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Week 1.3,  Friday, August 23



 create the sorted sequence in an incremental way 
 start with a sorted sequence of length 1 and insert 

one more element in each iteration

INSERTION-SORT (A, n)
for j ←2 to n do

key ←A[ j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
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Which of the following claims about insertion sort are 
true?
Claim 1: On input 1,2,3,4,…,n the algorithm will 
finish after O 𝑛𝑛 steps
Claim 2: On input n,n-1,…,1 the algorithm will 

finish after O 𝑛𝑛2 steps
Claim 3: On input 1,…,n/2, n,n-1,…n/2+1, the 

algorithm will finish after O 𝑛𝑛 𝑛𝑛 steps

A. All of the above. B. None of the above. C. Claim 1 
only. D. Claim 3 only. E. Claims 1 and 2 only.



Which of the following claims about insertion sort are 
true?
Claim 1: On input 1,2,3,4,…,n the algorithm will 
finish after 𝐎𝐎 𝒏𝒏 steps
Claim 2: On input n,n-1,…,1 the algorithm will 

finish after 𝐎𝐎 𝒏𝒏𝟐𝟐 steps
Claim 3: On input 1,…,n/2, n,n-1,…n/2+1, the 

algorithm will finish after O 𝑛𝑛 𝑛𝑛 steps

A. All of the above. B. None of the above. C. Claim 1 
only. D. Claim 3 only. E. Claims 1 and 2 only.



Number of times the while-loop is executed 
depends on the input

 increasingly sorted input is fast; decreasing is 
slow.  

 Worst case?  ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 < 𝑛𝑛2

 Average  case? 
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What all do we count/have to count 
when analyzing time? 

 In (internal) sorting algorithm we 
generally count the number of 
comparison 



Pseudo code has two nested loops
 while loop moves left from j to 1
 total time won’t be more than quadratic.  

Note: A doubly nested loop does not necessarily 
result in quadratic time
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Worst case:  T(n) = O(n2)
 Work is bounded by summing the first 

n-1 integers which is equal to n(n-1)/2
 Time is proportional to n2

 Also, T(n) = Θ (n2)



INSERTION-SORT (A, n)
for j ←2 to n do

Pre-Condition: A[1]≤ A[2] … ≤ 𝑨𝑨[𝒋𝒋 − 𝟏𝟏]
key ←A[ j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ 𝐀𝐀[𝒋𝒋]
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INSERTION-SORT (A, n)
for j ←2 to n do

Pre-Condition: A[1]≤ A[2] … ≤ 𝑨𝑨[𝒋𝒋 − 𝟏𝟏]
key ←A[ j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ 𝐀𝐀[𝒋𝒋]

Post-Condition when j=n  entire array A is sorted.
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Pre-Condition: A[1]≤ A[2] … ≤ A[𝑗𝑗 − 1]
key ←A[ j]
i ←j –1
Define Aorig[1,…,j-1] :=A[1,…,j-1]
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1
Invariant: A[1,…,i-1]= Aorig[1,…,i-1]   (untouched)

A[i+2,…,j] = Aorig[i+1,…,j-1] (shift once*) 
key < A[i+2]

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ A[𝑗𝑗]
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Let T(n) be a claim in which n is a positive integer.
Prove claim T(n) correct.

Common proof methods
 Direct proof
 Indirect proof

 By contraposition, by contradiction
 Mathematical induction 

 weak and strong induction
 Invariants



11

 Claim of a run time
Could be a recurrence for a recursive 
solution, a sum for an iterative solution, an 
amortized analysis, etc.

 Correctness of your algorithm approach
often an inductive argument (even for 
iterative solutions) or a proof by 
contradiction

 NP-completeness of a problem
 Lower bound of a problem
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Weak Induction
 Basis: T(1) holds (basis is often 1 or 0, or a 

larger value)
 Induction hypothesis: for every n>1, assume 

T(n-1) holds 
 Using the induction hypothesis, show that T(n) 

holds. 
 It follows that T(n) holds for all n and the claim 

is proven.
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Basis for n=1: 2=0+2 true
Assume claim holds for n-1:  ∑𝒊𝒊=𝟏𝟏𝒏𝒏−𝟏𝟏 𝒊𝒊𝟐𝟐𝒊𝒊 = 𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐
Prove the claim for n:

