AN IMPROVED GENERATIONAL COPYING GARBAGE COLLECTOR

A Thesis
Submitted to the Faculty
of
Purdue University
by

Philip McGachey

In Partial Fulfillment of the
Requirements for the Degree
of

Master of Science

December 2005



To my parents, for all their support and encouragement dveyears.



ACKNOWLEDGMENTS

Thanks go to my advisor, Tony Hosking, whose particular drahcheerful advice
and guidance helped immeasurably during the preparatighi®tthesis. Many thanks
also to my committee, Jan Vitek and Suresh Jagannathan.

My gratitude goes also to Steve Blackburn, Daniel Framptwh Robin Garner for
their work on MMTk, as well as their advice on the details ofplementation. Their
experience and eagerness to help greatly eased the impkaimoarof this work.

Finally, special thanks to Adam Welc, upon whose originabidhis work was based.
His additional input both in discussions concerning thelengentation details and in our

late night “strategy meetings” has been invaluable.



TABLE OF CONTENTS

LISTOFFIGURES . . . . . . . ..
ABSTRACT . . . e

1

Introduction . . . . . ..
1.1 Garbage Collection. . . . . . . ... .. .. ... ... .. ... ..
1.2 ANewAlgorithm . . . . . ... ..
1.3 SummaryOfResults. . . . . . ... ... ... ... ...
1.4 Outline. . . . . . .
Background . . . . ...
2.1 Uniprocessor Tracing Garbage Collection . . . . . . . .. ... ...
2.1.1 Motivation. . . . . . ...
2.1.2 TracingCollectors . . . . . . .. ... ... ... ... .. ..
2.1.3 Markand Sweep Collectors. . . . . ... ... ... ... ...
2.1.4 CopyingCollectors. . . . . . ... ... ... ... ... ..
2.1.5 Mark and Compact Collectors. . . . . . . ... ... ... ..
2.2 Reference Chaining . . . . .. .. ... ... ... ... .......
2.2.1 Generational Collectors . . . . . . .. ... ... ... ....
2.3 Appel's Generational Copying Collector. . . . . . .. ... ... ...
2.3.1 Heaplayout . . . ... ... ... ... ...
2.3.2 MinorCollections. . . . . ... ...
2.3.3 MajorCollections. . . . . .. ... ...
24 JikesRVMand MMTK . . . . . . .. ... ... ...
2.4.1 Javalanguage Extensions . . . . ... ... ... .. ....
2.4.2 Compilation Framework . . . . . . .. .. ... ... ... ..
243 MMTkDesign. . . . .. ... ... . ... ...



Page

3 An Improved Generational Copying Collector. . . . . . . ... .. ... .. 20
3.1 Motivation. . . . . ... 20
3.2 Algorithm Overview. . . . . . . . . . ... ... ... 21
3.3 Fallback Technique. . . . . . . . ... ... ... ... .. ... 21
34 RelatedWork . . . . . . ... 22
4 Implementation . . . . . ... 26
4.1 Heaplayout . . . . . .. . ... 26
4.1.1 BootandImmortal Spaces. . . . . .. ... ... ... ... 27

4.1.2 LargeObjectSpace . . . . . ... ... ... ... ..., 27

4.1.3 MatureSpace. . . . . . ... 27

4.1.4 NurserySpace . . . . . . . . .. 28

4.2 TriggeringCompaction. . . . . . . . ... ... 28
4.3 MarkStage . . . . . . . ... 28
4.4 Scanning. . . . ... 29
4.5 Compaction. . . . . . ... 31
4.6 BlockCopy . . . . . . . . . 32
5 Experiments. . . . . . .. 34
51 Platform. . . . .. ... 34
5.2 Benchmarks. . . . . . ... 34
53 Metrics. . . . . . 35
5.3.1 Methodology . . . . ... ... ... ... 35

5.3.2 Traditional Collectors. . . . . . ... ... ... ... ... . 35

5.3.3 \Variable CopyReserve. . . . . . ... ... ... ... .. .. 36

5.3.4 \VariableHeap Size. . . . . . ... ... ... 36

54 Results. . . . . . 37
541 201compress . . . . . ... 37

542 202J€SS. . . . .. 41

543 209db . ... ... 45



Vi

Page

544 213javac. . . . . . ..o 49

545 228jack . ... ... 54

55 SummaryofResults . . . . . ... ... 58

6 Conclusions. . . . . . . . .. 59
6.1 Summary . . . ... 59
6.2 CopyReserveSize. . . . . . . . . ... ... 59
6.3 MutatorEffects . . . . . . . ... 60
6.4 Future Work. . . . . . . . ... 61

