
1

Week 1.3, Friday, August 23

 create the sorted sequence in an incremental way
 start with a sorted sequence of length 1 and insert

one more element in each iteration

INSERTION-SORT (A, n)
for j ←2 to n do

key ←A[j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key

2
sorted

i j

key

1 n

Which of the following claims about insertion sort are
true?
Claim 1: On input 1,2,3,4,…,n the algorithm will
finish after O 𝑛𝑛 steps
Claim 2: On input n,n-1,…,1 the algorithm will

finish after O 𝑛𝑛2 steps
Claim 3: On input 1,…,n/2, n,n-1,…n/2+1, the

algorithm will finish after O 𝑛𝑛 𝑛𝑛 steps

A. All of the above. B. None of the above. C. Claim 1
only. D. Claim 3 only. E. Claims 1 and 2 only.

Which of the following claims about insertion sort are
true?
Claim 1: On input 1,2,3,4,…,n the algorithm will
finish after 𝐎𝐎 𝒏𝒏 steps
Claim 2: On input n,n-1,…,1 the algorithm will

finish after 𝐎𝐎 𝒏𝒏𝟐𝟐 steps
Claim 3: On input 1,…,n/2, n,n-1,…n/2+1, the

algorithm will finish after O 𝑛𝑛 𝑛𝑛 steps

A. All of the above. B. None of the above. C. Claim 1
only. D. Claim 3 only. E. Claims 1 and 2 only.

Number of times the while-loop is executed
depends on the input

 increasingly sorted input is fast; decreasing is
slow.

 Worst case? ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 < 𝑛𝑛2

 Average case?

5

What all do we count/have to count
when analyzing time?

 In (internal) sorting algorithm we
generally count the number of
comparison

Pseudo code has two nested loops
 while loop moves left from j to 1
 total time won’t be more than quadratic.

Note: A doubly nested loop does not necessarily
result in quadratic time

6

Worst case: T(n) = O(n2)
 Work is bounded by summing the first

n-1 integers which is equal to n(n-1)/2
 Time is proportional to n2

 Also, T(n) = Θ (n2)

INSERTION-SORT (A, n)
for j ←2 to n do

Pre-Condition: A[1]≤ A[2] … ≤ 𝑨𝑨[𝒋𝒋 − 𝟏𝟏]
key ←A[j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ 𝐀𝐀[𝒋𝒋]

7

INSERTION-SORT (A, n)
for j ←2 to n do

Pre-Condition: A[1]≤ A[2] … ≤ 𝑨𝑨[𝒋𝒋 − 𝟏𝟏]
key ←A[j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ 𝐀𝐀[𝒋𝒋]

Post-Condition when j=n entire array A is sorted.

8

Pre-Condition: A[1]≤ A[2] … ≤ A[𝑗𝑗 − 1]
key ←A[j]
i ←j –1
Define Aorig[1,…,j-1] :=A[1,…,j-1]
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1
Invariant: A[1,…,i-1]= Aorig[1,…,i-1] (untouched)

A[i+2,…,j] = Aorig[i+1,…,j-1] (shift once*)
key < A[i+2]

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ A[𝑗𝑗]

9

10

Let T(n) be a claim in which n is a positive integer.
Prove claim T(n) correct.

Common proof methods
 Direct proof
 Indirect proof

 By contraposition, by contradiction
 Mathematical induction

 weak and strong induction
 Invariants

11

 Claim of a run time
Could be a recurrence for a recursive
solution, a sum for an iterative solution, an
amortized analysis, etc.

 Correctness of your algorithm approach
often an inductive argument (even for
iterative solutions) or a proof by
contradiction

 NP-completeness of a problem
 Lower bound of a problem

12

Weak Induction
 Basis: T(1) holds (basis is often 1 or 0, or a

larger value)
 Induction hypothesis: for every n>1, assume

T(n-1) holds
 Using the induction hypothesis, show that T(n)

holds.
 It follows that T(n) holds for all n and the claim

is proven.

