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ABSTRACT

Good designs must meet explicit user needs and honor implicit rules related to aesthetics, utility, and
convenience. Current automated design tools driven by machine learning alone produce appealing
designs but cannot satisfy user specifications and utility requirements. Constraint reasoning tools
alone cannot produce design visualizations. We introduce Spatial Reasoning Integrated Generator
(SPRING) for design production. SPRING embeds a spatial reasoning module inside the generative
neural network. The spatial reasoning module decides the locations of the objects to be generated in
the form of bounding boxes predicted by a recurrent network-driven iterative refinement approach
filtered by constraint satisfaction. Embedding constraint reasoning into learning guarantees the output
of SPRING satisfies user requirements. Furthermore, SPRING offers interpretability, allowing users
to visualize and diagnose the generation process through the bounding boxes. SPRING also handles
novel user specifications not present in the training set well in the zero-shot transfer learning setting.
Our experiments, backed by a human study, demonstrate that SPRING surpasses baseline generative
models by delivering high image quality and superior satisfaction in meeting user specifications.

Keywords Constraint Reasoning, Spatial Reasoning, Neural Generative Models, Constrained Content Generation

1 Introduction

A good design needs to meet industry standards and user needs, while at the same time capturing subtle aspects such as
aesthetics and convenience. A constraint program can be defined to find a plan which meets all standards and needs,
but constraint programs cannot provide visualizations of the designs. Moreover, the designs generated by constraint
programming often satisfy the bare minimum of functionality without considering subtle aspects. In fact, it is almost
impossible to encode aesthetics into the objective function of a constraint program. Hence, the designs solely generated
by constraint satisfaction are often not welcomed by customers. Recent advancements in machine learning, particularly
in deep generative models, have presented new opportunities for addressing these challenges. Text-to-image and
graph-to-image models provide exciting possibilities for controllable generation, but their control is not always precise
enough to produce designs that meet complex specifications. For example, in Figure 1, a toaster must be added to the
left of the oven and below the sink, and a microwave needs to be added to the right of the oven. In the right panel, the
Stable Diffusion model taking the input of the initial kitchen configuration and the text specifications simply alters the
entire scene. Overall, AI-driven automatic design is an emerging field that requires the integration of machine learning
and constraint reasoning. However, such integration is beyond the reach of state-of-the-art models.

Our Approach. We introduce Spatial Reasoning Integrated Generator (SPRING) for design production. Given an
initial indoor scene and user requirements described in propositional logic, the task is to generate a design that satisfies
user specifications, looks pleasing and follows common sense. The essence of SPRING is the embedding of a spatial
reasoning module inside the deep generative network. The spatial reasoning module decides the locations of the objects
to be generated in the form of bounding boxes following an iterative refinement approach. The bounding boxes are
predicted by Recurrent Neural Networks (RNNs) and are further filtered by constraint reasoning (forward checking).
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Input

Input Constraint: Add a blue microwave right of the oven, and a
green toaster left of the oven and below the sink.

SPRING Output (ours) Baseline (Stable Diffusion)

Figure 1: An interior design generated by SPRING (middle) with a given background already containing an oven
and a sink among other objects (left). The user specifications are at the bottom (provided to SPRING in the form
of propositional logic; natural language text is used here to aid readability). SPRING creates a design satisfying the
specifications. Text-to-image approaches like Stable Diffusion (right) often fail to meet these constraints.

Figure 2: Rollout of the SPRING system. The top shows the architecture. The bottom shows the state of the image as it
moves through the network. (Left) The perception module scans the initial image to extract existing objects (types and
bounding boxes) and scene latent features. (Center) The spatial reasoning module takes as input the scene features,
the set of initial objects, and the user-defined specification for new objects. It outputs a layout for the image with all
positional variables (x, y, width, height) decided for each object. The spatial reasoning module is a GRU that outputs
the coordinate of each object sequentially. The value of each coordinate is narrowed down via iterative refinement until
the stop token is selected. Constraint reasoning in the form of forward checking is applied during inference which
filters out coordinate assignments that violate user specifications. The decision-making process is visualized as a tree of
value ranges to generate the x and y positions of the microwave. (Right) The visual element generator in the form of a
diffusion model paints each object into the scene to produce the final image.

This integrated approach allows us to leverage the advantages of both approaches. Constraint satisfaction deals with
explicit specifications, such as user requirements, while neural networks handle aesthetics and common sense.

SPRING consists of three modules. The first perception module based on Detection Transformers (DETR) [13]
extracts existing object positions from input images. It is followed by the spatial reasoning module, which uses
constraint reasoning integrated learning to generate the bounding boxes. When determining one coordinate variable of
the bounding box, the RNN in the spatial reasoning module iteratively halves the range of the coordinate until it is
sufficiently small. During learning, the RNN is trained to understand implicit spatial knowledge, such as potted plants
usually being located on the floor, etc. This is completed by a teacher-forcing procedure that matches the bounding
boxes predicted by the RNN and the ones containing the objects in the training image. During inference, explicit spatial
constraints are enforced by a forward-checking algorithm, which blocks the decisions leading to constraint violations.
Finally, the bounding boxes are filled by the third visual element generator module, which is a diffusion model. The
three modules of SPRING are illustrated in Figure 2.
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How SPRING Advances the State-of-the-art: (1) Guaranteed User Requirement Satisfaction via Embedding Spatial
Reasoning into Design Generation. SPRING guarantees the generated designs satisfy user specifications. Learning
to satisfy constraints in generative models is notoriously difficult. This is due to the intricate nature of constraint
satisfaction, which is beyond the capabilities of current neural network approaches. It is also unnecessary for neural
networks re-learn the meaning of specifications (such as the meaning of “to the left of”). Prior work [33] also generates
bounding boxes in the process of image generation. The key difference between this work and our SPRING is that they
used black-box graph neural networks for bounding box generation. As a result, they need to learn the meaning of
constraints and do not have guaranteed performance. In the experiments, we show their models cannot produce designs
with desired properties.

(2) Interpretable Model. SPRING is more interpretable than alternate methods. At each step of iterative refinement, the
user can view the probabilities associated with each sub-decision while also tracing the path of the forward-checker to
see constraint violations. Users can follow this trace to diagnose the designs generated by SPRING.

(3) Zero-shot Transfer to Novel User Specifications. The forward-checking procedure also allows us to handle constraints
in a zero-shot manner. When novel constraints not present in the training set are given at test time, the forward checking
procedure still blocks the output of the RNNs in the same way as handling familiar constraints, without the need for any
retraining or fine-tuning. This is demonstrated in Appendix C.

Evaluation. We evaluate SPRING in the domain of interior design visualization, in which the AI must add elements
to an interior space like a kitchen or a living room, taking into account existing objects and constraints given by the
user. The images produced by SPRING are on-par in quality with the latest image generation tools. This is verified
from both visual inspection and quantitative scores. However, SPRING is able to produce designs that satisfy complex
user specifications, while baseline approaches cannot. We also demonstrate that the designs generated by SPRING
satisfy implicit spatial constraints, such as toasters should not be put on the floor, etc. Furthermore, SPRING is capable
of handling novel user constraints not presented in the training set in the zero-shot learning setting, as evidenced by
the implementation of a novel constraint after training was already complete. To complement these evaluations, we
conducted a human study to assess the algorithm’s performance in producing realistic images and satisfying user
constraints. The results corroborate the effectiveness of SPRING in generating high-quality images that adhere to user
specifications while maintaining the overall aesthetics and spatial naturalness of the design.

2 Problem Definition

Design production is the problem of producing designs in the form of diagrams, environments, or images. The example
chiefly explored here is interior design, in which the image is an interior in a home, such as a kitchen or living room,
and the design is specified as a set of objects to add which have positional relationships to each other and objects already
in the image. The problem can be defined as:

Problem 1: (Design Production): Given: let B be a background image that contains initial objects W, and D be a
design specification with new objects O and positional constraints C represented in the propositional design language
defined below. C may reference objects in both O and W. T is the set of “natural” images.
Find a scene image S, with B as a background, containing objects defined by O, such that all of C is satisfied and S is

“realistic”; i.e., it is visually close to the images in T.