LISTOFREFERENCES . . . . . . . . . .. o o 62



Vii

LIST OF FIGURES

Figure Page
2.1 Semispace copyingcollector. . . . . .. ... ... L. 7
2.2 Jonkers chaining algorithm. . . . . . .. .. ..o 11
2.3 Heap layoutin an Appel-style collector . . . . . . ... .. ... ... 15
2.4 Minor collection in an Appel-style collectar. . . . . . . .. ... ... 16
2.5 Major collection in an Appel-style collectar. . . . . . . .. ... ... 17
3.1 Compactingcollection . . . . . .. ... ... ... L. 22
3.2 Reducing survival rate through nepotism. . . . . .. ... ... ... 24
4.1 Generational copy/compact collector’'s heap layout . . . . . . . . .. 26
4.2 Creation of danglingreference. . . . . . . . ... ... ... .. ... 30
5.1 201COMPress. . . . . . . . 38
5.2 _201lcompresswith30Mbheap . . . .. . .. .. ... ... ... ... 40
53 202JeSS. . . . . 42
54 202jesswith22Mbheap. . . . . . . .. ... 44
55 209db . ... 46
56 _209dbwith38Mbheap . ... ... ... ... .. ... ....... 48
57 213javac . . . . ... 50
5.8 _213javacwith36Mbheap. . . . . ... ... ... ... ... .. 51
59 _213javacwith74Mbheap. . . . . . .. ... ... ... ... ... 53
510 228jack. . . . . .. 56

5.11 213javacwith36Mbheap. . . . . . .. ... ... ... ... ... 57



viii

ABSTRACT

McGachey, Philip. M.S., Purdue University, December, 2005Improved Generational
Copying Garbage Collector. Major Professor: Antony Hogkin

Garbage collection frees the programmer from the respiitgibf tracking dynam-
ically allocated memory. As an increasingly popular eletm@modern programming
languages, it is essential that garbage collection be peeo efficiently. This thesis in-
vestigates a new method by which garbage collection can therped.

The algorithm described combines a standard generatiapgirtg collector with a
mark and compact collector. The result is a generationafingpcollector that operates
with a smaller copying reserve overhead than traditiongbestyle collectors, while
maintaining correctness in the worst case. When sufficibjgiots survive a collection, a
compacting collection ensures that all data are accomraddat

We have implemented this new algorithm within the framewofklikes RVM and
MMTK. For most benchmarks examined, our experiments shaw@rformance is com-

parable or better to a standard generational copying ¢ollec



1 INTRODUCTION

The run time performance of a generational copying garbagkector can be improved

by reducing the size of the copy reserve

The recent popularity of managed languages such as Javatanav€ led to a great deal
of research into the performance of runtime systems. A maanponent of any such
environment is the garbage collector. This document ptesemew technique through

which garbage collection performance can be improved.

1.1 Garbage Collection

Garbage collection is the method by which dynamically ated memory is automat-
ically reclaimed. Programming languages with garbagesctitin free the programmer
from the responsibility of tracking memory allocation, nrakcode simpler to write. As
well as reducing memory leaks, garbage collection elineisathole classes of errors, such
as dangling references or double releasing. Finally, ggrioallection simplifies software
engineering. In traditional languages such as C, it is reaggdor programmers to nego-
tiate which of them has the responsibility for freeing meynpassed between modules.

Since garbage collection has a global view of liveness ghi®ilonger necessary.

1.2 A New Algorithm

This document presents a new garbage collection algorittcombines elements of a
generational copying collector with a compacting colleclde resulting algorithm takes

advantages of the positive features of a generational ngmollector such as improved



partitioning objects by age, automatically compactingeoty for improved spatial locality
and fast allocation.

The new collector is able to reduce the space required fardpg reserve, alleviating
one of the major drawbacks of the generational copying ctate The copy reserve in
the new algorithm is set significantly smaller than the maxmrequired reserve. In the
majority of cases, this presents no problem, since relgtfeg objects survive a garbage
collection. In the rare cases where more objects survive ¢ha fit in the copy reserve,

correctness is maintained by the use of a compacting coflect

1.3 Summary Of Results

The collector was implemented and its performance examinkee results chapter of
this document outlines the findings. In the majority of capesformance of the new col-
lector with suitable parameters was better than both tmelatd generational copying col-
lector and the generational mark and sweep collector. Wieioqmance was degraded,
it was often the result of an inappropriate copy reserve €itdy on one benchmark was

performance seen to be uniformly poorer than the traditialgerithms.

