
1

Week 16.2, Wed, December 4th

PSOs This Week: Review for Final Exam
Practice Final Released Today
No class on Friday

 Please let me know what you liked and what
could be improved
 http://www.purdue.edu/idp/courseevaluations/CE_

Students.html

 “NP is too hard”

 Closes December 8th at 11:59PM

 Feedback is anonymous

 1 Point Bonus on final exam for sending proof
of completion (screenshot)
 E-mail: jblocki@purdue.edu

 Must use subject line: ``CS381 Evaluation Bonus”

http://www.purdue.edu/idp/courseevaluations/CE_Students.html
mailto:jblocki@purdue.edu

 Time: Thursday, December 12th from 7-9PM (2
Hours)

 Location: STEW 130

 One (Double Sided) Page of Handwritten Notes
 No calculators, smartphones, laptops etc…

 Content:
 Heavier emphasis on recent topics (since Midterm 2)

 Network Flow, Max-Flow Min-Cut, Reductions, P, NP, coNP,
NP-Completeness

 Cumulative: (roughly) half of the exam will focus on
prior topics
 D&C, Greedy, DP, Graph Algorithms etc...

4

• Material covered in class
• your notes, slides, Piazza notes

• 7 Assignments and posted solutions
• Clicker questions
• Midterms and practice midterm questions
• Practice Final Exam
• PSO Practice Problems

5

 Analyzing the asymptotic performance of an algorithm

 Deterministic worst-case analysis

 Complexity classes (from O(1) to exponential)

 Recursion and recurrence relations

 Solving: Master Theorem, Unrolling, Recursion Trees

 Arguing correctness of an algorithm

 Induction, Swapping, Case Analysis (e.g., DP Recurrences) etc…

 Fundamental algorithm design techniques

 Divide and Conquer, Greedy, Dynamic Programming,
Reductions

 Effective use of data structures

 Graph algorithms and graph explorations

 DFS, BFS, Top Sort, Shortest paths, mspt, max flow (min-cut)

6

 Network Flow, Max-Flow Min-Cut

 Polynomial Time Reductions

 Decision vs Search (Self-Reductions)

 Classes NP, P, and NP-complete

 Making NP-completeness reductions

 Dealing with NP-completeness

7

 Read through the questions and start with ones you feel most
comfortable with

 Questions are not arranged in order of difficulty

 Don’t spend too much time on a single question

 Don’t give multiple answers. Make it clear what your final
answer is.

 Yes/no is not an answer.

 Unless we explicitly say “no explanation,” we expect a
brief/precise explanation (no detailed code)

 Running Time, Correctness

 If there is no running time given for a question, determining the
best one is part of the problem.

 We can only grade what is written, not what you were thinking

Which relationships are true?
1. n! = O(n2n)
2. 2 3log n = Θ(n)
3. n! = O((n+1)!)

4. n0.9 = O(
𝑛

log 𝑛
) A.3

B.1 and 2
C.3 and 4
D.2 and 3
E.All are false

8

T(n) = 4T(n/2) + 4n

with T(1)=1 and n a power of 4.

Its solution is …

A.O(n1/2)
B.O(n)
C.O(n log n)
D.O(n2)
E.O(n4)

9

Master Theorem:

a=4, b=2, c=1

log𝑏 𝑎 > 𝑐 𝑂 𝑛log𝑏 𝑎

A and B are two decision problems.
• Alice shows that both A and B are in class NP.
• Bob shows that problem B is NP-complete.
• Charlie shows that A ≤ poly B.
Which of the following claims can be concluded?

A. A polynomial time solution for problem A implies a
polynomial time solution for problem B.

B. A polynomial time solution for problem A implies
P=NP.

C. Problem A is NP-complete.
D. Problem B is NP-Complete.
E. None of the above.

10

Which of the problems listed below can be verified in
polynomial time?

P1: Verify that a given graph G has a clique of size k
P2: Verify that a given graph G contains a simple
path of length n-1
P3: Verify that a given number is not prime.

A. P1
B. P2
C. P3
D.All

11

12

Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality subset of

nodes such that no two share an edge.

Hint. A tree on at least two nodes has

at least two leaf nodes.

Greedy Algorithm:

0) Initialize Indep Set S ≔ {}

1) While G is not empty

a) find a leaf node v

b) update S:= S ∪ {𝑣} (add v to S)

c) update G:=G-v-N(v) (delete v and neighbors of v)

2) Return S

Claim: S is an independent set

Proof: whenever add v then we remove all incident nodes from G

degree = 1

13

Independent Set on Trees

Greedy Algorithm:

0) Initialize Indep Set S ≔ {}

1) While G is not empty

a) find a leaf node v

b) update S:= S ∪ {𝑣} (add v to S)

c) update G:=G-v-N(v) (delete v and neighbors of v)

2) Return S

Claim: S is maximum cardinality independent set

Proof: Let v1,…,vk be nodes in S and suppose (for contradiction) 𝑆∗ = 𝑤1, … , 𝑤𝑘∗ is

a larger maximum cardinality independent set ---

Tiebreak: maximize match with S i.e., 𝑤1, … , 𝑤𝑟 = 𝑣1, … , 𝑣𝑟 for maximum r.

We have 𝑣𝑟+1 ∉ 𝑆∗, but 𝑣𝑟+1 is incident to some node 𝑤𝑗 in 𝑆∗

(otherwise we can simply add 𝑣𝑟+1 to 𝑆∗)

Swap: S′ = 𝑣𝑟+1 ∪ 𝑆∗\{𝑤𝑗}

Observation: S’ is an independent set (since 𝑣𝑟+1 is leaf in G − 𝑖≤𝑟ڂ 𝑣𝑖 ∪ N(𝑣𝑖))

(Contradicts choice of 𝑆∗)

G is a directed, weighted graph representing a
flow network.
All edge weights are unique.
The maximum flow one can push from s to t is
M.

The flow over the edges for achieving M is
always unique.

A.True
B.False

14

G is an undirected graph.
You need to determine whether G contains
two vertex disjoint cliques of size 4?

What class does the problem belong to?
Give the most precise class.

A.P
B.NP-Complete
C.NP

15

Which problems are in P?
1. 2-SAT

2. 3-SAT

3. Longest path in a dag

4. Hamiltonian path in a graph with at most 4n edges

5. Vertex cover in tree

6. Partition problem on n elements having identical value

A.1 and 3
B.3 and 4
C.1, 3, 4 and 5
D.1, 3, 5, and 6
E.All but 3-SAT 16

Every problem in class NP can be solved in exponential time.

A.True
B.False
C.True for most, unknown for

some

17

3SAT: Decision vs Search

Suppose that we have an oracle O which solves the decision version of

the 3SAT problem i.e., O 𝜑 = 1 if 𝜑 is satisfiable otherwise O 𝜑 = 0.

Develop an algorithm to find a satisfying assignment after making

polynomially many queries to O.

Set 𝜑0 = 𝜑

If O 𝜑0 = 0 print “No Satisfying Assignment” and QUIT

For (i=1 to n)

If O 𝜑𝑖−1 ٿ 𝑥𝑖 ∨ 𝑥𝑖 ∨ 𝑥𝑖 = 1

𝜑𝑖: = 𝜑𝑖−1 ٿ 𝑥𝑖 ∨ 𝑥𝑖 ∨ 𝑥𝑖
print “𝑥𝑖 = 1”

Else

𝜑𝑖: = 𝜑𝑖−1 ٿ ഥ𝑥𝑖 ∨ ഥ𝑥𝑖 ∨ ഥ𝑥𝑖
print “𝑥𝑖 = 0”

18

Running Time?

Correctness?