2.1 Propositional Design Language

Symbols and Constants. Our design language uses propositional logic. In this language, o1, o2, . . . , oN denote objects.
These objects represent furniture or other objects that are either in the background image or need to be added. The
constants used in the design language are integers and text strings. The integers are often used to denote the spatial
distances between objects while text strings define the properties and types of the objects.

Properties and Types. Property is a predicate that evaluates to true if and only if an object has a given property.
For example, property(o1, “blue′′) is true if and only if object o1 has the property “blue′′ (i.e., its color is blue). A
special property is called type. This defines the type of object being reasoned over from a set of known types. For
example, type(o1, “microwave′′) evaluates to true if and only if o1 has the type “microwave′′. Combining with
the previous example, type(o1, “microwave′′) ∧ property(o1, “blue′′) means object o1 is a blue microwave. Our
language recognizes the following types: chair, couch, potted plant, bed, mirror, dining table, window, desk, toilet, door,
tv, microwave, oven, toaster, sink, refrigerator, and blender.
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Relation Truth condition
above(o1, o2, c) the top side of o1 is at least c units above the top side of o2.
cabove(o1, o2) the bottom side of o1 is at least c units above the top side of o2.
above_value(o1, c) the top side of o1 has a y-value less than c.
below(o1, o2, c) the top side of o1 is at least c units below the top side of o2.
cbelow(o1, o2) the top side of o1 is at least c units below the bottom side of o2.
below_value(o1, c) the top side of o1 has a y-value greater than c.
left(o1, o2, c) the left side of o1 is at least c units to the left of the left side of o2.
cleft(o1, o2, c) the right side of o1 is at least c units to the left of the left side of o2.
left_value(o1, c) the left side of o1 has an x-value less than c.
right(o1, o2, c) the left side of o1 is at least c units to the right of the left side of o2.
cright(o1, o2) the left side of o1 is at least c units to the right of the right side of o2.
right_value(o1, c) the left side of o1 has an x-value greater than c.
narrower(o1, o2, c) object o1 is at least c units narrower than object o2.
narrower_value(o1, c) object o1 has a width less than c.
shorter(o1, o2, c) object o1 is at least c units shorter than object o2.
shorter_value(o1, c) object o1 has a height less than c.
taller(o1, o2, c) object o1 is at least c units taller than object o2.
taller_value(o1, c) object o1 has a height greater than c.
wider(o1, o2, c) object o1 is at least c units wider than object o2.
wider_value(o1, c) object o1 has a width greater than c.
heq(o1, o2) object o1 and object o2 have the same height.
heq_value(o1, c) object o1 has a height equal to c.
weq(o1, o2) object o1 and object o2 have the same width.
weq_value(o1, c) object o1 has a width equal to c.
xeq(o1, o2) the left side of o1 is in line with the left side of o2.
xeq_value(o1, c) the left side of o1 has an x-value equal to c.
yeq(o1, o2) the top side of o1 is in line with the top side of o2.
yeq_value(o1, c) the top side of o1 has a y-value equal to c.

Table 1: Spatial relations and their truth conditions. Note that integer literals (shown here as c) are in units of per-
thousanths of the background image’s width and height.

Relations. Relations are used to model spatial constraints between objects, providing a way to describe the relative
position, size, and alignment of objects within a design. These relations evaluate to true if the spatial relationship is
upheld between the objects included, and false otherwise. Our grammar includes various types of predicates to express
these relationships.

1. Spatial relationships with constant offsets: This group of predicates defines spatial relationships between
two objects with a constant offset. Predicates like above, below, right, and left describe relative positions
between objects in the x and y dimensions. For example, above(o1, o2, k) is true if and only if object o1 is
above object o2 by k vertical units. More precisely, the top side of o1 is at least k vertical units above the top
side of o2. In this paper, one vertical (horizontal) unit is measured as one-thousandth of the height (width) of
the image. Sometimes the distance k is omitted. In this case, above(o1, o2) is true if and only if o1 is above
o2. Additionally, the grammar provides cabove, cbelow, cright, and cleft predicates, which represent
complete spatial constraints where the entire bounding box of one object is constrained in one direction
away from its counterpart, with no overlap. For example, cabove(o1, o2, k) holds if and only if object o1 is
completely above object o2 with a constant vertical distance of at least k. In other words, the bottom side of o1
is at least c vertical units above the top side of o2.

2. Size comparisons between objects: shorter, taller, narrower, and wider predicates define the size
constraints between objects. For example, shorter(o1, o2, c) evaluates to true if and only if object o1 is at
least c vertical units shorter than object o2. Again, the argument c can be omitted.

3. Equality constraints: These predicates establish equal attribute relationships between objects. For example,
xeq(o1, o2) holds if and only if objects o1 and o2 share the same x-position (meaning they are vertically
aligned). Similarly, yeq, weq, and heq predicates ensure that two objects share the same y-position, width, or
height, respectively.
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4. Constraints with constant values: This group of predicates sets specific constraints on an object’s attribute
with a constant value instead of in reference to another object. For example, above_value(o, k) holds if
and only if the y-position of the top-left corner of object o is above (less than) k. Similarly, other predicates
like below_value, right_value, left_value, shorter_value, taller_value, narrower_value,
wider_value, xeq_value, yeq_value, weq_value, and heq_value constrain an object based on given
values.

Complex Relationship. The complex spatial relationship among objects can be defined using logic operators (∧ for
“and”, ∨ for “or”, ¬ for “not”) to connect the set of predicates discussed above. For example, “a cozy brown leather
chair is either completely left or completely right of the black and white striped couch.” can be described as:

type(o1, “chair′′) ∧ property(o1, “cozy′′) ∧ property(o1, “brown′′)∧
type(o2, “couch′′) ∧ property(o2, “black and white striped′′)∧
(cleft(o1, o2) ∨ cright(o1, o2)).

This completes our definition of the propositional design language. While natural language is usually easier to use
than structured languages like ours, it may suffer from ambiguities, which render it difficult to satisfy hard rules.
Nevertheless, we intend to eventually extend our work to consider natural language as well. We leave such effort for
future work.

3 Spatial Reasoning Integrated Generator

SPRING is motivated by the desire to smoothly integrate the handling of implicit preferences from data and explicit
rules from the user to generate high quality design images. SPRING is composed of a perception module, a spatial
reasoning module, and a visual element generation module.

