
1

Week 1.1, Monday, August 19

 Questions
 I welcome clarification questions during lectures

 Remote Lecture?
 I am attending CRYPTO in Santa Barbara
 Prof. Atallah will teach class on Wednesday
 I will be back on campus on Friday (Skype

won’t be the norm!)
 Kevin Xia (GTA) can relay questions today

2

 Maximum Enrollment*: 150

 Wait List: 17 (as of 8/18/2019)

 I will speak to the CS registrar to see if it
is possible to open up additional slots
after the first week
 Seniors who still need to take the course

would receive priority
 I cannot make definitive promises

3

Instructor
 Professor J. Blocki

Graduate TAs
 Kevin Xia (head TA)
 Tunazzina Islam
 Hai Nguyen
 Ahammed Ullah

Undergraduate TAs
 Michael Cinkoske
 Noah Franks
 Hiten Arun Rathod
 Abhishek Sharma (Head

UTA)
 Himanshi Mehta
 Utkarsh Jain

4

Office Hours will be posted on Piazza
(Office Hours Begin 2nd Week)

Instructor Office Hours (Week 1): Fri, 2:30-3:30 PM

Course website
 www.cs.purdue.edu/homes/jblocki/cours

es/381_Fall19/
 Course policies, syllabus, course work,

links to related material
Piazza
 https://piazza.com/class/jyk8rg9el1s5m6
 For discussion on course material,

assignment questions
 Slides, assignments and solution sketches

are posted
 Sign up!

5

http://www.cs.purdue.edu/homes/jblocki/courses/381_Fall19/
https://piazza.com/class/jyk8rg9el1s5m6

Gradescope
 submitting typed assignments
 View graded exams
 Submit re-grade requests*

(re-grade policy discussed later)
Blackboard
 register your clicker before Friday!
 Grades
 (Optional) CS580 Lectures

6

 Assignments: 20%
 7-8 written assignments
 Must be typed, submitted on Gradescope

 Clickers: 5%
 You can communicate with your neighbors
 No makeups (lowest score dropped)

 Exams
 closed book & notes, cheat sheet allowed
 Midterm 1: 20% (Sep 25th. 8PM)
 Midterm 2: 20% (Oct 30th. 8PM)
 Final exam: 35%

7

 CS 182
 Applications of discrete math in CS
 Proof techniques: direct, indirect, induction
 Abstractions, recursion, counting

8

 CS 251
 Very good understanding data

structures (their use, implementations,
limitations, tradeoffs)

 Ability to judge and think through an
implementation without coding

 No programming assignments in 381

 Data structures
 Stacks, queues, search trees (binary, balanced),

priority queues, hashing, trees, graphs
 Operations on data structures under different

implementations

9

 Algorithms
 Searching and sorting
 Graph and tree traversals

(BFS, DFS, pre, post, inorder)
 Computing graph properties
 Examples of greedy algorithms:

Shortest path, min spanning tree
 Analyze asymptotic performance

of given code

10

 Introduction to the Analysis of Algorithms
 Central to all of Computer Science!

 Techniques to Design Efficient Algorithms
 Greedy, Divide and Conquer, Dynamic Programming,

Network Flow, Reductions etc…
 Desiderata: Efficient, Concise and Correct

 Analysis
 Analyze required resources to execute

(space/time)
 Prove that the algorithm is correct

 Problem Solving!
 Abstracting the essential features of a problem
 Developing creative, efficient, and non-obvious

solutions to problems.
 Analyzing an algorithm’s performance and resource

usage in a machine and language independent way.

 Understanding computational limitations
 Are there problems that don’t permit efficient

algorithmic solutions
 P vs. NP (Million Dollar Problem)

 What you submit needs to be understandable
(and typed)

 We want human readable pseudo code
 Target audience is a human TA not a compiler!

19

CS381 GTAs Not a TA

 Graded for correctness, clarity, conciseness,
rigor, and efficiency

 Type using any software supporting math
notations (good opportunity to learn LaTeX)

 Read homework guidelines on course
webpage

20

 Partial Credit
 Clearly identify a reasonable approach to

solve the problem
 Maximize partial credit by identifying

gaps in your attempted solution
 Better to acknowledge that you don’t

know than to pretend you solved it.
 15% credit for simply admitting “I could not solve

the problem”
 Can receive 0% credit for bad/obfuscated

``solutions”

21

 Closed Book (No Phones, Laptops,
Calculators, Smart watches etc…)
 Allowed one sided page of handwritten notes
 Communicate only with course staff during exam

 Disability Requiring Special Accommodation:
 Contact instructor promptly (first 3 weeks of class)
 Need official letter from Disability Resource Center

 Final Exam (TBD)
 Do not book travel before last possible date

(Dec 14th)

 Graders are human, please be patient!

 Submit on Gradescope
 Within 14 days of return of assignment

(exception for final exam)
 Should clearly explain what you think the grader missed
 Not an opportunity to expand your answer!
 Double Check Carefully
 Your grade can go up or down!

 Appeal Rejected Regrade?
 2 points bonus I agree you are correct

(for your trouble)
 2 points deduction if I agree with TA

(most common outcome)
23

 Collaborations is allowed, but you must
acknowledge collaborators on your homework

 Don’t cheat yourself out of learning how to
solve problems!
 Suggestion: spend at least 15 minutes thinking

about each problem yourself before collaborating
 Reference all sources used

 Failure to acknowledge a collaborator or key source is
cheating!

 All submitted solutions must be written entirely
in your own words!