13

Basis for n=1: 2=0+2 true
Assume claim holds for n-1: ∑𝒊𝒊=𝟏𝟏𝒏𝒏−𝟏𝟏 𝒊𝒊𝟐𝟐𝒊𝒊 = 𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐
Prove the claim for n:

∑𝒊𝒊=𝟏𝟏𝒏𝒏 𝒊𝒊𝟐𝟐𝒊𝒊 = 𝒏𝒏𝟐𝟐𝒏𝒏 + ∑𝒊𝒊=𝟏𝟏𝒏𝒏−𝟏𝟏 𝒊𝒊𝟐𝟐𝒊𝒊 (Split the sum)
= 𝒏𝒏𝟐𝟐𝒏𝒏 + 𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (Inductive Hyp)
= 𝟐𝟐𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (algebra)
= 𝟐𝟐 𝒏𝒏 − 𝟏𝟏 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (algebra)
= 𝒏𝒏 − 𝟏𝟏 𝟐𝟐𝒏𝒏+𝟏𝟏 + 𝟐𝟐 (algebra)

QED

14

Strong Induction
 Basis: T(1) holds
 Induction hypothesis: For every n>1, assume

the claim holds for k = 1, 2, 3, …, n-1
 Using the induction hypothesis, show that T(n)

holds.
 It follows that T(n) holds for all n and the claim

is proven.

 Claim: Prove that every binary tree with n
nodes has n-1 edges

 Let T(n) be the statement that any binary tree
with n nodes has n-1 edges

 Base Case: n=1 (check)
 Inductive Hypothesis: For all j < n the

statement T(j) holds
 Inductive Step: Prove that T(n) holds

 Let T be a tree with n > 1 nodes and let u be the
root of the tree.

 Case 1: u has 1 child v
 Let 𝑇𝑇𝑣𝑣 be tree rooted at v.
 Since, 𝑇𝑇𝑣𝑣 has n-1 nodes, by IH 𝑇𝑇𝑣𝑣 has n-2 edges.
 Total edges: 1+n-2=n-1

 Case 2: u has 2 children w and v
 Let 𝑇𝑇𝑤𝑤 (resp. 𝑇𝑇𝑣𝑣) be the corresponding trees with 𝑛𝑛𝑤𝑤

(resp. 𝑛𝑛𝑣𝑣) nodes with 𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − 1.
 By (Strong) IH 𝑇𝑇𝑤𝑤 (resp. 𝑇𝑇𝑣𝑣) has 𝑛𝑛𝑤𝑤 − 1 edges (resp. 𝑛𝑛𝑣𝑣 −

1 edges).
 Total Edges: 2 + 𝑛𝑛𝑤𝑤 − 1 + 𝑛𝑛𝑣𝑣 − 1 = 𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − 1

QED

17

 ∑i=1
n 𝑖𝑖

 ∑i=1
n 𝑖𝑖 2

 ∑i=1
n 𝑖𝑖𝑘𝑘 k constant

 ∑i=1
n 2𝑖𝑖

 ∑𝑘𝑘=1𝑛𝑛 𝑥𝑥𝑘𝑘
…

Exact bounds and asymptotic bounds
CLRS, 182 Text, TCS Cheat Sheet, etc.

18

Base case n=4
 4! = 24 > 24 = 16

Induction hypothesis:
For any 𝑛𝑛 = 𝑘𝑘 > 3 it holds that 𝑘𝑘! > 2𝑘𝑘

Show the claim for k+1:
𝑘𝑘 + 1 ! = 𝑘𝑘 + 1 � 𝑘𝑘! > (𝑘𝑘 + 1) � 2𝑘𝑘 (by IH)

> 2 � 2𝑘𝑘 (since 𝑘𝑘 > 3)
≥ 2𝑘𝑘+1

19

Worst case analysis
 in an asymptotic sense, the maximum time the

algorithm takes on any input of size n.
Average case analysis

 expected time; often meaningful
 may need assumptions on the statistical

distribution of input data
Best case analysis

 does not mean much; generally easy to determine

In some case, the three bounds are identical
 means performance does not depend on the value of

the data
 For some algorithms, average case performance is

only known experimentally.