The perception module serves to extract the types and positions of objects already existing in the background image. The
spatial reasoning module decides the spatial position of each object. In our setting, the spatial position is represented
as a bounding box with parameters (x, y, width, height). Here, x, y is the coordinate of the upper-left corner and width,
height represent the width and height of the bounding box. We generate the bounding boxes of each object following an
iterative refinement process, integrating neural network prediction and constraint reasoning. In particular, a recursive
neural network based on GRUs [17] iteratively halves the range of each coordinate. For example, the range of x starts at
the width of the image. In one step, GRU decides whether we should halve the range of x to be the left side or the right
side. Such steps repeat until the range of x is sufficiently small and the middle point is chosen. During this process, a
forward-checking algorithm rules out invalid outputs which violate user specifications. Note that the forward-checking
algorithm fits seamlessly with the GRU, does not need to be trained, and can be edited programmatically without
affecting the operation of the GRU. The decisions made by the GRU take into account both implicit preferences and
explicit rules. During learning, the spatial reasoning module is presented with a set of background images and the
corresponding bounding boxes of various objects in the images and is trained to predict the boxes that match those in the
training set. In this way, GRU learns to meet implicit preferences such as “chairs don’t float in the sky”. The constraint
reasoning tool (forward-checking) embedded in the spatial reasoning module allows SPRING to be transferred to
new constraints not presented in the training set in a zero-shot learning setting. In the third step, the visual element
generation module takes as input the background, the prompt, and location of each object in the form of a layout, and
outputs an image patch which contains the object and can be merged seamlessly into the background image.
3.1 Perception Module
The purpose of the perception module is to extract information about the existing background for the SRM – which
is utilized both in iterative refinement for implicit preference decision-making and forward checking for explicit rule
decision-making. The perception module includes an object detector for existing object prediction and a scene encoder
for scene-level feature extraction. The object detector is implemented with a pre-trained DETR50 [13] object-detection
model trained on the COCO dataset [41], but this can be jointly trained with the spatial reasoning module given a new
dataset. This part of the module predicts the types and locations of existing objects with a reported average precision of
42.0% on the COCO 2017 validation set. This is deemed sufficient for this work, particularly because the user-input step
occurs after scanning, so these predictions can be verified by a human at this time. The objects predicted are encoded
into the SRM hidden state through a deterministic forward pass, but they can also be referenced in the propositional
logic constraint language. A Resnet18 [28] architecture pre-trained on ImageNet [19] is used as the scene encoder,
which is fine-tuned during training as a part of the SRM. The features it encodes are used to instantiate the hidden state
of the SRM, which is updated by that module’s variable encoders and the main GRU itself.
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- Attempt right.
- Check constraints for [25, 50].
    - 25 > 20         C1 is not satisfiable.
- Attempt left.
- Check constraints for [0, 25].
    - 0 < 20         C1 satisfiable.
- Go left.

- Attempt stop.
- Check constraints for [12, 12].
    - 0 < 20         C1 satisfiable.
- stop.

x1 = 12.

<right> 
<left> 

<stop> 
X2
X1

...
[20, 50]
[0, 100]

...
<right> 

<left> 
<stop> 

X2
X1

...
[20, 50]
[0, 50]

...
<right> 

<left> 
<stop> 

X2
X1

...
[20, 50]
[0, 25]

...

C1:   X1 < X2.
C2:   X2 < 51.
C3:   X2 > 19.

Constraints

- Attempt left.
- Check constraints for [0, 50].
    - 0 < 20         C1 satisfiable.
- Go left.

decision scoring range table

Figure 3: Example of forward checking in the SRM. In each step, a decision is sampled based on the probability
distribution predicted by the GRU. A forward-checking procedure checks if the sampled decision leads to constraint
violations. If it leads to, new decisions are sampled from remaining actions until no constraint violations. This process
repeats in generating each decision.

3.2 Spatial Reasoning Module (SRM)

Architecture & Semantics of the SRM. In our setting, the spatial position is represented as a bounding box with
parameters (x, y, width, height). Here, x, y is the coordinate of the upper-left corner and width, height represent the
width and height of the bounding box. The set of these bounding boxes is conventionally known as a “layout” [74]. The
spatial reasoning module takes the input of the background image as well as object identifiers, and outputs a layout.
We use encoder networks to encode both the background image and the object identifier (e.g., object 0, type “chair”)
into high-dimensional vectors. The spatial reasoning module harnesses a Recurrent Neural Net (RNN) structure and
outputs the four coordinates sequentially. This means the SRM draws from the background image, the current object
type, and all previous decisions to produce its next decision in the sequence. Existing objects and their positions from
the perception module are also fed into the network and deterministically to encode them into the hidden state.

The key idea in generating each coordinate is through iterative refinement. The basic unit of the RNN output is the
decision token – a size 4 vector representing a score distribution of three possible decisions and one special start token.
The input at each timestep is the previous timestep’s decision as a one-hot vector. The network outputs at each step a
softmax vector to assign the probability to each token. At the start of calculation, the selected variable is presumed to
be within a given range (e.g. the first object’s x value is between 0 and 100). The actions are to limit the position to be
in the first half of the range (e.g. left: 0 ≤ x < 50), or in the second half of the range (e.g. right: 50 < x ≤ 100), or
to terminate and select the middle value between the current minimum and maximum as the final location (e.g. stop:
x = 50). This produces a sequence of decisions leading to the assignment to the corresponding variable. The sequence
is embodied as a decision string composed of decision tokens. For example, the variable x between 0 and 100 may
be assigned the decision string “left, right, stop”, refining the value to 0 ≤ x < 50 as we choose the left of the range,
then 25 < x < 50 as we choose the right of the range, then x = 37 as we choose the center of the range. Our recurrent
neural network is implemented in the form of GRUs. All contextual data including the background image encoding and
the variable encoding is introduced into the GRU state vector (size 500) by adding to it. Figure 2 shows the processes of
generating two coordinates x1 and y1 using the proposed neural network module, including the encoding at the start of
each variable. See Appendix D for more on our architecture and hyperparameters.

Forward-checking in the SRM. The SRM’s GRU network outputs a decision string for each positional variable by
sampling tokens from the probability distribution output from the iterative refinement process until a conclusive value is
reached. At the beginning of a string, the start token is given as input and the variable encoder adds information to
the GRU state vector. The decisions are sampled based on the probabilities output by the spatial reasoning module.
For example, if the module outputs the scores [left : 75%, right : 5%, stop : 20%], the spatial reasoning module will
select “left” 75% of the time, “right” 5% of the time, and will choose to stop 20% of the time and to choose the middle
value of the current range.

Forward checking is then used to explicitly enforce positional constraints from the users. They can be enforced by
limiting the decisions considered in the sampling process – ensuring that decisions which lead to constraints violation
are ignored. For each decision in the iterative refinement, the algorithm checks that the current value range contains at
least one value assignment which satisfies all constraints. If at least one constraint must be violated, the SRM rewinds
the decision string one token and resamples without the option of the original choice. Our forward checking algorithm
is implemented as a depth first search exploring all future expansions of the decision strings – though many algorithms
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could fit this role. This forward checking process is conducted after each decision made by the GRU to see if constraint
satisfaction is still possible. In our previous example, we may have selected the “left” token first, but then found that no
value in the remaining range for that variable can satisfy all the constraints. We resample this token with new scores
[left : 0%, right : 20%, stop : 80%]. Given this recalculation, the stop token is now the most likely to be chosen. The
process is visualized in Figure 3.

Learning the SRM. Aside from the explicit constraints given by the users, the locations predicted by the SRM should
satisfy implicit preferences such as “toasters are rarely placed on the ground”. The training of SRM uses a dataset
containing background images with a bounding box for each object to be generated. Each object’s location is defined
by the upper left point, as well as the width and height of the bounding box. These variables are converted to decision
strings as described in the previous sections. The training process is a supervised procedure – it trains the spatial
reasoning module to generate bounding boxes (in the form of decision strings) which match those in the training
dataset. This procedure teaches the neural network implicit spatial knowledge including the relative sizes of objects and
their common spatial relationships (toasters go on the counter, televisions might be hung on the wall, etc). We do not
enforce explicit constraints during the training phase. The spatial reasoning module also needs to learn to encode the
background image – extracting important features like the positions of the floor, ceiling, and walls. This is accomplished
by the scene encoder in the perception module. Gradients are back-propagated through the scene encoder network as a
unified model. More information on training can be found in Appendix D. The object detector portion of the perception
module was not utilized during training, as all known existing objects were removed from training set backgrounds.
However, SRM utilizes object-level information when generating designs, as explained in the next paragraph.

During design generation, existing objects perceived in the background image may influence the decisions made by the
SRM. Not only should the user be able to set positional constraints that reference existing objects, but these objects
must be encoded in the neural component of the SRM as well. This is done by making no distinction between objects
that already exist in the background – those predicted by the perception module – and objects that need to be generated
in the scope of the SRM. Each of the existing objects is constrained to their already-known positional values, but they
are still processed through the SRM to update the hidden state. These are processed through the SRM first before new
objects.

