Week 16.2, Wed, December 4th

PSOs This Week: Review for Final Exam
Practice Final Released Today
No class on Friday
Please let me know what you liked and what could be improved

- http://www.purdue.edu/idp/courseevaluations/CE_Students.html
- “NP is too hard”

Closes December 8th at 11:59PM

Feedback is anonymous

1 Point Bonus on final exam for sending proof of completion (screenshot)

- E-mail: jblocki@purdue.edu
- Must use subject line: ``CS381 Evaluation Bonus”"
Final Exam Logistics

- **Time:** Thursday, December 12th from 7-9PM (2 Hours)
- **Location:** STEW 130
- **One (Double Sided) Page of Handwritten Notes**
 - No calculators, smartphones, laptops etc...
- **Content:**
 - Heavier emphasis on recent topics (since Midterm 2)
 - Network Flow, Max-Flow Min-Cut, Reductions, P, NP, coNP, NP-Completeness
 - Cumulative: (roughly) half of the exam will focus on prior topics
 - D&C, Greedy, DP, Graph Algorithms etc...
Material to review/work through/understand

- Material covered in class
 - your notes, slides, Piazza notes
- 7 Assignments and posted solutions
- Clicker questions
- Midterms and practice midterm questions
- Practice Final Exam
- PSO Practice Problems
Analysis of Algorithms (1)

- Analyzing the asymptotic performance of an algorithm
- Deterministic worst-case analysis
- Complexity classes (from O(1) to exponential)
- Recursion and recurrence relations
 - Solving: Master Theorem, Unrolling, Recursion Trees
- Arguing correctness of an algorithm
 - Induction, Swapping, Case Analysis (e.g., DP Recurrences) etc…
- Fundamental algorithm design techniques
 - Divide and Conquer, Greedy, Dynamic Programming, Reductions
- Effective use of data structures
- Graph algorithms and graph explorations
 - DFS, BFS, Top Sort, Shortest paths, mspt, max flow (min-cut)
Analysis of Algorithms (2)

- Network Flow, Max-Flow Min-Cut
- Polynomial Time Reductions
- Decision vs Search (Self-Reductions)
- Classes NP, P, and NP-complete
- Making NP-completeness reductions
- Dealing with NP-completeness
Read through the questions and start with ones you feel most comfortable with

Questions are not arranged in order of difficulty

Don’t spend too much time on a single question

Don’t give multiple answers. Make it clear what your final answer is.

Yes/no is not an answer.

Unless we explicitly say “no explanation,” we expect a brief/precise explanation (no detailed code)

- Running Time, Correctness

If there is no running time given for a question, determining the best one is part of the problem.

We can only grade what is written, not what you were thinking
Which relationships are **true**?

1. \(n! = O(n2^n) \)
2. \(2^{3\log n} = \Theta(n) \)
3. \(n! = O((n+1)!) \)
4. \(n^{0.9} = O\left(\frac{n}{\log n}\right) \)

A. 3
B. 1 and 2
C. 3 and 4
D. 2 and 3
E. All are false
T(n) = 4T(n/2) + 4n
with T(1)=1 and n a power of 4.

Its solution is ...

Master Theorem:

A. O(n^{1/2})
B. O(n)
C. O(n \log n)
D. O(n^2)
E. O(n^4)
A and B are two decision problems.
• Alice shows that both A and B are in class NP.
• Bob shows that problem B is NP-complete.
• Charlie shows that $A \leq_{\text{poly}} B$.
Which of the following claims can be concluded?

A. A polynomial time solution for problem A implies a polynomial time solution for problem B.
B. A polynomial time solution for problem A implies $P=NP$.
C. Problem A is NP-complete.
D. Problem B is NP-Complete.
E. None of the above.
Which of the problems listed below can be verified in polynomial time?

P1: Verify that a given graph G has a clique of size k
P2: Verify that a given graph G contains a simple path of length n-1
P3: Verify that a given number is not prime.

A. P1
B. P2
C. P3
D. All
Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Hint. A tree on at least two nodes has at least two leaf nodes.

Greedy Algorithm:

0) Initialize Indep Set \(S := \{ \} \)

1) While \(G \) is not empty

 a) find a leaf node \(v \)

 b) update \(S := S \cup \{v\} \) (add \(v \) to \(S \))

 c) update \(G := G - v - N(v) \) (delete \(v \) and neighbors of \(v \))

2) Return \(S \)

Claim: \(S \) is an independent set

Proof: whenever add \(v \) then we remove all incident nodes from \(G \)
Greedy Algorithm:
0) Initialize Indep Set $S := \{\}$

1) While G is not empty
 a) find a leaf node v
 b) update $S := S \cup \{v\}$ (add v to S)
 c) update $G := G - v - N(v)$ (delete v and neighbors of v)

2) Return S

Claim: S is maximum cardinality independent set

Proof: Let $v_1, ..., v_k$ be nodes in S and suppose (for contradiction) $S^* = w_1, ..., w_k^*$ is a larger maximum cardinality independent set ---

Tiebreak: maximize match with S i.e., $w_1, ..., w_r = v_1, ..., v_r$ for maximum r.

We have $v_{r+1} \notin S^*$, but v_{r+1} is incident to some node w_j in S^*

(otherwise we can simply add v_{r+1} to S^*)

Swap: $S' = \{v_{r+1}\} \cup (S^* \setminus \{w_j\})$

Observation: S' is an independent set (since v_{r+1} is leaf in $G - \bigcup_{i \leq r} (v_i \cup N(v_i))$)

(Contradicts choice of S^*)
G is a directed, weighted graph representing a flow network. All edge weights are **unique**. The maximum flow one can push from s to t is M.

The flow over the edges for achieving M is always unique.

A. True

B. False
G is an undirected graph. You need to determine whether G contains two vertex disjoint cliques of size 4?

What class does the problem belong to? Give the most precise class.

A. P
B. NP-Complete
C. NP
Which problems are in \(P \)?

1. 2-SAT

2. 3-SAT

3. Longest path in a dag

4. Hamiltonian path in a graph with at most 4n edges

5. Vertex cover in tree

6. Partition problem on \(n \) elements having identical value

A. 1 and 3

B. 3 and 4

C. 1, 3, 4 and 5

D. 1, 3, 5, and 6

E. All but 3-SAT
Every problem in class NP can be solved in exponential time.

A. True
B. False
C. True for most, unknown for some
3SAT: Decision vs Search

Suppose that we have an oracle O which solves the decision version of the 3SAT problem i.e., $0(\varphi) = 1$ if φ is satisfiable otherwise $0(\varphi) = 0$.

Develop an algorithm to find a satisfying assignment after making polynomially many queries to O.

Set $\varphi_0 = \varphi$

If $0(\varphi_0) = 0$ print “No Satisfying Assignment” and QUIT

For (i=1 to n)

If $0(\varphi_{i-1} \land (x_i \lor x_i \lor x_i)) = 1$

$\varphi_i := \varphi_{i-1} \land (x_i \lor x_i \lor x_i)$

print “$x_i = 1$”

Else

$\varphi_i := \varphi_{i-1} \land (\bar{x}_i \lor \bar{x}_i \lor \bar{x}_i)$

print “$x_i = 0$”

Running Time?

Correctness?