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. We describe an autonomous Artificial Intelligence (Al) system to ‘ * We use convolutional neural networks (CNNSs) to learn pr.ogressively .r@cher _ ﬁ v = Z‘iiits

analyze burns using multiple modalities including ultrasound o features from the data and then use these features to train task-specific / . S

and RGB images. ; : networks. _ o 1 | -
. We assess the system’s ability to predict burn depth and -  Pre-trained models are usgql as a base, and then finetuned to our task. This concat @)~ | | o ;3;;2;;;;:;;

relative surface area. ey reduces the number of training samples needed. N = t | (e
. Classification is implemented as a deep convolutional network : « We further enhance our classifier using traditional computer vision features - | it

(GLCM texture) that have been shown to be effective on ultrasound data. ] Il v2 A | T - 25%

that makes use of GLCM texture featuresy,.

« Segmentation for burn area prediction is accomplished using a
modified U-net convolutional autoencoder.

« Classification results are further visualized and explained via a
LIME-based,, Explainable Al (XAl) subsystem. This information
is used to improve the system’s accuracy and reliability.

« We make use of a human-in-the-loop system that utilizes explainable Al to
improve our prediction models and verify our results.

Our classification model. This makes use of a pre-trained ResNet34 Output information after classification and explanation. Blue
component modified with dropout to reduce overfitting to our small ~ features in heatmap indicate support for prediction. Red features
dataset. GLCM texture features are extracted and included as indicate contradiction of prediction.

features in the final stage of the classifier.
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XAl algorithms can be split into global and local — explaining a _ _ X Conv Block T
whole model or a single data point prediction — or into * Explainable Al (XA|_) Is often us_eq to Conv Block Conv Block
model/algorithm agnostic and specific. understand and validate Al decision- i Conv Block
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Subdermal tissues Sy - convolutional block is composed of a 2D

convolutional layer, a batch normalization,
and a ReLU activation. The final block omits
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No burn Superficial burn Partial burn Full burn the normalization and activation.
Segmentation Results
: Stock U-Net Custom U-Net
ReS u l tS SUEATE (Mean, Stddev) (Mean, Stddev) Data
Global Accurac 0.783 0.033 0.872 0.008 . : - -
Burn Image Target Prediction . Classify burn wounds with a mean accuracy greater than 90%. Y In-vivo B-mode”ultrasclzund SIe) LSS Dojpipl(elr EEfing
Segment burn wounds with a mean global accuracy greater than loU 0.664 0.041 0.784 0.012 (TDI) scans collected from porcine subjects.

« The GE Logiq E9 device was used to generate HUSD
B-mode and Tissue Doppler elastography Imaging
videos simultaneously.

 RGB images for segmentation were manually collected

0.87, and a mean intersection-over-union (loU) score of ~O.
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: Classification Results at 3 Time Points Classification Results Algorithm Comparison

1 Features One frame of B-mode ultrasound data (left) and from Google Images, and hand-annotated with the
Days Accuracy Precision Recall - Method (img, tex) Accuracy Precision Recall F1 Score the corresponding TDI data (right). supervision of clinicians.
core Img, tex
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