CS 381-Fall 2019

Homework 2
Due Date: September 16, 2019 at 11:59PM on Gradescope.
Instructor: Jeremiah Blocki

Homework Guideline Reminders

e Assignments must be typed. Submit one pdf file to Gradescope by 11:59PM, or else
late penalties will apply. The pdf file can include hand-drawn images of figures.

e Each question needs to start with the resources and collaborator (RC) statement. You
will not be penalized for using resources or having collaborators if your answers are
expressed in your own words. If you consulted no resources outside of course material or
had no collaborators, you must state so. A question without a complete RC statement
will not be graded.

Question 1: Recurrences (28 points)

Find upper and lower bounds for the following functions (big O and 2). You may use the
Master Theorem without proof (when applicable), but you should explain which case is being
used. If you solve the recurrence using another technique you will need to prove that your
solution is correct. You may assume that 1 < T'(n) < 381292 whenever 1 < n < 100.

(a) T(n) = 8T(n/5) + n® (3 points)
(b) T(n) = 5T(n'/1%) + 2log,n (3 points)
(c) T(n) = 5T(n/2) + n'*7*2 . log(n?) (3 points)
(d) T(n) = n+ Y25, T(am) where S2F a; = 1 — € for some constants € > 0, k > 1 and

a; > 0 for each i < k. (5 points)

(e) T(n) = n+ S2F | T(a;n) where 25 a; = 1 and a; > 0 for each i < k. You may

assume that k& > 2 is a constant. (5 points)
(f) T(n) = 36T(n/9) + 10n - nloes112 (3 points)
(g) T(n) =9T(n/3) + n? (3 points)
(h) T(n) = T(n-1) + 2020n22° (3 points)

Question 2: Linear Time Selection (22 points)

Consider the algorithm FindKthLargest (defined below) which takes as input an (unsorted)
array xi,...,T, and an integer k and outputs the kth smallest item in the array. Formally,
if y1,...,yn = Sort(xy,...,x,) then the algorithm should return yy.

(a) The algorithm FindKthLargest is parameterized by an integer t > 1. When ¢t = 2 we
have (2¢+1) = 5 and we get the “Median of Fives” algorithm discussed in class. Write
down a recurrence describing the running time of this algorithm. Use this recurrence
to upper/lower bound the running time.

(b) The algorithm FindKthLargest is still correct when we set ¢ = 1. Write down a recur-
rence describing the running time of this algorithm. Use this recurrence to upper/lower
bound the running time.

(c) Write down the general recurrence describing the running time of FindKthLargest
when ¢ > 2. What is the running time of the algorithm when t is a constant greater
than 27

(d) Use induction to prove that the algorithm FindKthLargest (described below) is cor-
rect.

Algorithm 1 FindKthLargest ({x1,...,2,}, k)

1: If n < (2t + 1) then sort the list {z1,...,x,} to obtain y; <y < ... <y, and return y.
2: Partition z1,...,z, into n/(2t + 1) groups

Gr={z1,..., 2001}, Go = {xori0, ..., Tagia}, - -
and compute the median y; of each group G; by setting
y; < FindKthLargest(G;,t + 1).
3: Recursively compute the median 3,4 of the list yi,. .., y,/2i41) by running

Umed < FindKthLargest ({yl, e Ynjt4) b R =n/ (4t + 2))
4: Split zq,...,x, into lists
L= {xz 1 < ymed}7
M = {mz T = ymed}7
R=Ax;: ;> Ymea}

5. If k < |L| then return FindKthLargest (L, k); else if k < |L|+|M| return y,,cq; otherwise
return FindKthLargest (R, k — |L| — |M]).

Question 3: Divide and Conquer (25 points)

After invading Zone 51, invaders have gathered n items with distinct positive weights and
stacked them in a pile. A pair of items in the pile is said to be “y-unbalanced” for v > 1
if the weight of the upper item times v exceeds (is strictly greater than) the weight of the
lower item. Moving the pile in a vehicle is very risky unless stacked in a particular order of
weights from top to bottom such that there is no y-unbalanced pairs. Such an ordering is
called ~v-ordering. Invaders want to know how far the pile is from v-ordering. Invaders are
in a time constraint as they are being chased by security personnel; given a specific v, they
need an efficient algorithm to compute the number of y-unbalanced pairs in the pile. Note
that invaders do not need the actual v-ordering, once they know the number of y-unbalanced
pairs, they can do the v-ordering by themselves.

(a) Help the invaders by providing such a divide and conquer algorithm to find the number
of y-unbalanced pairs. Prove the correctness of your algorithm.

(b) Convince the invaders that your algorithm is efficient by showing time complexity
analysis. State and explain the recurrence relation describing the running time of your
algorithm. Solve the recurrence and provide the asymptotic running time.

Question 4: Divide and Conquer (25 points)

Jane was given a square matrix of size n x n with entries 0’s and 1s, the goal was to come
up with an efficient divide and conquer algorithm to find the length of the longest sequence
of 1’s in the matrix. The sequence can be horizontal or vertical, in other words, it can be
contiguous sequence of 1’s in a row or in a column. Note that a combination of both hori-
zontal and vertical is NOT valid, for example, L shaped figures are not to be considered.

Jane devised the following algorithm to solve the problem:
1. If matrix is size 1 x 1, return value of the single element.

2. Divide matrix into 4 quadrants each having side of length % as shown below. Recur-
sively find the longest sequences in each quadrant: Sy, S5, S5, 5;.

1 2
4 3

3. In the combine step, compare each pair of adjacent quadrants. For each pair, check the
length of all possible sequences of 1s that go across the two quadrants. For instance, if
we are looking at quadrants 1 and 2, for each row, count the number of consecutive 1s
on the right side of the row in quadrant 1 and on the left side of the row in quadrant

2, and sum them to obtain the longest sequence of 1s in that particular row across
the two quadrants. Choose the row with the maximum length sequence of 1s found.
We will end up with the lengths of the longest sequences of 1s between each pair of
adjacent quadrants: Sis, So3, 534, S41-

Return maximum of all values: longest sequences in each quadrant and calculated
lengths of sequences that go across quadrants. That is,

maX(Sla 527 53, S4> 512, 523, 5347 541)

For this problem,

(a)

(b)

State and explain the recurrence relation describing the running time of Jane’s algo-
rithm. Solve the recurrence and provide the asymptotic running time.

Unfortunately, Professor Blocki is not happy with the run-time of her algorithm. He
believes she can do better. Can you help Jane by tweaking her algorithm to give a
divide and conquer solution with a better runtime? Clearly specify the divide step,
conquer step, and what values are returned during each iteration. You must use divide
and conquer even if there are other simpler solutions.

State and explain the recurrence relation describing the running time of your modifi-
cation of Jane’s algorithm. Solve the recurrence and provide the asymptotic running
time.

