
1

Week 1.3, Friday, August 23

 create the sorted sequence in an incremental way
 start with a sorted sequence of length 1 and insert

one more element in each iteration

INSERTION-SORT (A, n)
for j ←2 to n do

key ←A[j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key

2
sorted

i j

key

1 n

Which of the following claims about insertion sort are
true?
Claim 1: On input 1,2,3,4,…,n the algorithm will
finish after O 𝑛𝑛 steps
Claim 2: On input n,n-1,…,1 the algorithm will

finish after O 𝑛𝑛2 steps
Claim 3: On input 1,…,n/2, n,n-1,…n/2+1, the

algorithm will finish after O 𝑛𝑛 𝑛𝑛 steps

A. All of the above. B. None of the above. C. Claim 1
only. D. Claim 3 only. E. Claims 1 and 2 only.

Which of the following claims about insertion sort are
true?
Claim 1: On input 1,2,3,4,…,n the algorithm will
finish after 𝐎𝐎 𝒏𝒏 steps
Claim 2: On input n,n-1,…,1 the algorithm will

finish after 𝐎𝐎 𝒏𝒏𝟐𝟐 steps
Claim 3: On input 1,…,n/2, n,n-1,…n/2+1, the

algorithm will finish after O 𝑛𝑛 𝑛𝑛 steps

A. All of the above. B. None of the above. C. Claim 1
only. D. Claim 3 only. E. Claims 1 and 2 only.

Number of times the while-loop is executed
depends on the input

 increasingly sorted input is fast; decreasing is
slow.

 Worst case? ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 < 𝑛𝑛2

 Average case?

5

What all do we count/have to count
when analyzing time?

 In (internal) sorting algorithm we
generally count the number of
comparison

Pseudo code has two nested loops
 while loop moves left from j to 1
 total time won’t be more than quadratic.

Note: A doubly nested loop does not necessarily
result in quadratic time

6

Worst case: T(n) = O(n2)
 Work is bounded by summing the first

n-1 integers which is equal to n(n-1)/2
 Time is proportional to n2

 Also, T(n) = Θ (n2)

INSERTION-SORT (A, n)
for j ←2 to n do

Pre-Condition: A[1]≤ A[2] … ≤ 𝑨𝑨[𝒋𝒋 − 𝟏𝟏]
key ←A[j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ 𝐀𝐀[𝒋𝒋]

7

INSERTION-SORT (A, n)
for j ←2 to n do

Pre-Condition: A[1]≤ A[2] … ≤ 𝑨𝑨[𝒋𝒋 − 𝟏𝟏]
key ←A[j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ 𝐀𝐀[𝒋𝒋]

Post-Condition when j=n  entire array A is sorted.

8

Pre-Condition: A[1]≤ A[2] … ≤ A[𝑗𝑗 − 1]
key ←A[j]
i ←j –1
Define Aorig[1,…,j-1] :=A[1,…,j-1]
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1
Invariant: A[1,…,i-1]= Aorig[1,…,i-1] (untouched)

A[i+2,…,j] = Aorig[i+1,…,j-1] (shift once*)
key < A[i+2]

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ A[𝑗𝑗]

9

10

Let T(n) be a claim in which n is a positive integer.
Prove claim T(n) correct.

Common proof methods
 Direct proof
 Indirect proof

 By contraposition, by contradiction
 Mathematical induction

 weak and strong induction
 Invariants

11

 Claim of a run time
Could be a recurrence for a recursive
solution, a sum for an iterative solution, an
amortized analysis, etc.

 Correctness of your algorithm approach
often an inductive argument (even for
iterative solutions) or a proof by
contradiction

 NP-completeness of a problem
 Lower bound of a problem

12

Weak Induction
 Basis: T(1) holds (basis is often 1 or 0, or a

larger value)
 Induction hypothesis: for every n>1, assume

T(n-1) holds
 Using the induction hypothesis, show that T(n)

holds.
 It follows that T(n) holds for all n and the claim

is proven.