 You must understand your solution completely
 If you could not explain your solution to

course staff that is considered cheating!

24

https://www.cs.purdue.edu/homes/jblocki/cour
ses/381_Fall19/syllabus/syllabus.pdf

https://www.cs.purdue.edu/homes/jblocki/courses/381_Fall19/syllabus/syllabus.pdf

 Not Late
 No Penalty

 Less than 24 hours late
 10 point penalty (out of 100 possible points)
 Subtracted from final score

 24 to 48 hours late
 25 point penalty (out of 100 possible points)
 Subtracted from final score

 More than 2 days late
 No Credit

 Course materials, including slides, tests, and other
course materials, are protected by copyright.
 I am the owner of the copyright in the materials I create.
 CLRS/KT/W/Susanne etc… are the owners of the material

I use from the slides they provide.
 You may make copies of course materials for your

own use.
 You may not and may not allow others to reproduce

or distribute lecture notes and course materials
publicly without written consent.

 Similarly, you own copyright in your answers to
assignments.
 If I am interested in posting your answers on the course

web site, I will ask for your written permission.
26

Piazza Rules of Conduct
 Piazza is intended for clarification of

questions of general interest.
 Piazza cannot be used to post answers to

assignments, detailed descriptions of
solutions, or hints.

 Piazza is not the forum for complaints about
an assignment, exam, or the class.
 Any concerns should be brought to the attention of

the instructor.
 Be courteous and professional when

posting/emailing and use appropriate
language.

 If you are not sure whether a posting is
appropriate, make sure it is made private or
e-mail us.

27

 Register your clicker
 Sign up on Piazza
 Suggested Reading

 CLRS: Sections 10 and 12 (data structures)
 CLRS: Appendices A and B (discrete math)

 Assignment 1 will be posted by Friday
 Review of material needed for algorithm

analysis
 Attend PSOs to review proof techniques

28

 Hashing (for insert, delete, search) is
important and effective

 Algorithms in CS381 do not use hashing

29

Hash table

Key x

f(x)

Collisions can lead to poor worst case
performance

 To get O(1) expected performance per
operation, one needs the right table size, a
good hash function and good collision
resolution

Input: n numbers a1, …, an stored in an array A
Output: sorted sequence of size n

(increasing = non-decreasing)
Algorithms you should know
 Bubble sort, Insertion Sort, Selection Sort
 Merge Sort, Quicksort, Heapsort

Review
 asymptotic performance, stable sorting, in

place sorting

30

 create the sorted sequence in an incremental way
 start with a sorted sequence of length 1 and insert

one more element in each iteration

INSERTION-SORT (A, n)
for j ←2 to n do

key ←A[j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key

31
sorted

i j

key

1 n

Number of times the while-loop is executed
depends on the input

 increasingly sorted input is fast; decreasing is
slow.

 Worst case? ∑𝑗𝑗=2𝑛𝑛 𝑗𝑗 < 𝑛𝑛2

 Average case?

32

What all do we count/have to count
when analyzing time?

 In (internal) sorting algorithm we
generally count the number of
comparison

Pseudo code has two nested loops
 while loop moves left from j to 1
 total time won’t be more than quadratic.

Note: A doubly nested loop does not necessarily
result in quadratic time

33

Worst case: T(n) = O(n2)
 Work is bounded by summing the first

n-1 integers which is equal to n(n-1)/2
 Time is proportional to n2

 Also, T(n) = Θ (n2)

INSERTION-SORT (A, n)
for j ←2 to n do

Pre-Condition: A[1]≤ A[2] … ≤ 𝑨𝑨[𝒋𝒋 − 𝟏𝟏]
key ←A[j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ 𝐀𝐀[𝒋𝒋]

34

INSERTION-SORT (A, n)
for j ←2 to n do

Pre-Condition: A[1]≤ A[2] … ≤ 𝑨𝑨[𝒋𝒋 − 𝟏𝟏]
key ←A[j]
i ←j –1
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1

A[i+1] = key
Post-Condition: 𝐀𝐀[𝟏𝟏] ≤ A[2] … ≤ 𝐀𝐀[𝒋𝒋]

Post-Condition when j=n entire array A is sorted.

35

Pre-Condition: A[1]≤ A[2] … ≤ A[𝑗𝑗 − 1]
key ←A[j]
i ←j –1
Define Aorig[1,…,j-1] :=A[1,…,j-1]
while i > 0 and A[i] > key do

A[i+1] ←A[i]
i ←i –1
Invariant: A[1,…,i-1]= Aorig[1,…,i-1] (untouched)

A[i+2,…,j] = Aorig[i+1,…,j-1] (shift once*)
key < A[i+2]

A[i+1] = key
Post-Condition: A[1]≤ A[2] … ≤ A[𝑗𝑗]

36

	CS 381 – Fall 2019
	Lectures
	Wait List
	Course Personnel
	Course Resources
	Course Resources
	Coursework and Grades
	Prerequisites for 381�
	More on prerequisites
	More on prerequisites
	Course Highlights
	Slide Number 12
	Course Highlights
	Homework Solutions�
	Homework Solutions�
	Cannot Solve Problem?
	Exams
	Regrade Requests
	Course standards and policies
	Late Homework
	About Copyright
	Slide Number 27
	Your tasks
	A Remark about Hashing
	Warm Up: Sorting�
	Insertion Sort
	What is the running time of Insertion Sort?�
	Asymptotic Performance�
	Insertion Sort: Correctness
	Insertion Sort: Correctness
	Insertion Sort: Correctness