3.3 Visual Element Generator (VEG)

The bounding boxes from the spatial reasoning module let us generate each object into the scene using the visual
element generator. The result is a completed scene adhering to the design with all positional constraints guaranteed.
The visual element generation module is sequentially called on each bounding box created by the spatial reasoning
module. We employ state-of-the-art neural generative models for the visual element generation module. Rather than
training our own module, which would necessitate large datasets and significant effort, we opt to adapt and utilize
existing cutting-edge neural models for greater efficiency and adaptability. Our implementation is capable of using
either the reduced and filtered GLIDE [48] diffusion model released by OpenAI or the popular Stable Diffusion model
[54] – more information on the configuration of these models is available in Appendix D. Given a masked image and a
prompt, these networks inpaint the masked areas accordingly. One challenge of any diffusion model is the rare chance
that it will generate the wrong object or no object at all. These inpainting failures are possible, though our method
reduces them as each call is only responsible for a single object placed in a “good” location. Even so, objects that are
painted correctly are guaranteed to follow positional constraints.

4 Related Work

Fast & Slow Thinking. Our work draws inspiration from the fast and slow thinking model described in works from
cognitive psychology. Psychophysiological studies have long supported the concept of dual-process thinking in humans
[59, 42] – in which more deliberate and more intuitive thinking are the result of separate fundamental processes.
System 1 refers to a set of innate and learned automatic processes that are rapid, parallel, and unconscious. System
2 is responsible for abstract and hypothetical thinking and is slower, more deliberate, and more conscious [34, 24].
These concepts hold exciting parallels for the world of AI, which are already being seriously explored [39, 4, 10]. Our
SPRING leverages neural networks for S1 cognition while delegating S2 cognition and planning to constraint reasoning.
In this regard, our work takes inspiration from concepts like fast and slow planning [25], with the notable change that
our system does not utilize any sort of meta-cognition AI-subsystem [26] to regulate between fast and slow thinking
modules explicitly.

Constraint Reasoning & Machine Learning. The integration of constraint reasoning with machine learning has been
a critical aspect of AI research, particularly in the context of deep learning. This integration aims to enhance reasoning
capabilities and improve the performance of learning algorithms. Notable efforts in this domain include incorporating
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Scenario SPRING ⋆ GAN+CVX
Pref. Acc. ↑ Constr. Acc. ↑ Pref. Acc. ↑ Constr. Acc. ↑

“Basic” 1.0 1.0 1.0 1.0
“Tight” 0.917 1.0 0.813 1.0

“Complex” 0.875 1.0 0.723 1.0

Table 2: Results for evaluating “goodness” of location decisions by the SRM when tested on synthetic scenarios. Our
SPRING is able to generate object locations better satisfying implicit preferences from data (measured by preference
accuracy) compared to baselines, while both approaches 100% satisfy constraints. Note, SPRING can also handle
non-convex constraints, while “GAN+CVX” cannot. More details of this experiment are in Appendix E.2. ⋆ indicates
our method.

Method Position Acc. ↑ Object Acc. ↑ IS ↑ FID ↓
Stable Diffusion 0.5 0.63 3.58 162.73
sg2im 0.0 0.0 2.52 NaN
SPRING[SD] ⋆ 1.0 0.77 3.59 160.36

Table 3: Abbreviated quantitative results from 10,000 generated scenes show our SPRING leads in position and object
accuracy as well as Inception Score (IS) and Fréchet Inception Distance (FID) perception scores for visual image
quality. FID statistics were calculated from the COCO 2017 validation set. Position accuracy represents how often
the positional constraints are met. Object accuracy represents how often the correct number and type of objects are
generated and identifiable. An extended table containing more baselines can be found in Appendix B.

"common-sense" reasoning into natural language models [29, 62, 49], case-based reasoning from expert systems [31],
and relational reasoning between objects or terms [57, 38, 50, 72, 22].

Embedded constraint reasoning in machine learning is a promising idea [11, 66, 44, 9, 55], providing a structured way
to incorporate domain knowledge and improve problem-solving capabilities. Convex optimization has been successfully
employed as a neural net layer [12, 1, 3, 2], and other constraint reasoning methods have been integrated into neural
nets for various applications [7, 20, 70, 5, 36, 15, 45]. Often, this integration comes in the form of using data to produce
constraint models. Constraint acquisition enables learning of constraint networks from examples [8, 51, 63]. Other
research investigates the reverse direction, where constraint models are embedded into networks to generate data. For
example, decision diagrams have been successfully integrated into GANs for the purpose of constrained schedule
generation [70], and similar approaches have excelled in other structured prediction tasks such as if-then program
synthesis, text2SQL generation, and vehicle dispatch service planning [32].

Automatic Design. For the reasons previously discussed (addressing user needs and implicit conventions) most design
domains have presented an exciting challenge for AI developers – recent progress has been made in architecture design
[71], computer chip design [35], and biosystems [65]. Automatic interior design problems have been tackled in several
ways previously [16] – including reinforcement learning [67] and conditional image generation [14]. Often, the data
generated for this task is an abstract diagram of an interior space [37, 46, 47], but this approach is hard to visualize
for a user. Other works focus on assisting the interior design process through images like ours [40], offering better
visual qualities but less structure within the data itself. The most exciting methods are text-to-image and graph-to-image
methods, which illustrate the possibilities and challenges of the domain.

Text-to-Image & Graph-to-Image Methods. Large diffusion models like DALL-E [53, 52], GLIDE [48], and Stable
Diffusion [54] have been attracting attention as they can inpaint objects into scenes given a natural language prompt.
These models have been made possible by large online datasets and the combination of transformer [64] and diffusion
[58] technologies. However, they can fail on complex instructions, such as constraining the number and spatial
relationships of objects. Recently, a line of research encodes requirements (such as image contents) into hidden vectors
via graph or recurrent nets [18, 69, 23, 43], and then conditions image generation on these hidden vectors. This includes
sg2im [33], which encodes positional relationships into scene graphs for image generation. However, it struggles with
complex constraints and those not present in training. Other works [73, 21, 27] adapt this approach for image-to-image
problems, using scene graphs as editable latent representations. Also related are layout-to-image approaches [74, 60]
which generate an image from a background and a user-supplied layout, but they require the position of all objects to be
strictly and completely defined by the user.

5 Experiments
Evaluating the performance of SPRING for interior design production involves examining three important aspects of the
algorithm: the accuracy of the Spatial Reasoning Module’s spatial predictions, the ability to consistently meet design
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Figure 4: Example visualizations from SPRING. Constraints are described in text for clarity. They were provided to
SPRING in propositional logic (See Appendix A for logic definitions).

Method Specification
Satisfaction ↑ Aesthetics ↑ Background

Preservation ↑
Spatial

Naturalness ↑
SPRING 4.068 3.367 4.473 3.663
Stable Diffusion 2.240 3.588 2.608 3.876

Table 4: Results for the human survey with two methods: Stable Diffusion and SPRING (ours). Metrics collected
include Likert scores (1-5) for specification satisfaction, aesthetic appeal, background preservation, and the naturalness
of spatial qualities – e.g. proportions between objects, proportions between an object and the background. SPRING
does much better at satisfying user specifications than Stable Diffusion, and is far less likely to damage the background
due to its more controlled inpainting. SPRING receives slightly lower results for aesthetics and naturalness, perhaps
representing a small trade-off between the amount of control provided by the algorithm and its ability to produce
good-looking images.

requirements (i.e., constraints), and the realism of the final images produced by SPRING. It is important to emphasize
that assessing the quality of generated images is a challenging problem in the field, and determining the naturalness of
positions and dimensions, independent of aesthetic quality, is even more difficult. To tackle these challenges, the first
aspect is evaluated using synthetic data scenarios for precise measurement, while the second and third aspects can be
examined using real data and generated backgrounds. In order to address the known issues with more automatic metrics
commonly employed in image generation tasks, a human survey was conducted, providing valuable insights into the
overall performance of the SPRING algorithm. For all experiments, SPRING was trained on a subset of the COCO 2017
Detection dataset relating to interior design. It is difficult to find real-world datasets of background images (containing
few objects) with bounding boxes of the objects to be generated. We instead use datasets of images containing objects
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SPRING[SD] SPRING[GLIDE] Stable Diffusion GLIDE SG2IM

A refrigerator left of an oven and a microwave right and above the same oven.