13

Basis for n=1: 2=0+2 true
Assume claim holds for n-1: ∑𝒊𝒊=𝟏𝟏𝒏𝒏−𝟏𝟏 𝒊𝒊𝟐𝟐𝒊𝒊 = 𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐
Prove the claim for n:

∑𝒊𝒊=𝟏𝟏𝒏𝒏 𝒊𝒊𝟐𝟐𝒊𝒊 = 𝒏𝒏𝟐𝟐𝒏𝒏 + ∑𝒊𝒊=𝟏𝟏𝒏𝒏−𝟏𝟏 𝒊𝒊𝟐𝟐𝒊𝒊 (Split the sum)
= 𝒏𝒏𝟐𝟐𝒏𝒏 + 𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (Inductive Hyp)
= 𝟐𝟐𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (algebra)
= 𝟐𝟐 𝒏𝒏 − 𝟏𝟏 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (algebra)
= 𝒏𝒏 − 𝟏𝟏 𝟐𝟐𝒏𝒏+𝟏𝟏 + 𝟐𝟐 (algebra)

QED

14

Strong Induction
 Basis: T(1) holds
 Induction hypothesis: For every n>1, assume

the claim holds for k = 1, 2, 3, …, n-1
 Using the induction hypothesis, show that T(n)

holds.
 It follows that T(n) holds for all n and the claim

is proven.

 Claim: Prove that every binary tree with n
nodes has n-1 edges

 Let T(n) be the statement that any binary tree
with n nodes has n-1 edges

 Base Case: n=1 (check)
 Inductive Hypothesis: For all j < n the

statement T(j) holds
 Inductive Step: Prove that T(n) holds

 Let T be a tree with n > 1 nodes and let u be the
root of the tree.

 Case 1: u has 1 child v
 Let 𝑇𝑇𝑣𝑣 be tree rooted at v.
 Since, 𝑇𝑇𝑣𝑣 has n-1 nodes, by IH 𝑇𝑇𝑣𝑣 has n-2 edges.
 Total edges: 1+n-2=n-1

 Case 2: u has 2 children w and v
 Let 𝑇𝑇𝑤𝑤 (resp. 𝑇𝑇𝑣𝑣) be the corresponding trees with 𝑛𝑛𝑤𝑤

(resp. 𝑛𝑛𝑣𝑣) nodes with 𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − 1.
 By (Strong) IH 𝑇𝑇𝑤𝑤 (resp. 𝑇𝑇𝑣𝑣) has 𝑛𝑛𝑤𝑤 − 1 edges (resp. 𝑛𝑛𝑣𝑣 −

1 edges).
 Total Edges: 2 + 𝑛𝑛𝑤𝑤 − 1 + 𝑛𝑛𝑣𝑣 − 1 = 𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − 1

QED

17

 ∑i=1
n 𝑖𝑖

 ∑i=1
n 𝑖𝑖 2

 ∑i=1
n 𝑖𝑖𝑘𝑘 k constant

 ∑i=1
n 2𝑖𝑖

 ∑𝑘𝑘=1𝑛𝑛 𝑥𝑥𝑘𝑘
…

Exact bounds and asymptotic bounds
CLRS, 182 Text, TCS Cheat Sheet, etc.

18

Base case n=4
 4! = 24 > 24 = 16

Induction hypothesis:
For any 𝑛𝑛 = 𝑘𝑘 > 3 it holds that 𝑘𝑘! > 2𝑘𝑘

Show the claim for k+1:
𝑘𝑘 + 1 ! = 𝑘𝑘 + 1 � 𝑘𝑘! > (𝑘𝑘 + 1) � 2𝑘𝑘 (by IH)

> 2 � 2𝑘𝑘 (since 𝑘𝑘 > 3)
≥ 2𝑘𝑘+1

19

Worst case analysis
 in an asymptotic sense, the maximum time the

algorithm takes on any input of size n.
Average case analysis

 expected time; often meaningful
 may need assumptions on the statistical

distribution of input data
Best case analysis

 does not mean much; generally easy to determine

In some case, the three bounds are identical
 means performance does not depend on the value of

the data
 For some algorithms, average case performance is

only known experimentally.