∑𝒊𝒊=𝟏𝟏𝒏𝒏 𝒊𝒊𝟐𝟐𝒊𝒊 = 𝒏𝒏𝟐𝟐𝒏𝒏 + ∑𝒊𝒊=𝟏𝟏𝒏𝒏−𝟏𝟏 𝒊𝒊𝟐𝟐𝒊𝒊 (Split the sum)         
= 𝒏𝒏𝟐𝟐𝒏𝒏 + 𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (Inductive Hyp)
= 𝟐𝟐𝒏𝒏 − 𝟐𝟐 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (algebra)
= 𝟐𝟐 𝒏𝒏 − 𝟏𝟏 𝟐𝟐𝒏𝒏 + 𝟐𝟐 (algebra)
= 𝒏𝒏 − 𝟏𝟏 𝟐𝟐𝒏𝒏+𝟏𝟏 + 𝟐𝟐 (algebra)

QED



14

Strong Induction
 Basis: T(1) holds 
 Induction hypothesis: For every n>1, assume 

the claim holds for k = 1, 2, 3, …, n-1 
 Using the induction hypothesis, show that T(n) 

holds.
 It follows that T(n) holds for all n and the claim 

is proven.



 Claim: Prove that every binary tree with n 
nodes has n-1 edges

 Let T(n) be the statement that any binary tree 
with n nodes has n-1 edges

 Base Case: n=1   (check)
 Inductive Hypothesis: For all j < n the 

statement T(j) holds
 Inductive Step: Prove that T(n) holds



 Let T be a tree with n > 1 nodes and let u be the 
root of the tree. 

 Case 1: u has 1 child v 
 Let 𝑇𝑇𝑣𝑣 be tree rooted at v. 
 Since, 𝑇𝑇𝑣𝑣 has n-1 nodes, by IH 𝑇𝑇𝑣𝑣 has n-2 edges.
 Total edges: 1+n-2=n-1 

 Case 2: u has 2 children w and v 
 Let 𝑇𝑇𝑤𝑤 (resp. 𝑇𝑇𝑣𝑣) be the corresponding trees with 𝑛𝑛𝑤𝑤

(resp. 𝑛𝑛𝑣𝑣) nodes with 𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − 1. 
 By (Strong) IH 𝑇𝑇𝑤𝑤 (resp. 𝑇𝑇𝑣𝑣) has 𝑛𝑛𝑤𝑤 − 1 edges (resp. 𝑛𝑛𝑣𝑣 −

1 edges).
 Total Edges: 2 + 𝑛𝑛𝑤𝑤 − 1 + 𝑛𝑛𝑣𝑣 − 1 = 𝑛𝑛𝑤𝑤 + 𝑛𝑛𝑣𝑣 = 𝑛𝑛 − 1

QED
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 ∑i=1
n 𝑖𝑖

 ∑i=1
n 𝑖𝑖 2

 ∑i=1
n 𝑖𝑖𝑘𝑘 k constant

 ∑i=1
n 2𝑖𝑖

 ∑𝑘𝑘=1𝑛𝑛 𝑥𝑥𝑘𝑘
…

Exact bounds and asymptotic bounds 
CLRS, 182 Text, TCS Cheat Sheet, etc.
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Base case n=4
 4! = 24 > 24 = 16

Induction hypothesis: 
For any 𝑛𝑛 = 𝑘𝑘 > 3 it holds that 𝑘𝑘! > 2𝑘𝑘

Show the claim for k+1:
𝑘𝑘 + 1 ! = 𝑘𝑘 + 1 � 𝑘𝑘! > (𝑘𝑘 + 1) � 2𝑘𝑘 (by IH)

> 2 � 2𝑘𝑘 (since 𝑘𝑘 > 3)
≥ 2𝑘𝑘+1
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Worst case analysis
 in an asymptotic sense, the maximum time the 

algorithm takes on any input of size n.
Average case analysis

 expected time; often meaningful
 may need assumptions on the statistical 

distribution of input data
Best case analysis

 does not mean much; generally easy to determine

In some case, the three bounds are identical 
 means performance does not depend on the value of 

the data 
 For some algorithms, average case performance is 

only known experimentally. 
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 Time and space
 time in terms of number of basic operations 

on basic data types
 Ignore machine dependent factors, but remain 

realistic
 Random Access Model (RAM) 

 no concurrency
 count instructions (arithmetic operation, 

comparison, data movement)
 each instruction takes constant time 
 realistic assumption on the size of the 

numbers (to represent n, it takes log n bits)
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O(g(n)) = { f (n)| there exist positive constants 
c and n0 such that 0 ≤ f (n) ≤ c g(n) or all 
n≥n0}

We write f(n) = O(g(n)) if there exist constants c> 
0, n0> 0 such that  0 ≤ f(n) ≤cg(n) for all n ≥ n0.