1.4 Outline

The remainder of this thesis is structured as follows: Cérapoutlines the background
upon which the new garbage collection algorithm has bedh I&thapter 3 discusses the
design of the collector, while Chapter 4 gives some detailthe implementation. Chap-
ter 5 describes some experiments run to measure the perfoentd the new collector.
Chapter 6 concludes and suggests some possible futureatesi@ctions resulting from

this work.



2 BACKGROUND
2.1 Uniprocessor Tracing Garbage Collection

Automatic dynamic memory management,garbage collectiorhas been a topic of
research for several decades [1]. The recent popularityapfaged languages such as Java
and C# has provoked new interest in devising efficient galoafjection algorithms.

While a great many techniques exist for garbage collectiay @all have the same
high-level specification. Any memory location that can becteed transitively from a set
of root pointers is considered to be live. Any object outdiue live set is considered to
be garbage, and can be reclaimed. The garbage collectionthlyp is responsible for
determining which objects are garbage, and for returnieg gtorage space to the system
to be reused by later allocations.

While many algorithms also exist for parallel garbage atits, this work centers

around single-processor tracing techniques.

2.1.1 Motivation

Garbage collection offers several clear advantages tovamdtengineers over man-
ual dynamic memory management. By reclaiming memory auically once it is no
longer required, a garbage collected system is immune tdendt@sses of bugs that have
previously caused havoc in large systems.

Memory leaksesult when programmers allocate memory but forget to sel&once
it is no longer necessary. This memory then becomes unalatiathe system. Even if a
series of memory leaks does not cause a program to crash theory exhaustion, they
can have an adverse effect on performance. Chunks of albbat unused memory cause

fragmentation, which destroys spatial locality. This casult in poor cache performance



or an increase in paging. A garbage collected system avo&tsary leaks by removing
the responsibility of deallocating memory from the prognaen. Once a memory location
is determined to be unreachable, it is returned to the system

Another common source of errors in manually managed mensottyat ofdangling
referenceslf a programmer accidentally frees a region of memory ptenady, any sub-
sequent attempt to access that memory location may produegar. At best, this error
may cause the system to fail due to a segmentation violatfomorse case would be
if the memory location had been overwritten with other d&aading or writing to this
location will cause the program execution to be incorreat,bay not cause the program
to terminate.

Dangling reference bugs can be difficult to detect, since argrallocation patterns
may vary from one program execution to another. It may be #se ¢hat the memory
location pointed to by a dangling reference is not overemiitnmediately, causing some
dereferences to return the intended result. Automatic rgmm@anagement eliminates
dangling pointer bugs by only deallocating memory once we feference to it exists.
Since it is guaranteed that any pointer usable by the pragerpoints to valid memory,
dangling pointer dereferences become impossible.

Garbage collection is also of benefit when constructingelargodular systems. In
manually memory-managed programs, it is necessary forgnogers to determine who
has the responsibility for deallocating a piece of memoryisTnay occur in a different
module from that in which the memory was allocated. Confusietween programmers
can lead to objects being released multiple times, or ndt.aflae use of garbage collec-
tion alleviates this problem; objects are freed accordingglobal view of the system. As
such, no programmer is responsible for deallocation.

Additionally, the use of a garbage collector can simplifpedtion. When memory is
manually allocated and freettagmentatioris a common problem. This arises when an
object is deleted from the middle of an allocated region. edslthe allocator is able to
place a new object of equal size in the gap, the space will IstadaThis problem has led

to the use ofree list allocatorswhich interleave old and new objects to reduce fragmen-



tation [2]. While some garbage collected systems requieeute of a free list allocator,
many others perform compaction as part of their executibmimating the problem of

fragmentation.

2.1.2 Tracing Collectors

Tracing garbage collectors determine which objects arehadzle from the program
roots. The roots of a program are defined as the programmer’s entrnyspto the graph
of dynamically allocated data. Generally, the roots witllude pointers held in the stack
or registers, as well as static or global variables. Traalggrithms assume that all live
objects can be reached through these roots, or through a chabjects beginning at a
root.