20

 Time and space
 time in terms of number of basic operations

on basic data types
 Ignore machine dependent factors, but remain

realistic
 Random Access Model (RAM)

 no concurrency
 count instructions (arithmetic operation,

comparison, data movement)
 each instruction takes constant time
 realistic assumption on the size of the

numbers (to represent n, it takes log n bits)

21

O(g(n)) = { f (n)| there exist positive constants
c and n0 such that 0 ≤ f (n) ≤ c g(n) or all
n≥n0}

We write f(n) = O(g(n)) if there exist constants c>
0, n0> 0 such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

4n + 23log n –28 = O(n)
 Drops low-order terms
 Ignores leading constants
 May not hold for small values of n

22

f(n) = O(g(n)) if there exist constants c> 0, n0> 0

such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

f(n) = 3n2 – 4n + 512
≤ 3n2 +512
≤ 4n2 for n ≥ 23

 f(n) = O(n2)
 f(n)= O(n3) also holds
 f(n) = O(n) is false

CLRS text Figure 3.1

23

3n3 + 90n2–5n = O(n3)
3n3 + 90n2–5n = O(2n)
3n3 + 90n2–5n = O(n2)
5 log n = O(n)
√n = O(log n8)
n log n = O(n)
4n = O(n log n)
n/log n = O(√n)

24

3n3 + 90n2–5n = O(n3) true
3n3 + 90n2–5n = O(2n) true
3n3 + 90n2–5n = O(n2) false
5 log n = O(n) true
√n = O(log n8) false
n log n = O(n) false
4n = O(n log n) true
n/log n = O(√n) false

Which relationships hold?
1. 4nlogn = O(8nn1/8)
2. 8nn1/8 = O(4nlogn)
3. 4nlogn = Θ(8nn1/8)
4. 8nn1/8 = Θ(4nlogn)

A. None
B. 1
C. 2
D. 1 and 3
E. 4

26

O(g(n)) = { f (n)| there exist positive constants c and n0
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2,
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}

Θ captures upper and lower bounds

27

 3n3 + 90n2–5n is O(n3) and Θ(n3) is true
 3n3 + 90n2–5n is O(2n) true, but Θ(2n)

false
 5 log n is O(n) true, but Θ(n) false
 4n = O(n log n) is true, but Θ(n log n)

false

28

O(g(n)) = { f (n)| there exist positive constants c and n0
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2,
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}
Θ captures upper and lower bounds

Ω(g(n)) = { f(n)|there exist positive constants c and n0
such that 0 ≤cg(n) ≤f(n) for all n≥n0}

Ω captures lower bounds
4n log n = Ω (n)

29

 We will generally assume that n is “nice”
 E.g., power of 2
 We are not implementing the algorithms and

only need to consider crucial the
boundary/special cases

 When asked to design an efficient algorithm
 sometimes you will be given a target asymptotic

bound
 other times you need to find the “best” one

 You can use known data structures
 State how they are implemented and give time

bounds of operations

30

Assume n is a
power of 4
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

31

Assume n is a
power of 4
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

Fact: Suppose 0 < 𝑥𝑥 < 1 then ∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖 = 1
1−𝑥𝑥

Proof: ∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖 = 1−𝑥𝑥
1−𝑥𝑥

∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖+1

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=1

∞
𝑥𝑥𝑖𝑖 =

1
1 − 𝑥𝑥

Example: 𝑥𝑥 < 1
4

we have ∑𝑖𝑖=0∞ 1
4

−𝑖𝑖
= 1

1−14
= 4

3

33

Assume n is a
power of 4 (n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

	CS 381 – Fall 2019
	Insertion Sort
	Clicker Question
	Clicker Question
	What is the running time of Insertion Sort?�
	Asymptotic Performance�
	Insertion Sort: Correctness
	Insertion Sort: Correctness
	Insertion Sort: Correctness
	Proofs
	What do we need to prove in 381?
	Slide Number 12
	Claim: 𝒊=𝟏 𝒏 𝒊 𝟐 𝒊 = 𝒏−𝟏 𝟐 𝒏+𝟏 +𝟐
	Slide Number 14
	Strong Induction Example
	Strong Induction Example
	Other Relevant/Common Sums
	Claim: n! > 2n for n>3
	Analysis of Algorithms�
	What do we count? �
	Asymptotic notation: Big-O
	Slide Number 22
	�Which statements are true?
	Slide Number 24
	Consider two running times:�4nlogn and 8nn1/8
	Asymptotic Bounds
	Examples
	Asymptotic Bounds
	Note
	How many times is F called?
	How many times is F called?
	Useful Fact: Geometric Series
	How many times is F called?