A microwave, an oven, a toaster, and a sink. The sink is left of and at least partly above the oven, the microwave is right of and
above the oven, and the toaster is below the microwave.

A blue microwave above a black oven.

Figure 5: Comparisons between SPRING (VEG choice in brackets) and baselines on kitchen backgrounds. SPRING
creates distinct objects and always follows positional constraints. Baseline methods produce compelling images, but
rarely fulfill all constraints. They also greatly disrupt the background. Notice how the word “blue” affects the SPRING
and baseline images. SPRING applies blueness to the microwave, while Stable Diffusion and GLIDE apply it to other
parts of the image.

and their corresponding bounding boxes (such as COCO). We remove these objects from the original images using
the Telea method [61]. This lets us train SPRING to place bounding boxes in their most natural positions. This step is
discussed more in Appendix A.2.
5.1 Evaluating Image Quality
Setup. To evaluate the visual quality of the produced images, 10,000 scenes were generated from SPRING and from
baselines using random specifications (see Appendix A.1). These specifications had no constraints on placement
position. SPRING’s performance was compared with Stable Diffusion, and SG2IM, representing text-to-image and
graph-to-image methods, respectively. Another text-to-image baseline – GLIDE – was also compared in extended
testing, which can be found in Appendix B. We employed natural language constraints to inpaint images using Stable
Diffusion and programmatically constructed prompts derived from the same logic as SPRING. Rectangular masks,
centered in the image and featuring a 20-pixel margin around each edge, were used for this process. For SG2IM,
which utilizes scene graphs as input, we converted these from SPRING’s propositional logic without ambiguity. It
is worth noting that during our evaluation, we found that the images generated by SG2IM were of low quality and
displayed minimal variations when given the same scene graph. We maintained consistency with the parameters and
code provided in the original SG2IM paper. After reaching out to the author via GitHub, we learned that the poor image
quality was likely due to mode collapse. Nevertheless, we included these results in our evaluation for a comprehensive
comparison. Background images were generated by the algorithms themselves, increasing the difficulty of the task.
SPRING handles this by using the VEG with the prompt “a clean, empty, living room.” or “a clean, empty, kitchen.”.
Stable Diffusion used the same approach, generating a background before receiving the specification and then inpainting
it to complete the task. As SG2IM inherently generates its own backgrounds, this aspect remains consistent with its
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Figure 6: Images produced by SPRING with generated backgrounds and no positional constraints – only objects are
specified. SPRING’s SRM still finds sensible locations for objects, even in the absence of complex constraints. The list
of objects generated for each image here can be found in Appendix A.3.

usual operation. The primary metrics we collect here are the Inception score (IS) [56] and Fréchet Inception Distance
(FID) [30]. These are measures of the quality and diversity of images from a generative model based on the intermediate
layers of a pre-trained classifier. For IS, higher scores indicate better quality images, while FID scores indicate better
quality with lower scores. FID also requires comparison statistics to a control dataset – in our case, COCO 2017. Both
metrics are known to be volatile and sometimes inaccurate [6]. Once compiled, all images are resized to 1000x1000 to
make a fair comparison (IS and FID scores are effected by image size). Scene Inception Scores are generated using our
bounding boxes to isolate each object and score them independently. More detailed information on experimental setup
can be found in Appendix A.

Results. Interior designs from various background images (collected from across the web, generated and COCO
examples can be found in Appendix B) can be viewed in Figures 4, 5, and 6. These images are qualitatively as good or
superior to baselines, and they are able to satisfy the given constraints. Quantitative results are presented in Table 3.
SPRING received superior scores in both metrics.

5.2 Evaluating Design Adherence

Setup. To evaluate the performance of each method, 20 interior designs were generated using randomly-generated
specifications (see Appendix A.1) and backgrounds from COCO’s test set. Each specification included 3 objects and
4 constraints. The designs were visually inspected by the author, and object accuracy and position accuracy were
measured as follows: Object accuracy. the author counted and classified the objects in each image. If all 3 objects
were visible and identifiable, the image was given a 100% object accuracy. Two identifiable objects resulted in a
67% accuracy, and so on. This score was then averaged across all 20 images to measure the object accuracy of the
method. Position accuracy. for each constraint clause (e.g. the oven is left of the toaster), the author checked whether
the constraint was clearly true within the image. Clauses that referenced images which were not inpainted correctly
(penalized in object accuracy) were not included in this count, only relationships between visible and recognizable
objects. Position accuracy was also averaged across all 20 images to produce our final metrics. SPRING does not
guarantee perfect object accuracy, but improves it by explicitly painting one object at a time in isolation from others.
SPRING does guarantee perfect position accuracy via the forward checking procedure in the SRM.
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Figure 7: SPRING’s zero-shot transfer learning performance on a new constraint atop never present in the training set.
atop constrains an object to be sitting on top of another. This specification applies to all backgrounds which already
have three tables: 0, 1, and 2 from left to right. The flower is always one table to the right of the green fern, showing
good performance of SPRING. More detail on atop and adding constraints zero-shot can be found in Appendix C.

Results. All metrics are presented in Table 3. Stable Diffusion had lower object accuracy than SPRING, and also
showed much worse position accuracy compared to SPRING (50% for Stable Diffusion alone compared to 100% with
SPRING). Identifying objects was not possible with SG2IM hence its accuracy is 0.

5.3 Evaluating Spatial Reasoning

Setup. This experiment assesses how well generated object locations satisfy explicit user specifications and implicit
preferences, which are hard to measure in real-world datasets. We define three synthetic scenarios with known object
location distributions, known to the programmer but not the algorithm. No VEG or perception module is used. We
evaluate preference accuracy as the percentage of generated locations meeting implicit preferences. See Appendix E.2
for scenario specifications. We compare SPRING planning with a GAN augmented with a convex optimization layer
(details are discussed in Appendix E.1), which also combines reasoning and deep learning but has a less rich constraint
set. Both methods are trained on each scenario until convergence, and each dataset is matched with a set of constraints
during testing.

Results. As shown in Table 2, the SRM formulation SPRING uses outperformed or matched GAN + CVX in preference
accuracy for every dataset. Both algorithms guarantee positional constraints, but GAN + CVX only does this with
convex constraints.

5.4 Human Study

Setup. In this study, we compared our SPRING method and Stable Diffusion inpainting for generating interior space
images, like kitchens, living rooms, and billiard rooms. Participants were provided with a background image, a
completed scene, and a bullet-pointed specification used to generate the image. Additionally, questions with images
generated by SPRING displayed the intermediate layout. Background images were generated using the methods
described previously. Constraints were handcrafted by the authors to fit the background.

Participants were asked to rate each image on a 5-point Likert scale across four distinct metrics: specification satisfaction,
aesthetic appeal, background preservation, spatial naturalness. For specification satisfaction, they assessed how well
the image adhered to the specifications, including object visibility, constraint satisfaction, and details such as color,
texture, and material. Aesthetic appeal evaluated the overall quality of the image, regardless of its adherence to the
prompt. Background preservation required participants to consider how well the original background was maintained
without unnecessary alterations or damage. Lastly, spatial naturalness considered the proportions between objects, the
proportions between an object and the background, and the natural placement of objects for their respective types. More
details on the study can be found in Appendix F.