Reachability offers an approximation of liveness; objebtt can be reached transi-
tively from the roots are considered to be live, those whanmnot be reached are garbage.
It may be that an object determined by this method to be liaetisally no longer required.
For example, the program may have finished operating on ssttatzture, but a reference
to it still exists through a pointer that has not yet been wyitten. While reachability is a
conservative approximation of liveness, it guaranteetsaitige object is never considered

to be garbage.

2.1.3 Mark and Sweep Collectors

A mark and sweep collector traces through the heap in ordéetiermine which ob-
jects are no longer live. These objects are then collectetittee space they occupied can
be reused.

During the tracing phase, every reachable object is mark&eherally this is done
through setting a bit in the object header, although a sepaitmap may also be main-
tained. Once the tracing (or mark) phase has completedsatbjects have been marked,

while all garbage objects have not. The second phase of tleetton, the sweep, is then



performed. The heap is scanned linearly, and all unmarkgettsbencountered are re-
claimed.

A mark and sweep collector allocates using a free list attmcaThis is necessary
since the heap is never compacted, and so will become fragohemer time. Whenever a
memory request is made, the allocator locates space of an@pgie size into which the
new object can be placed. This allocation method can be ¢onsuming and, in extreme
cases, can fail if a large enough space cannot be found ewveglirsufficient memory
exists in the system. This problem can be alleviated thrdbghuse of segregated free
lists where multiple free lists sorted by size are maintéjreend objects are allocated to
the smallest space available.

Additionally, free list allocators are unable to exploitaspl and temporal locality.
Since objects created at the same time may well be accesgettie¢o, it would be prefer-
able for them to be located close together. This way when btieem is loaded into the
cache, the others may be brought in at the same time. Hovgéweg, the free list allocator

places objects wherever they fit it is unable to take advand@this property.

2.1.4 Copying Collectors

Copying, orscavengingollectors separate the heap isfmacesand copy live objects
between them. Once the live objects have been evacuatedafrgpace, all objects re-
maining in that space are garbage, and can be reclaimed.imp&est copying collector
uses two spaces, moving live object from one to the other wiemory is exhausted; one
of the most commonly used algorithms is due to Cheney [3].chHuéce of the number of
spaces in the heap influences collection frequency and nyemtibzation.

When a copying collector is used, memory in the heap can beaéfid sequentially
in memory. Each object allocated is placed directly after phevious object, as shown
in Figure 2.1(a). This system has several advantages., Festallocation sequence is

very simple. In order to allocate space it is necessary anigdrement a pointer. When



copying, objects are again allocated sequentially. As altiethe heap is automatically

compacted on every collection.

From Space To Space

? Allocation pointer

(a) Allocation

B I (T
y

A Allocation pointer

(b) Start of collection

Space To Space

Allocation pointer

(c) Copying objects into the to space

To Space From Space

T Allocation pointer

(d) Continuing after collection

Figure 2.1. Semispace copying collector

When the first semispace is filled, as shown in Figure 2.1(bdllaction is triggered.
Live objects are discovered by tracing, and are indicatetaik gray. The live objects are
then copied from théom spacdnto theto space as in Figure 2.1(c). When all the live
objects have been copied, the roles of the from space andcht®e sye reversed. Figure
2.1(d) shows allocation continuing in the new from space.

An additional benefit with a copying collector is the oppaity to optimize the place-
ment of objects for cache performance. As a simple heurigbiects that refer to one
another may be referenced within a short period of time. Whewing such objects, the

collector may try to place them in the same cache block [4].



Copying Overheads

While copying collectors have significant advantages duthéor ability to lay out
data, they come with some substantial overheads. The mutusbof these is the need
to move objects. Copying data is an expensive operation amdaminate the pause time
of the garbage collector. This is particularly true for sienpopying collectors that move
all live objects on each collection.

In addition, it is necessary to update all references to gcothat has moved during
a collection. Failure to do so leads to dangling referenoédracorrect program behavior.
References are commonly updated through the uBawhrding pointerswhen an object
is copied to a different space its original location is ovétt@n with a pointer to its new
location. This way any subsequent references discoverdadogollector can be updated

with the new address.

Copy Reserve

The major drawback to copying collectors, however, is netdkierheads of moving
data or updating references. In the worst case, it is p@s$aplall objects to survive a
garbage collection. In order to accommodate this everyualifficient space must be set
aside to copy objects. This space is referred to astpg reserveln the case of a simple
two-space collector the copy reserve accounts for halfdted heap size. In general, the
size of the copy reserve must be equal to the size of the sdeg tollected in case all
objects survive.

