodes and let u be the root of the tree.

Case 1: u has 1 child v
- Let \(T_v \) be tree rooted at v.
- Since, \(T_v \) has \(n-1 \) nodes, by IH \(T_v \) has \(n-2 \) edges.
- Total edges: \(1+n-2=n-1 \)

Case 2: u has 2 children w and v
- Let \(T_w \) (resp. \(T_v \)) be the corresponding trees with \(n_w \) (resp. \(n_v \)) nodes with \(n_w + n_v = n - 1 \).
- By (Strong) IH \(T_w \) (resp. \(T_v \)) has \(n_w - 1 \) edges (resp. \(n_v - 1 \) edges).
- Total Edges: \(2 + n_w - 1 + n_v - 1 = n_w + n_v = n - 1 \)
 QED
Other Relevant/Common Sums

- $\sum_{i=1}^{n} i$
- $\sum_{i=1}^{n} i^2$
- $\sum_{i=1}^{n} i^k \quad k \text{ constant}$
- $\sum_{i=1}^{n} 2^i$
- $\sum_{k=1}^{n} x^k$

...

Exact bounds and asymptotic bounds
CLRS, 182 Text, TCS Cheat Sheet, etc.
Base case $n=4$

- $4! = 24 > 2^4 = 16$

Induction hypothesis:

For any $n = k > 3$ it holds that $k! > 2^k$

Show the claim for $k+1$:

$(k + 1)! = (k + 1) \cdot k! > (k + 1) \cdot 2^k$ (by IH)

$> 2 \cdot 2^k$ (since $k > 3$)

$\geq 2^{k+1}$
Worst case analysis
- in an asymptotic sense, the maximum time the algorithm takes on any input of size n.

Average case analysis
- expected time; often meaningful
- may need assumptions on the statistical distribution of input data

Best case analysis
- does not mean much; generally easy to determine

In some case, the three bounds are identical
- means performance does not depend on the value of the data
- For some algorithms, average case performance is only known experimentally.
What do we count?

- Time and space
 - time in terms of number of basic operations on basic data types
- Ignore machine dependent factors, but remain realistic
- Random Access Model (RAM)
 - no concurrency
 - count instructions (arithmetic operation, comparison, data movement)
 - each instruction takes constant time
 - realistic assumption on the size of the numbers (to represent n, it takes log n bits)
Asymptotic notation: Big-O

\[O(g(n)) = \{ f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c \cdot g(n) \text{ or all } n \geq n_0 \} \]

We write \(f(n) = O(g(n)) \) if there exist constants \(c > 0, n_0 > 0 \) such that \(0 \leq f(n) \leq c \cdot g(n) \) for all \(n \geq n_0 \).

\[4n + 23 \log n - 28 = O(n) \]
- Drops low-order terms
- Ignores leading constants
- May not hold for small values of \(n \)
\[f(n) = O(g(n)) \text{ if there exist constants } c > 0, n_0 > 0 \]
such that \[0 \leq f(n) \leq cg(n)\] for all \[n \geq n_0.\]

\[f(n) = 3n^2 - 4n + 512 \leq 3n^2 + 512 \leq 4n^2 \text{ for } n \geq 23 \]

- \(f(n) = O(n^2) \)
- \(f(n) = O(n^3) \) also holds
- \(f(n) = O(n) \) is false

CLRS text Figure 3.1
Which statements are true?

\[3n^3 + 90n^2 - 5n = O(n^3) \]
\[3n^3 + 90n^2 - 5n = O(2^n) \]
\[3n^3 + 90n^2 - 5n = O(n^2) \]
\[5 \log n = O(n) \]
\[\sqrt{n} = O(\log n^8) \]
\[n \log n = O(n) \]
\[4n = O(n \log n) \]
\[n / \log n = O(\sqrt{n}) \]
\[
3n^3 + 90n^2 - 5n = O(n^3) \quad \text{true}
\]
\[
3n^3 + 90n^2 - 5n = O(2^n) \quad \text{true}
\]
\[
3n^3 + 90n^2 - 5n = O(n^2) \quad \text{false}
\]
\[
5 \log n = O(n) \quad \text{true}
\]
\[
\sqrt{n} = O(\log n^8) \quad \text{false}
\]
\[
n \log n = O(n) \quad \text{false}
\]
\[
4n = O(n \log n) \quad \text{true}
\]
\[
n/\log n = O(\sqrt{n}) \quad \text{false}
\]
Consider two running times: $4n \log n$ and $8nn^{1/8}$

Which relationships hold?