Results. The averaged results are presented in Table 4. Our findings indicate that SPRING nearly matches the aesthetic
quality and spatial naturalness of Stable Diffusion, as anticipated. Furthermore, SPRING significantly outperforms
Stable Diffusion in terms of specification satisfaction and background preservation. These results demonstrate the
effectiveness of the SPRING method for generating high-quality interior space images that adhere closely to the
provided specifications while maintaining the integrity of the original background.
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6 Conclusion
In this work, we introduced SPRING for design production. Good designs must meet specific user requirements and
comply with implicit guidelines on appearance and functionality. We achieve this by integrating neural generative
models with constraint reasoning. The object positions suggested by the neural network are filtered through constraint
reasoning-based forward checking to meet user specifications. Our SPRING produces high-quality interior design
scenes that respect user-defined spatial requirements, satisfy common sense and look pleasing. Our approach also
handles new constraint types in a zero-shot manner due to the forward checker’s programmability. It is also more
interpretable as decisions are made iteratively. The main limitation of our work is the dependence on the VEG model’s
quality and compatibility for object generation. Future work will focus on enhancing control between the SRM and
VEG and adapting to other domains, such as 3D design.
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A General Additional Experiment Details

A.1 How Random Specifications Were Generated

In order to conduct fair evaluations in sections 5.1 and 5.2, user specifications were generated randomly using the
following procedure. For ease of generation, only the constraints cleft, cright, cabove, and cbelow could be sampled.
Possible object types were selected based on the room being generated – chair, couch, potted plant, dining table, and
television for living rooms; microwave, oven, toaster, refrigerator, and potted plant for kitchens. A requested number of
objects and constraints were selected for each scene, with replacement, and each specification generated was checked
to ensure it was satisfiable. Additionally, natural language prompts were generated programmatically for use with
the Stable Diffusion and GLIDE baselines. These prompts listed all objects and defined each constraint, for example,
"An oven, a refrigerator, and a toaster. The toaster is left of the oven. The refrigerator is above the oven. . . ". These
specifications were also logged as scene graphs for use by SG2IM. The conversion from our language to scene graphs
was done without ambiguity or information loss.

A.2 Using the COCO Dataset

As previously stated in the main text, the COCO 2017 Detection dataset was utilized to train SPRING. It is also utilized
in the extended evaluation below. To ensure that the dataset was focused on interior design, only images including
one or more of the following categories were included: chair, couch, potted plant, bed, mirror, dining table, window,
desk, toilet, door, tv, microwave, oven, toaster, sink, refrigerator, or blender. In order to train SPRING in a supervised
manner, it was necessary to remove these objects from the images, leaving only the empty backgrounds and bounding
box annotations. To accomplish this, various methods were tested with the goal of achieving visually pleasing results
while also being efficient as numerous images needed to be processed. The Telea method was ultimately selected as
it uses an image’s gradient information to guide the inpainting process, resulting in visually plausible results. The
algorithm works by first defining the region to be removed, and then using an iterative algorithm to fill in the region with
a combination of the pixels surrounding the hole and the image’s gradient information. The filtered and Telea-processed
version of the dataset will be made available at the time of publication to aid in reproducibility.

A.3 Logical Language Translation

The logical instructions to generate the figures in this work is given in Table 5. Note the relation default, which
combines a number of default constraints used on all objects to fit the limitations of the VEG module. For the Stable
Diffusion figures, the objects are set to have a width and height between 256 and 512 pixels. Additionally, the bounding
boxes for these objects are constrained such that they do not extend beyond the boundaries of the image. For the GLIDE
figures, the same default constraints are used, with the exception that the objects are bounded between 150 and 256
pixels. This does not include Figure 6, which has its objects described for each image in Table 6 – as that figure does
not include positional constraints beyond the default.
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Logic Language Natural Language
type(0,"oven") ∧
property(0,"a modern looking oven") ∧
default(0) ∧
right_value(0, 400)

Add a modern looking oven in the middle or right side.

# 0: a microwave, 1: an oven.
type(2,"toaster") ∧ type(3,"plant") ∧
property(2,"a retro toaster oven") ∧
property(3,"a potted potato plant") ∧
default(2) ∧ default(3) ∧
xeq(2,0) ∧ yeq(2,0) ∧
wider(2,0) ∧ taller(2,0) ∧
cbelow(3,0) above(3,1)

Replace the microwave with a retro toaster oven
and add a potted potato plant fully below the toaster oven
and at least partly above the oven.

# 0: a chair.
type(1,"chair") ∧ type(2,"table") ∧
property(1,"a dark colored leather chair") ∧
property(2,"a wooden table") ∧
default(1) ∧ default(2) ∧
cleft(1,0,300) ∧ below(2,1) ∧
below(2,0) ∧ left(2,0) ∧ right(2,1,100)

Add a dark colored leather chair
fully left of the white chair,
and a wooden table between and below them.

type(0,"tv") ∧ type(1,"couch") ∧ type(2,"chair") ∧
property(0,"a flat screen tv") ∧
property(1,"a couch facing left") ∧
property(2,"a chair") ∧
default(0) ∧ default(1) ∧ default(2) ∧
left_value(0,150) ∧
cright(1,0) ∧ cright(2,0) ∧ cabove(2,1)

Add a flat screen TV in the left 15% of the image.
Also add a red chair and a couch right of the TV,
where the chair is above the couch.

# 0: a tv.
type(1,"chair") ∧ type(2,"couch") ∧ type(3,"chair") ∧
property(1,"a red chair facing away") ∧
property(2,"a couch facing away") ∧
property(3,"a blue chair facing away") ∧
default(1) ∧ default(2) ∧ default(3) ∧
cbelow(1,0) ∧ yeq(2,1) ∧ yeq(3,1) ∧
cleft(1,2) ∧ cleft(2,3)

Add a blue chair, a couch, and a red chair,
left to right, all under the TV.

type(0,"microwave") ∧ type(1,"oven") ∧
property(0,"a blue microwave") ∧
property(1,"a black oven") ∧
default(0) ∧ default(1) ∧
cabove(0, 1)

A blue microwave above a black oven.

type(0,"microwave") ∧ type(1,"oven") ∧ type(2,"refrigerator") ∧
default(0) ∧ default(1) ∧ default(2) ∧
cleft(2,1) ∧ cright(0,1) ∧ cabove(0,1)

A refrigerator left of an oven
and a microwave right and above the same oven.

# 0: a sink, 1: an oven.
type(2,"microwave") ∧ type(3,"toaster") ∧
property(2,"a blue microwave") ∧
property(3,"a green toaster") ∧
default(2) ∧ default(3) ∧
cright(2,1) ∧ cleft(3,1) ∧ cbelow(3,0)

Add a blue microwave right of the oven,
and a green toaster left of the oven and below the sink.

Table 5: The logic formulations used for figures in this work with accompanying descriptive text. ‘#’ comments
represent objects that were detected by the perception module and incorporated.
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microwave, potted plant
microwave, plant
microwave, oven
toaster, plant
toaster, plant
couch, table
chair, table
plant, chair
couch, table
couch, tv
chair, plant, table
chair, table
couch, chair, plant
couch, chair, table,
chair, table
microwave, refrigerator
microwave, refrigerator, oven
refrigerator, microwave
oven, toaster, toaster
microwave, refrigerator, toaster
toaster, oven, refrigerator
plant, tv, table
plant, couch
chair, table
couch, tv, plant
refrigerator, refrigerator, oven
sink, toaster, microwave
sink, toaster, oven
microwave, microwave, oven
microwave, toaster
microwave, refrigerator, refrigerator
plant, couch, table
couch, chair, table
chair, table
chair, chair, table
oven, refrigerator, microwave
microwave, oven, refrigerator
oven, plant,
couch, couch, table
couch, chair

Table 6: Objects generated for Figure 6, listed from top left to bottom right. These images do not contain positional
constraints, and show that the SPRING’s spatial reasoning module can provide good locations for objects even without
human planning and closely tailored specifications.
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Figure 8: A closer look at some of the images generated for Figures 1 and 2. Note that the background is minimally
disturbed. Also note that, while the microwave can be anywhere right of the oven, it is placed in a reasonable place – on
the counter or built into the cabinets.

B Extended Image Quality Experimental Details
This section provides an extended analysis of our experimental results, including evaluation on additional real images
from the COCO dataset and generated images. Moreover, we also test GLIDE as a baseline and as a backbone for
SPRING’s VEG module, both for its performance and in comparison to Stable Diffusion.