The copy reserve reduces the effective size of the heap. Asudtrthe garbage col-
lector must be triggered more frequently; since objectsotibe allocated to the copy re-
serve, fewer objects can be allocated before available meimexhausted. A large copy
reserve means that less space is available for allocatiwhwaen the available memory

is decreased, the collector must run more frequently.



2.1.5 Mark and Compact Collectors

Mark and compact collectors aim to gain the memory layoutathges of a copying
collector while eliminating the need for a copy reserve. Tiaeing phase of the mark
and compact collector is the same as in the mark and sweep@ase it has completed,
all live objects are marked and all garbage objects are ndahd second phase, however,
live objects are compacted as opposed to dead objectsteallesll marked objects are
relocated towards the “front” of the heap (where the fronthaf heap is defined as low
memory addresses, while the back is high memory addredséijs way, garbage objects
are overwritten and live objects retained.

Compacting collectors eliminate the fragmentation foumdniark and sweep collec-
tors. Since no gaps are left between live objects it is noésgary to use a free list allo-
cator. A simple bump-pointer instead can be used, allogdkia first new object directly
after the final compacted object. Additionally, since olgeare slid towards the front of
the heap, allocation order is maintained. This offers beftatial locality than with a free
list allocator.

Since objects are not moved from one space to another, a espge is not necessary.
In the worst case, where all objects survive, a mark and cotgmlector simply does
not perform any compaction. As a result, the whole heap camsbd by the application
without the overhead of the copy reserve. Also, while theygapoverhead of the copying
collector remains, it is likely to be present to a lesser degrLong-lived objects will
cluster towards the start of the space, having been moveelithprevious collections. As
a result, portions of the heap may not need to move in someatmlhs.

While the design of a compacting collector would appear t@mal, the imple-
mentation offers some difficulties. Since objects movedadhe heap, it is necessary to
maintain forwarding pointers, as in a copying collector.wéwger this proves to be more
of a challenge in the compacting case.

In a copying collector, the address to which an object has be®ved is stored in its

old location. This way, any subsequent references to thatbban be updated. This is
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possible in a copying collector because the old space isagteed not to be discarded
before the collection completes. This is not the case in apamtng collector. It is
possible for a forwarded object to be overwritten beforereférences to it have been
updated.

Updating references in a compacting collector without hged maintain a large ex-
ternal data structure has been the focus of some researderalyg these algorithms re-
quire multiple additional passes over the heap, leadingrigdr pause times which make

compacting collectors impractical.

2.2 Reference Chaining

In [5], Jonkers proposed a technique for managing forwargiinters during a com-
pacting collection. This algorithm has the advantage otteers in that it tracks forward-
ing pointers without allocating additional storage. It erformed through a technique of
reference chaining.

The insight behind reference chaining is that in order tgprty update pointers it is
necessary to record either the object being moved or theergfes to that object. Tradi-
tional approaches track the former, and references ardegbdaa scan of the heap. The
chaining algorithm instead associates references to atiobjth that object itself, and
updates pointers as soon as the destination of the objecbigrk

The algorithm requires that a word of the object be moved, thatione bit in that
word be available for the algorithm’s use. It involves twasgas over the heap: one to
update forward references, the other to move objects anatepackward references. An
illustration of the algorithm is shown in Figure 2.2.

Object O is going to be moved as part of the compaction phabgec@® A, B and C
hold references to object O. These are forward pointersgsibjects A, B and C are at
lower addresses in the heap than object O. Similarly, ocbpEcty and Z hold backward
references to O, since they are located at higher addrdsgethis illustration, the space

in which each object is allocated is irrelevant.



C (@] X Y

(a) Before chaining

C O X Y

(b) Forward references chained

O!

(c) After first sweep

O’
(d) After completion of chaining

Figure 2.2. Jonkers chaining algorithm

11
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One field of object O, shown in gray in Figure 2.2(a), is avd#édor use by the algo-
rithm. This may be a word in the header, such as a hash codebiDokthe available
word must be reserved for the chaining algorithm.

The heap is scanned from low addresses to high addressefirstThbject encountered
is object A. Upon tracing the references in A, it is discodeiteat one points to object O,
which has been marked to move. Once object O has moved, ibaitiecessary for the
reference in A to be updated. The available word of O is stametthe field of A that
formerly contained a pointer to O. The available bit is sedj¢ated by a black square. A
pointer to the field of A is stored in the location of the avialtaword of O. The bottom bit
of the pointer to the field of A is also set.