1. $4n \log n = O(8nn^{1/8})$
2. $8nn^{1/8} = O(4n \log n)$
3. $4n \log n = \Theta(8nn^{1/8})$
4. $8nn^{1/8} = \Theta(4n \log n)$

A. None
B. 1
C. 2
D. 1 and 3
E. 4
\(O(g(n)) = \{ f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c \, g(n) \text{ for all } n \geq n_0 \} \)

\(O \) captures upper bounds

\(\Theta(g(n)) = \{ f(n) \mid \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 \, g(n) \leq f(n) \leq c_2 \, g(n) \text{ for all } n \geq n_0 \} \)

\(\Theta \) captures upper and lower bounds
Examples

- $3n^3 + 90n^2 - 5n$ is $O(n^3)$ and $\Theta(n^3)$ is true.
- $3n^3 + 90n^2 - 5n$ is $O(2^n)$ true, but $\Theta(2^n)$ false.
- $5 \log n$ is $O(n)$ true, but $\Theta(n)$ false.
- $4n = O(n \log n)$ is true, but $\Theta(n \log n)$ false.
Asymptotic Bounds

\(\Omega(g(n)) = \{ f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq c g(n) \leq f(n) \text{ for all } n \geq n_0 \} \)

\(\Omega \) captures lower bounds

\(\Theta(g(n)) = \{ f(n) \mid \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \} \)

\(\Theta \) captures upper and lower bounds

\(O(g(n)) = \{ f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c g(n) \text{ for all } n \geq n_0 \} \)

\(O \) captures upper bounds

\[4n \log n = \Omega(n) \]
We will generally assume that n is “nice”
- E.g., power of 2
- We are not implementing the algorithms and only need to consider crucial the boundary/special cases

When asked to design an efficient algorithm
- sometimes you will be given a target asymptotic bound
- other times you need to find the “best” one

You can use known data structures
- State how they are implemented and give time bounds of operations
Assume n is a power of 4 (n=4^k)

```plaintext
while n > 1 do
    for i = 1 to n do
        F(i,n)
    n = n/4
```

\[O(n \log n) \quad \Theta(n \log n) \]
\[O(n^2) \quad \Theta(n^2) \]
\[O(n) \quad \Theta(n) \]
\[O(\log n) \quad \Theta(\log n) \]
Assume \(n \) is a power of 4 (\(n = 4^k \))

\[
\text{while } n > 1 \text{ do}
\begin{align*}
&\text{for } i = 1 \text{ to } n \text{ do} \\
&\quad \text{F}(i, n) \\
&\text{n = n/4}
\end{align*}
\]

\(O(n \log n) \quad \Theta(n \log n) \)
\(O(n^2) \quad \Theta(n^2) \)
\(O(n) \quad \Theta(n) \)
\(O(\log n) \quad \Theta(\log n) \)
Fact: Suppose $0 < x < 1$ then $\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$

Proof: $\sum_{i=0}^{\infty} x^i = \frac{1-x}{1-x} \sum_{i=0}^{\infty} x^i$

$= \frac{1}{1-x} \left(\sum_{i=0}^{\infty} x^i - \sum_{i=0}^{\infty} x^{i+1} \right)$

$= \frac{1}{1-x} \left(\sum_{i=0}^{\infty} x^i - \sum_{i=1}^{\infty} x^i \right) = \frac{1}{1-x}$

Example: $x < \frac{1}{4}$ we have $\sum_{i=0}^{\infty} \left(\frac{1}{4}\right)^{-i} = \frac{1}{1-\frac{1}{4}} = \frac{4}{3}$
How many times is F called?

Assume n is a power of 4 ($n=4^k$)

```
while $n > 1$ do
  for $i = 1$ to $n$ do
    F(i, n)
  n = n/4
```

$O(n \log n)$ \hspace{1cm} $\Theta(n \log n)$

$O(n^2)$ \hspace{1cm} $\Theta(n^2)$

$O(n)$ \hspace{1cm} $\Theta(n)$

$O(\log n)$ \hspace{1cm} $\Theta(\log n)$