B.1 Additional Evaluation Sets
In addition to our primary experiment, we conducted evaluations on smaller sets that included both real images from the
COCO dataset and generated images. We tested GLIDE, which shares a similar structure to Stable Diffusion, alongside
the latter. GLIDE was not included in the main experimental section due to computational resource constraints (our
SRM and perception modules run very quickly, usually under 1 second, but diffusion models take a long time to run
even during inference) and space limitations. As Stable Diffusion has been fully released, we opted to use it in our main
experiments, whereas GLIDE is only available through its "reduced and filtered" version.

For the extended evaluations, we generated 100 images per method and tested 100 random kitchen images from the
COCO dataset. This is not ideal for the metrics calculated, but the primary experiment addresses that with far more
images at the cost of significant resource usage. We also tested GLIDE both as a standalone baseline and as a backbone
for SPRING’s VEG module.

B.2 Impact of VEG Choice on Accuracy
Our results show that SPRING achieved perfect position accuracy regardless of the VEG choice. This makes sense as
position accuracy is determined almost solely by the Spatial Reasoning Module, which guarantees constraint satisfaction
through the forward checker. However, the VEG choice did affect object accuracy due to the possibility of inpaint
failures. The Stable Diffusion-based VEG had significantly fewer inpaint failures than the GLIDE-based VEG.

B.3 Scene Inception Score
We calculated the Scene Inception score (ScIS) [60] for SPRING, a metric that measures the quality of individual
objects in the generated scenes. This metric was not easily calculated for other methods, as it requires measuring objects
in isolation. SPRING’s convenient layouts made it feasible to calculate ScIS, while it was more challenging for the
other tested methods.

Method Position
Accuracy ↑

Object
Accuracy ↑ Real BG Gen BG

IS ↑ ScIS ↑ IS ↑ ScIS ↑
Stable Diffusion 0.5 0.63 2.45 n/a 2.54 n/a
GLIDE 0.24 0.35 2.83 n/a 2.56 n/a
sg2im 0.0 0.0 n/a n/a 3.28 n/a
SPRING[SD] ⋆ 1.0 0.77 3.50 4.75 2.40 4.56
SPRING[G] ⋆ 1.0 0.46 3.33 5.31 2.08 4.80

Table 7: Quantitative results on the COCO dataset. Inception Score (IS) and Scene Inception Score (ScIS) indicate
image quality. Position accuracy represents how often the positional constraints are met. Object accuracy represents
how often the correct number and type of objects are generated and identifiable. Our SPRING has comparable scores in
image quality with the state of the art (IS and ScIS), while satisfying constraints (high position and object accuracies).

20



Spatial Reasoning in Neural Generative Models for Design Production A PREPRINT

B.4 Extended Results
Table 7 provides an overview of the extended results, including position accuracy, object accuracy, and inception
scores (IS) for both real and generated backgrounds. ScIS scores are also included where applicable. SPRING with
Stable Diffusion (SPRING[SD]) achieved the best overall results, with perfect position accuracy and the highest object
accuracy. The Inception scores for real backgrounds were also superior compared to other methods, while the generated
background results were competitive with other approaches. SG2IM receives a much higher result than expected for
generated background inception scoring. However, this is likely only due to the small testing set, as this advantage
drops away in the primary experiment, which uses 10,000 generated examples. SPRING with GLIDE (SPRING[G])
also demonstrated perfect position accuracy, but had lower object accuracy due to more frequent inpaint failures.

C Demonstrating Zero-shot Constraint Satisfaction
Our approach allows for re-programming of the forward checker for zero-shot constraint editing. New constraints can
be implemented and used in filtering the GRU outputs of the SRM at any time, even after training. To demonstrate
this capability, we construct a new constraint type after training SPRING. We define this constraint as atop(o1, o2) –
which constrains the first object’s bounding box (o1) to be on top of the first object’s bounding box (o2). More precisely,
atop evaluates to true if and only if:

• the bottom of the first object’s bounding box is between the top and the bottom of the second object’s bounding
box.

• the right side of the first object’s bounding box is between the right and left sides of the second object’s
bounding box.

• the top of the first object’s bounding box is above the top of the second object’s bounding box.

By combining this new constraint with the previous language set, very complex specifications can be produced. In
Figure 7 in the main text, atop is used to define a complex specification utilizing the perception module to create a
design which can be applied to any background including three tables. A flower and a fern are to be placed in the image.
The flower is always one table to the right of the green fern (e.g. if the fern is on the middle table, the flower is on
the right table, and if the fern is on the left table, the flower is on the middle table). As demonstrated in that figure,
specifications can be automatically applied to entire sets of backgrounds, and produce diverse and complex images
through use of zero-shot constrains.

D Architectures, Training, and Hyperparameters

Figure 9: The recurrent network (left), scene encoder (center), and variable encoder (right) of the spatial reasoning net.
These networks together allow our method to make sequential decisions on the position of objects in the design.
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D.1 Architectures
SPRING is composed of a perception module, a spatial reasoning module, and a visual element generator. The object
detector network within the perception module as well as the VEG both make use of pre-trained and pre-defined
modules from other papers, so this section will focus on the spatial reasoning module. The primary network of the
SRM is made up of 3 gated recurrent units followed by a dense layer, and a Softmax activated output layer. GRUs
use a hidden state to preserve information across time, and manage that information using internal reset and update
gates. This hidden state is initialized from a vector produced by the scene encoder. The scene encoder is a pretrained
ResNet18 backbone augmented with a dense layer. The purpose of this network is to extract features from the scene as
a whole. The hidden state is also updated by a simple variable encoder, which produces a vector for each positional
variable of each object to let the GRUs know that a new object or variable has started, and to encode the object class
and variable type.

D.2 Training
In training the SRM, much work went into deciding a training strategy. It is accomplished through teacher forcing
[68]. In teacher forcing, the ground truth decision token from the previous step drawn from the training set is used as
the input to train the RNN to predict the decision of the current step. Teacher forcing can drastically speed up RNN
training, but can also result in lower resilience to uncommon sequences. For this reason, a mixture of strategies – with
and without teacher forcing – is used to train the model. 50% of the time the input of the RNN is set by teacher forcing
and 50% set by the predictions of the RNN itself. We also randomize the order of the objects in the decision string
during training. SPRING was trained with a learning rate of 0.0001 and a batch size of 8 for 100 epochs. Instead of
training on pixel values, SPRING was trained on a relative system of per mille (parts per thousand). This allows the
network to operate using the same parameters on multiple image sizes, but restricts precision slightly.

E Evaluating Spatial Reasoning Details
E.1 GAN + CVX Baseline
Automated convex optimization is a powerful technique for solving optimization problems where the goal is to find
the minimum or maximum value of a given convex function. In this method, a variety of efficient solvers are used
to find the optimal solution, as long as all the constraints and the function to be optimized are convex. With recent
advancements in the field, these solvers can be easily integrated into neural networks, allowing gradients to propagate
through the solver seamlessly.

The GAN + CVX approach relies on this concept. In short, this method is accomplished by creating a GAN which
outputs a set of parabolas – one for each positional variable – such that the neural net’s "best guess" for a location is
at the vertex. Then the convex optimizer finds the optimal value of the sum of parabolas subject to constraints. If a
preferred value is not ruled-out by a constraint, the minimum of that variable’s parabola will be selected. If it is ruled
out, the result will be as close as possible to it. These constraints must be convex, which limits the library of possible
constraints.

E.2 Synthetic Scenarios
In this test, we compare the performance of the spatial reasoning module alone to a generative adversarial network
equipped with convex optimization as an embedded layer. We will evaluate each model’s ability to meet both explicit
constraints from the user and implicit preferences derived from the training data. The test scenarios will involve
generating synthetic data for each object type, with the data distribution designed to express a strong preference for
specific values. A range of common values for each preference will be established as acceptable, with values outside
this range considered as not meeting the preference. The use of synthetic data is necessary as it allows us to know
the acceptable range for each preference, which is not possible with real data. Both the spatial reasoning module and
the GAN + CVX baseline will be trained on this preference-laden data, and then evaluated on their ability to satisfy
constraints and preferences. The preference accuracies will be reported as the percentage of clauses that are satisfied.