The next object encountered is object B. Upon discoveriegrédference to marked
object O, the available word is checked. Since the bottoroflihie word is set, it can be
determined that a chained reference to O already exists.pdimer to the field in A is
copied to the field in B, with its bottom bit unset. The avaiéalord in O is set to point to
the field of B, with its bottom bit set. The same process isiaggb object C. The result
of these operations is shown in Figure 2.2(b).

The scan now encounters object O. Since O is marked, theablailvord is checked.
The set bottom bit indicates that references are chainethig\point it is known to which
address object O will be moved, since all objects to be cotepagefore it have been
scanned. The chain of references can then be traversedeadthfield updated to point
to O’, the location to which O will move. The end of the chain is ezt when a field
contains a word with its lowest bit set, which is the data fritv@ available word of O.
This data is replaced.

The scan continues, and encounters object X. X is chaineditotle same way as
before, as are objects Y and Z. At the end of the first scan,ehp s as shown in Figure
2.2(c).

The second scan compacts the objects. Since at this poettsid, B and C no longer

point to object O, the first object of interest is object O.c®iit is marked, it is moved to
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locationO’. The chained references to objects X, Y and Z are updateeisaime way as

before. The final outcome is shown in Figure 2.2(d).

2.2.1 Generational Collectors

Generational collectors are a class of garbage collecabretkploit the age of objects
to improve performance. They are based ongbeerational hypothesethe weak gen-
erational hypothesistates that most objects die young [6], while sti®ng generational
hypothesistates that the older an object is, the less likely it is to Gienerational collec-
tors have been shown to generally outperform their non+géio@al counterparts [7], and

are today the most commonly used type of collector for theonitgjof systems.

Generational Collector Design

The heap managed by most Generational collectors is diundedyo or more spaces,
or generations. The simplest generational collectors hareallnurserywhere object are
allocated, and a largenaturespace where they apgomotedafter surviving a collection.

The nursery space is generally allocated to by a simple bpoagter. Since the ma-
jority of allocation in the collector is to the nursery, tisisnplifies the allocation process.
Once an object has survived a nursery collection, it is pteohto the mature space. Col-
lection within the mature space can be performed using &réift algorithm from the
nursery. For example, a Generational Mark Sweep colletimrades objects in the nurs-
ery using a bump pointer, but when they are copied to the mapace uses a free list
allocator. The mature space is then managed by a mark ang sebector.

Aside from the basic mark and sweep or copying collectoefyahte mature space
management strategies have been proposed [8] [9] [10]. eTimay use multiple older
generations in order to better classify objects by age [1Qihers attempt to allocate
connected objects together to improve cache performance.

The main benefit of splitting the heap into generations isitha no longer necessary

to collect the entire heap in a single operation. By colfegtonly the nursery space,
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garbage collection pauses can be greatly decreased. Hiosiweee the majority of objects
in the nursery are garbage (due to the minor generationathgpis), thisninor collection
frees more space than a collection of an equivalent-sizgdief a non-segregated heap.

When performing a minor collection it is desirable to scarittie of the heap as
possible. Scanning the mature space would invalidate migthg @advantages of collecting
only the nursery. However, it is possible for objects witthie mature space to refer to
objects in the nursery. Without taking these referencesactount, live objects may be
considered garbage, leading to dangling references.

To maintain correctness while eliminating the requirentestan the whole heap, gen-
erational collectors maintairemembered set§ hese are lists of the locations of pointers
in the mature spaces to the nursery. If these sets are canjplst not necessary to scan
the mature space; the collector knows where any relevantgrsiare located. Traversing
the remembered sets generally involves inspecting farrféeations than a scan of the
heap would. While it is possible for references to point friv@ mature space to the nurs-
ery, the common case is for references to go from new object&l{ rather than the other
way.

The data in the remembered sets can be kept accurate throtugit memory mecha-
nisms (trapping page faults), or by use afiate barrier. This is a small piece of code that
executes whenever a pointer to a location in the heap is oitegw The barrier is inserted
by the compiler, and is transparent to the programmer. Acglgienerational barrier will
include a check to determine if the location being writterstimside the mature space, and
if the destination of the pointer is in the nursery. If so, il wecord the pointer location in
the remembered set to be scanned by the garbage collector.