20

 Time and space
 time in terms of number of basic operations

on basic data types
 Ignore machine dependent factors, but remain

realistic
 Random Access Model (RAM)

 no concurrency
 count instructions (arithmetic operation,

comparison, data movement)
 each instruction takes constant time
 realistic assumption on the size of the

numbers (to represent n, it takes log n bits)

21

O(g(n)) = { f (n)| there exist positive constants
c and n0 such that 0 ≤ f (n) ≤ c g(n) or all
n≥n0}

We write f(n) = O(g(n)) if there exist constants c>
0, n0> 0 such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

4n + 23log n –28 = O(n)
 Drops low-order terms
 Ignores leading constants
 May not hold for small values of n

22

f(n) = O(g(n)) if there exist constants c> 0, n0> 0

such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

f(n) = 3n2 – 4n + 512
≤ 3n2 +512
≤ 4n2 for n ≥ 23

 f(n) = O(n2)
 f(n)= O(n3) also holds
 f(n) = O(n) is false

CLRS text Figure 3.1

23

3n3 + 90n2–5n = O(n3)
3n3 + 90n2–5n = O(2n)
3n3 + 90n2–5n = O(n2)
5 log n = O(n)
√n = O(log n8)
n log n = O(n)
4n = O(n log n)
n/log n = O(√n)

24

3n3 + 90n2–5n = O(n3) true
3n3 + 90n2–5n = O(2n) true
3n3 + 90n2–5n = O(n2) false
5 log n = O(n) true
√n = O(log n8) false
n log n = O(n) false
4n = O(n log n) true
n/log n = O(√n) false

Which relationships hold?
1. 4nlogn = O(8nn1/8)
2. 8nn1/8 = O(4nlogn)
3. 4nlogn = Θ(8nn1/8)
4. 8nn1/8 = Θ(4nlogn)

A. None
B. 1
C. 2
D. 1 and 3
E. 4

26

O(g(n)) = { f (n)| there exist positive constants c and n0
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2,
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}

Θ captures upper and lower bounds

27

 3n3 + 90n2–5n is O(n3) and Θ(n3) is true
 3n3 + 90n2–5n is O(2n) true, but Θ(2n)

false
 5 log n is O(n) true, but Θ(n) false
 4n = O(n log n) is true, but Θ(n log n)

false

28

O(g(n)) = { f (n)| there exist positive constants c and n0
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2,
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}
Θ captures upper and lower bounds

Ω(g(n)) = { f(n)|there exist positive constants c and n0
such that 0 ≤cg(n) ≤f(n) for all n≥n0}

Ω captures lower bounds
4n log n = Ω (n)

29

 We will generally assume that n is “nice”
 E.g., power of 2
 We are not implementing the algorithms and

only need to consider crucial the
boundary/special cases

 When asked to design an efficient algorithm
 sometimes you will be given a target asymptotic

bound
 other times you need to find the “best” one

 You can use known data structures
 State how they are implemented and give time

bounds of operations

30

Assume n is a
power of 4
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

31

Assume n is a
power of 4
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

Fact: Suppose 0 < 𝑥𝑥 < 1 then ∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖 = 1
1−𝑥𝑥

Proof: ∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖 = 1−𝑥𝑥
1−𝑥𝑥

∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖+1

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=1

∞
𝑥𝑥𝑖𝑖 =

1
1 − 𝑥𝑥

Example: 𝑥𝑥 < 1
4

we have ∑𝑖𝑖=0∞ 1
4

−𝑖𝑖
= 1

1−14
= 4

3

33

Assume n is a
power of 4 (n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)

	CS 381 – Fall 2019
	Insertion Sort
	Clicker Question
	Clicker Question
	What is the running time of Insertion Sort?�
	Asymptotic Performance�
	Insertion Sort: Correctness
	Insertion Sort: Correctness
	Insertion Sort: Correctness
	Proofs
	What do we need to prove in 381?
	Slide Number 12
	Claim: 𝒊=𝟏 𝒏 𝒊 𝟐 𝒊 = 𝒏−𝟏 𝟐 𝒏+𝟏 +𝟐
	Slide Number 14
	Strong Induction Example
	Strong Induction Example
	Other Relevant/Common Sums
	Claim: n! > 2n for n>3
	Analysis of Algorithms�
	What do we count? �
	Asymptotic notation: Big-O
	Slide Number 22
	�Which statements are true?
	Slide Number 24
	Consider two running times:�4nlogn and 8nn1/8
	Asymptotic Bounds
	Examples
	Asymptotic Bounds
	Note
	How many times is F called?
	How many times is F called?
	Useful Fact: Geometric Series
	How many times is F called?

