
CS 381-Fall 2019

Homework 3
Due Date: September 23, 2019 at 11:59PM on Gradescope.

Instructor: Jeremiah Blocki

Homework Guideline Reminders

• Assignments must be typed. Submit one pdf file to Gradescope by 11:59PM, or else
late penalties will apply. The pdf file can include hand-drawn images of figures.

• Each question needs to start with the resources and collaborator (RC) statement. You
will not be penalized for using resources or having collaborators if your answers are
expressed in your own words. If you consulted no resources outside of course material or
had no collaborators, you must state so. A question without a complete RC statement
will not be graded.

Question 1: Divide and Conquer (33 points)

An array A[1..n] has the “AP-free” property if it does not contain any arithmetic progres-
sion, in other words, for every pair (p, q) of indices with 1 ≤ p < q ≤ n there is no index r
with p < r < q such that A[p] + A[q] = 2 · A[r].

(a) Given a fixed positive integer n, devise an efficient divide and conquer algorithm that
returns a permutation of (1, 2, . . . , n) that is AP-free. For example, (2,1,4,3) is an
AP-free permutation of (1,2,3,4) for n = 4. You may assume that n = 2k is a power of
2.

(b) Prove the correctness of your algorithm and analyze its running time.

Hint 1: It may be helpful to remember that adding an even number to an odd number
always yields an odd number.

Hint 2: Note that the AP-free property is linear, that is, an array A[1..n] is AP-free if
and only if for every integers u, v the array B[1..n] obtained from setting B[i] = u · A[i] + v
for 1 ≤ i ≤ n is also AP-free e.g., (2,1,4,3) is AP-free if and only if (4,2,8,6) is AP-free. You
may use this observation without proof.

Question 2: Greedy Algorithm (33 points)

Jane is now a baker at Blocki’s Blasted Bakery (BBB), and she bakes cakes of varying sizes
for her customers. She has to pack the cakes in boxes and send them out for delivery at the
end of the day. She bakes the cakes in order of when the customer places their order, and
she must pack the cake before starting the next cake. She can use as many boxes as she
needs, but the delivery cost is dependent on the number of boxes she uses. She can stack

1



several cakes in the same box, but she cannot stack a larger cake onto a smaller cake or it
will collapse. She seeks out help from the students in CS381 as she wants to minimize the
delivery cost.

More precisely the input to our algorithm is an ordered list of cakes’ sizes e.g., [52, 32, 38,
10, 18]. The output is a list of valid stacks of cakes. A valid stack should be non-collapsing
e.g., the stack (32, 38) would collapse since the larger cake (size 38) is on top of the smaller
one (size 32). Similarly, a valid stack should respect the original ordering of cakes e.g., the
stack (38, 32) is invalid because the cake with size 38 would have been baked/packed after
the cake with size 32. The goal is to minimize the number of stacks of cakes. For this
problem we will assume that there is no limit on the height of a stack.

Since cakes must be stacked in order, we could, for example, stack cake 1 on box 1, cake
2 on box 2, cake 3 on box 3, cake 4 on box 2, and cake 5 on box 1 as shown below.

However, the optimal solution is 2 boxes as follows.

(a) Devise a greedy algorithm which returns a packing of the cakes that minimizes her
delivery cost. Analyze the time and space complexity of your algorithm.

(b) Prove the correctness of your algorithm i.e. prove that the number of boxes used by
your greedy algorithm is no more than number of boxes used by any optimal algorithm.

Question 3: Proof/Counterexample (34 points)

After an economic analysis, BBB has decided that fixed size (say size 50) cakes are the most
profitable and has decided to only bake cakes of size 50. BBB also expanded its storage
room so Jane is now able to bake all of the cakes before packing the boxes. Once again Jane
has to deliver a batch of cakes, however, this time, her delivery boxes come with specific

2



capacities: 1, 5, 10, and 50, i.e a box of capacity 1 would fit 1 cake, a box of capacity 5
would fit 5 cakes, and so on. A box cannot fit more than its capacity, and packing less than
the capacity would cause the cakes to be ruined during delivery, so each box must contain
exactly the number of cakes of its capacity. Like before, she needs to minimise her delivery
cost which is directly proportional to the number of boxes she uses (all boxes have the same
cost regardless of capacity). Given a number of cakes, n, she packs the cakes using the
following greedy strategy: She repeatedly chooses the biggest box out of the 4 choices that
she can completely fill and continues until she has packed all her cakes.

(a) Prove or disprove that Jane’s strategy is optimal.

(b) There was a manufacturing mixup with the boxes, and instead, Jane received boxes
with different capacities: 1, 5, 7, and 50. Has the optimality changed? Prove or
disprove that Jane’s strategy is optimal in this situation.

3