Write barriers can be made more efficient by using an inlirfastpath” for the com-
mon case where no remembered set entry is required [12]. \Whemnter crosses the

generational boundary, an out-of-line “slow path” is exedu
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2.3 Appel’'s Generational Copying Collector

Appel’'s generational copying collector uses a variabteginursery and a single ma-
ture generation [13]. New objects are allocated to the mynsging a bump-pointer allo-
cator. When the nursery is full, a minor collection is trigegtin which live objects are
copied to the mature space. When the mature space fills, speeeaimed by a major

copying collection, similar to a semi-space collection.

2.3.1 Heap Layout

Mature Space Copy Reserve Nursery Space

(a) Heap overview

Copy Reserve Nursery Space

Allocation pointer

(b) Initial heap layout >

Copy Reserve Nursery Space

? Allocation pointer

(c) Allocation

Figure 2.3. Heap layout in an Appel-style collector

The heap layout for Appel’s collector is shown in fig 2.3(aheTcopy reserve size is
equal to the sum of the nursery size and the mature space size.

The size of the nursery varies depending on the occupandyeahature space. Ini-
tially, when there are no objects in the mature space, theenytakes up half of the heap.
This is all the space available, after taking into accouetdbpy reserve. This is shown in
Figure 2.3(b).

All allocation in the Appel collector is performed in the sary. As shown in Figure

2.3(c), allocation is performed sequentially by a bump f®in
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Mature Copy Reserve Nursery Space

y
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(c) Resizing nursery and copy reserve

Figure 2.4. Minor collection in an Appel-style collector

2.3.2 Minor Collections

When the allocation pointer reaches the end of the nursemnjinar collection is re-
quired. In this process, all reachable objects (indicatediark gray in Figure 2.4(a)) are
located. They are then transferred into the copy reseresdsequentially, as in Figure
2.4(b). The space occupied by these objects becomes theensgtace. The nursery is
resized to accommodate the mature space, again leavingyaesgrve equal to the sum

of the nursery and mature spaces. The result is shown iné-iydfc).

2.3.3 Major Collections

When it is detected that a minor collection will cause thesewy to shrink below
a predetermined threshold, a collection of the mature sgatrgggered. Figure 2.5(a)
shows the heap layout on triggering of a major collection. b&fore, live objects are
shown in dark gray. All live objects from both the mature spaad nursery are copied
into the reserve, as shown in Figure 2.5(b). The space ceduyy these objects becomes
the mature space and is moved to the front of the heap. Themussthen resized to

account for the new mature space size, as shown in Figure)2.5(
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Figure 2.5. Major collection in an Appel-style collector

2.4 Jikes RVM and MMTk

Jikes Research Virtual Machine [14] is an open-source, pegformance Java virtual
machine. It was initially developed at IBM, before beingeaded to the research commu-
nity. Jikes RVM is written in Java.

The Memory Management Toolkit (MMTKk) [15] is a portable mammananagement
framework written in Java. MMTKk handles all memory-relatgekerations within Jikes
RVM. It offers implementations of a series of algorithmsyaedl as commonly used com-
ponents designed to facilitate the development of new dhgos. Since all collectors im-
plemented in MMTk share a common underlying framework, grenfince comparisons

can be made isolated from differences between virtual madmplementations.

2.4.1 Javalanguage Extensions

Since Jikes RVM and MMTk combine to form a complete virtualcmae written
in Java, there is a need for extensions to the Java languag@pfmrt some essential
functions. For example in MMTK it is necessary to access teos) something which is

not permitted in Java. To overcome these limitations, cekasses are defined that the
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Jikes RVM compilers convert into native operations. Withihiese extensions, it would

not be possible to write a garbage collector in Java.

2.4.2 Compilation Framework

Jikes RVM uses a variety of compilation strategies dependimthe level of optimiza-
tion required. The most aggressive of these is the adaptvesivork.

The adaptive compiler determines through sampling whicthous are “hot”, that is
which methods are called most often. Based on the resuli©$émpling, some methods
are optimized further than others [16]. This means, howelat the performance of Jikes
RVM at the highest optimization level is non-determinissimce differences in sampling

will cause different methods to be optimized.

2.4.3 MMTk Design

MMTK provides a framework of building blocks upon which memenanagement
algorithms can be implemented. It also supplies implenems.of common garbage col-
lection algorithms, allowing comparisons to be made withn@eessitating re-implementation.
Additionally, since all systems build upon a common frameuwamy measured differences
in performance can be attributed to variations in algorithather than details of underly-
ing implementation.