4n + 23log n –28 = O(n)
 Drops low-order terms
 Ignores leading constants
 May not hold for small values of n 
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f(n) = O(g(n)) if there exist constants c> 0, n0> 0 

such that 0 ≤ f(n) ≤cg(n) for all n ≥ n0.

f(n) = 3n2 – 4n  + 512  
≤  3n2 +512  
≤  4n2  for n ≥ 23

 f(n) = O(n2)
 f(n)= O(n3) also holds 
 f(n) = O(n) is false 

CLRS text Figure 3.1
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3n3 + 90n2–5n = O(n3) 
3n3 + 90n2–5n = O(2n)
3n3 + 90n2–5n = O(n2) 
5 log n = O(n)  
√n = O(log n8)   
n log n = O(n) 
4n = O(n log n)
n/log n = O(√n) 
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3n3 + 90n2–5n = O(n3) true
3n3 + 90n2–5n = O(2n) true
3n3 + 90n2–5n = O(n2) false
5 log n = O(n)  true 
√n = O(log n8)   false 
n log n = O(n) false
4n = O(n log n) true 
n/log n = O(√n) false



Which relationships hold?
1. 4nlogn = O(8nn1/8)
2. 8nn1/8 = O(4nlogn)
3. 4nlogn = Θ(8nn1/8)
4. 8nn1/8 = Θ(4nlogn)

A. None
B. 1
C. 2
D. 1 and 3
E. 4
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O(g(n)) = { f (n)| there exist positive constants c and n0 
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2, 
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}

Θ captures upper and lower bounds
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 3n3 + 90n2–5n is O(n3) and Θ(n3) is true
 3n3 + 90n2–5n is O(2n) true, but Θ(2n) 

false 
 5 log n is O(n) true,  but Θ(n) false
 4n = O(n log n) is true, but Θ(n log n) 

false
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O(g(n)) = { f (n)| there exist positive constants c and n0 
such that 0 ≤ f (n) ≤ c g(n) for all n≥n0}

O captures upper bounds

Θ(g(n)) = { f (n)| there exist positive constants c1, c2, 
and n0 such that 0 ≤c1 g(n) ≤ f (n) ≤ c2 g(n) for all n≥n0}
Θ captures upper and lower bounds

Ω(g(n)) = { f(n)|there exist positive constants c and n0
such that 0 ≤cg(n) ≤f(n) for all n≥n0}

Ω captures lower bounds
4n log n = Ω (n)
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 We will generally assume that n is “nice”
 E.g., power of 2
 We are not implementing the algorithms and 

only need to consider crucial the 
boundary/special cases

 When asked to design an efficient algorithm
 sometimes you will be given a target asymptotic 

bound
 other times you need to find the “best” one

 You can use known data structures
 State how they are implemented and give time 

bounds of operations 
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Assume n is a 
power of 4 
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n) 
O(log n) Θ(log n)



31

Assume n is a 
power of 4 
(n=4k)

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n) 
O(log n) Θ(log n)



Fact: Suppose 0 < 𝑥𝑥 < 1 then ∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖 = 1
1−𝑥𝑥

Proof: ∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖 = 1−𝑥𝑥
1−𝑥𝑥

∑𝑖𝑖=0∞ 𝑥𝑥𝑖𝑖

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖+1

=
1

1 − 𝑥𝑥
�

𝑖𝑖=0

∞
𝑥𝑥𝑖𝑖 −�

𝑖𝑖=1

∞
𝑥𝑥𝑖𝑖 =

1
1 − 𝑥𝑥

Example: 𝑥𝑥 < 1
4

we have ∑𝑖𝑖=0∞ 1
4

−𝑖𝑖
= 1

1−14
= 4

3
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Assume n is a 
power of 4 (n=4k )

O(n log n) Θ(n log n)
O(n2) Θ(n2)
O(n) Θ(n)
O(log n) Θ(log n)
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