The test includes three scenarios, each with specific data generation functions and acceptable preference ranges. The
first scenario, "basic," involves objects with a higher likelihood of being generated on opposite halves of the image.
The second scenario, "tight," has objects with specific width and height ratios with stricter acceptable ranges. The
third scenario, "complex," has multiple preferences, such as object 1 being at least 1.5 times taller than its width, and
object 2 having a specific y-coordinate value dependent on that of object 1. These scenarios demonstrate that the SRM’s
preference learning is effective and outperforms other methods such as GAN + CVX.

Two random functions were used to compose the synthetic datasets. rnd(j, k) randomly generates an integer between
j and k from a normal distribution with mean j + k−j

2 and standard deviation k−j
12 . Selected values are rounded, and

22



Spatial Reasoning in Neural Generative Models for Design Production A PREPRINT

constrained between j and k. For example, if object 1’s x value is drawn from rnd(1, 500), then the mean of x will be
250.5 and the standard deviation will be 41.583. uni(j, k) does the same with a uniform distribution between j and k.

The following sections include preference ranges (under “checked preferences”) for each scenario. The preference
accuracy is measured as a percentage of correctly satisfied clauses across 256 generated examples. The object associated
with each variable is indicated in the subscript (e.g. 1 ≤ xo1 ≤ 500 asserts that the x value of object 1 must be between
0 and 500 to satisfy the preference).

E.2.1 Basic Scenario
Object x y width (w) height (h)
1 rnd(1,500) uni(400, 550) rnd(192,256) rnd(128,256)
2 rnd(500,1000) uni(400, 550) rnd(192,256) rnd(128,256)

Checked preferences:

• 1 ≤ xo1 ≤ 500

• 500 ≤ xo2 ≤ 1000

E.2.2 Tight Scenario
Object x y width (w) height (h)
1 rnd(1,1000) rnd(300,700) rnd(220,256) rnd(120,150)
2 rnd(1,1000) rnd(300,700) rnd(120,150) rnd(120,150)
3 rnd(1,1000) rnd(300,700) rnd(120,150) rnd(220,256)

Checked preferences:

• 220 ≤ wo1 ≤ 256

• 120 ≤ wo2 ≤ 150

• 120 ≤ wo3 ≤ 150

• 120 ≤ ho1 ≤ 150

• 120 ≤ ho2 ≤ 150

• 220 ≤ ho3 ≤ 256

E.2.3 Complex Scenario
Object x y width (w) height (h)
1 rnd(1,1050) rnd(375,565) rnd(64, 128) rnd(wo1 × 1.5,200)
2 rnd(1,1050) rnd(yo1 − 10,yo1 + 10) rnd(64, 128) rnd(wo2 × 1.5,200)
3 rnd(1,900) rnd(1,144) rnd(64, 128) rnd(wo3 × 2,wo3 × 2)
4 rnd(1,1050) rnd(400,665) rnd(64, 128) rnd(wo4 − 10,wo4 + 10)

Checked preferences:

• 1 ≤ xo1 ≤ 1050

• 1 ≤ xo2 ≤ 1050

• 1 ≤ xo3 ≤ 900

• 1 ≤ xo4 ≤ 1050

• 375 ≤ yo1 ≤ 565

• yo1 − 10 ≤ yo2 ≤ yo1 + 10

• 1 ≤ yo3 ≤ 144

• 400 ≤ yo4 ≤ 665

• 64 ≤ wo1 ≤ 128

• 64 ≤ wo2 ≤ 128

• 64 ≤ wo3 ≤ 128

• 64 ≤ wo4 ≤ 128

• wo1 × 1.5 ≤ ho1 ≤ 200

• wo2 × 1.5 ≤ ho2 ≤ 200

• wo3 × 2 ≤ ho3 ≤ wo3 × 2

• wo4 − 10 ≤ ho4 ≤ wo4 + 10

F Human Study Details
This section presents the details of the human study conducted to evaluate the performance of our SPRING method and
Stable Diffusion inpainting for generating interior space images, such as kitchens, living rooms, and billiard rooms. We
decided to conduct this study due to the difficulty of evaluating generated content for qualities like aesthetic appeal.
Despite the existence of metrics like IS and FID, human studies remain the gold standard in generated image evaluation.
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F.1 Study Setup
Participants were provided with a background image, a completed scene, and a bullet-pointed representation of the
specification used to generate the image. Additionally, questions with images generated by SPRING displayed the
intermediate layout. Background images were generated using the methods described in the main paper. Constraints
were handcrafted by the authors to fit the background. This was done to produce the highest quality images possible for
both algorithms, evaluating them in good conditions.

F.2 Evaluation Metrics
Participants were asked to rate each image on a 5-point Likert scale across four distinct metrics: specification satisfaction,
aesthetic appeal, background preservation, and spatial naturalness.

• Specification satisfaction: Participants assessed how well the image adhered to the specifications, including
object visibility, constraint satisfaction, and details such as color, texture, and material. The question read
“On a scale of 1 to 5, how well does the image fit the prompt? This includes the objects being visible, the
constraints being satisfied, and the details mentioned in the prompts (e.g. objects being the right color). Do not
take image quality into account”.

• Aesthetic appeal: Participants evaluated the overall quality of the image, regardless of its adherence to the
prompt. The question read “On a scale of 1 to 5, rate the aesthetic quality of the image. This includes how
realistic the image is, how good each object looks, and how good the scene as a whole looks. Do not take the
prompt into account”.

• Background preservation: Participants considered how well the original background was maintained without
unnecessary alterations or damage. The question read “On a scale of 1 to 5, rate how well the background
image was preserved. This includes unnecessary changes being made to the background not specified by the
prompt, additional objects being added, details being unnecessarily removed, etc”.

• Spatial naturalness: Participants assessed the proportions between objects, the proportions between an object
and the background, and the natural placement of objects for their respective types. The question read “On a
scale of 1 to 5, how reasonable are the locations and dimensions of the objects in the image”.

F.3 Questionnaire Structure
The questionnaire included 3–4 sections, with versions 1 and 2 having three sections and version 3 having four sections.
Versions were randomly assigned to each participant. Each section contained six examples generated by both SPRING
and Stable Diffusion, using the same constraints and backgrounds. To ensure the validity of the responses, two attention
check / gold-standard questions were incorporated into each version of the questionnaire. A total of 9 subjects, who did
not violate the attention check questions, participated in the survey.

The specification satisfaction part is a multifaceted question involving some objectivity (are the positional constraints
satisfied, are the right number of images displayed) and some subjectivity (do the objects look like the types they are
supposed to be, do they have the right texture or material). For this reason, the specification satisfaction Likert score
is preceded by two questions where the subject is asked to check the boxes for the objects that are not visible and
the constraints that are not satisfied. This means the subject is forced to recognize the objective parts of specification
satisfaction before taking into account the subjective ones.

F.4 Initial Tutorial
Before the test could be completed, an initial tutorial was provided to the participants. A real image was presented, and
the subjects were asked to fill out the questions in the same way as they would in the main study. After completing the
example, the subject was given example answers so that they could check their understanding of the directions before
they began the test.

F.5 Demographics
The study included participants with diverse backgrounds to ensure a comprehensive evaluation. All subjects were
college graduates with degrees in science or technology fields. Most participants had some knowledge and familiarity
with generative models or AI-generated content. All subjects are currently living in the United States of America, but
have diverse countries of origin. All subjects understand the English language to an advanced degree, but for some, it is
a second or third language. No subjects are known to have experience in interior design. Roughly half of the subjects
are currently pursuing careers in academia, while the other half are pursuing careers in industry.
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