A garbage collector in MMTK is defined by an implementatioragfian. This class
determines, among other things, the spaces in the heaplJdbatars used for each, and
the strategy by which they are garbage collected. Plansrgignbuild upon a template
which provides basic functionality for a class of colle¢teuch as reference counting,
tracing or generational.

The MMTk heap is divided up into variowgpacesdetermined by the plan. All im-
plementations share some common spaceshabéspacestores precompiled classes and
data structures established when the virtual machine I Ibioé immortal spacestores

objects that are live throughout the execution of the syséem as such is never collected,;
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themetadata spackolds temporary memory management-related objects, amad issed

in determining liveness inside the heap; and#nge object spaceor LOS, is used to store
objects larger than a certain threshold. The LOS is managedfiee-list allocator. The
advantage of storing large objects separately from theofetste heap is that it removes
the need to move large objects when a copying collector id.use

Further spaces are defined inside the plan. MMTk provideteimentations of commonly-

used types of space such as a copying space, mark sweep spaference counting
space. Thus in order to implement a simple semi-space cgylhector, it is necessary
for the plan simply to create two copying spaces and detexriia criteria under which

objects are transferred from one to the other.
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3 AN IMPROVED GENERATIONAL COPYING COLLECTOR

Generational collectors are today used in a wide range tfiget from production virtual
machines to C/C++ compilers . They have been shown to offgrifgtant performance
advantages over their non-generational counterpartigrséction a design is presented
for a new generational copying collection algorithm. Thidlector aims to improve the
performance of a standard copying collector by reducingowerhead required for the
copy reserve. By reducing the copy reserve overhead it anded¢rease the collection
frequency, thus decreasing execution time. It combineshargéonal copying collector

with a compacting collector.

3.1 Motivation

When selecting a generational garbage collection algurittertain limitations must
be taken into account.

Copying collection algorithms offer improved spatial lbtya since data is copied in
traversal order. This can improve cache behavior and legatitcced paging. Additionally,
fragmentation is not a concern since the heap is compactedeavir objects are copied.
However, copying collectors come with a significant spaceriogad. Since in the worst
case all objects may have to be copied, a significant portiagheoheap must be kept as
a copy reserve. This increases the frequency of collecaoddimits the minimum heap
size in which the collector can operate.

Mark and sweep algorithms do not have the limitation of reggia copy reserve. As
a result, a mark and sweep collector can run in a smaller Heapd copying collector.
Additionally a mark and sweep collector will require fewarigage collections when heap
sizes are equal. However, mark and sweep collectors do motlgaspatial locality nor

compaction benefits of a copying collector.
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The collector presented in this work aims to address thesiéalions, providing the
benefits of a copying collector while avoiding the overhetithe copy reserve. It is based

on the generational copying collector first presented byeAf3].

3.2 Algorithm Overview

The copy reserve in Appel’s generational copying collectmmsumes half the heap
but, as shown, is rarely fully used. We introduce a metho@dficing this space overhead
substantially.

We determine the copy reserve to be a percentage of the maxpossible reserve.
It can be individually specified for the nursery and maturacgpto allow tailoring for
individual workloads. For example if a benchmark is founchwe an unusually high
nursery survival rate, the nursery copy reserve can beaserkto compensate.

In the vast majority of cases, a well-chosen set of copy vesgres will accommodate
all surviving objects. However, in all algorithms it is nesary to account for worst-case
performance. In this instance, the worst case is where théveus during a collection
overflow the allocated copy reserve. In this case, a secygragmpaction technique is
used. Rather than copying survivors from the nursery to thtire space, or from the old
mature space to the new mature space in a major collectigattslare instead compacted,
and then moved en-masse. This is performed without allogétirther pages of memory.

This fallback mechanism provides correctness in face ostwaise behavior.

3.3 Fallback Technique

Should the copy reserve prove to be insufficient during aectithn, a compaction al-
gorithm is activated. Since this compaction phase occuysduring a garbage collection,
and when no further copy reserve space remains, it is viglrtb allocation occur until
space can be made available. The compacting algorithm igrasksto operate only over
memory already assigned to the process, ensuring that tkienuna heap size is never

violated.
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Figure 3.1. Compacting collection

The state of the heap upon entering a compaction phase isishdwgure 3.1(a). The
black objects in the nursery have been forwarded to theweseiich is now full. The
remaining dark gray objects in the nursery are live, but lmevplace to be copied.

The remaining live objects in the nursery are then compdottte front of the nursery,
as shown in Figure 3.1(b). The white space in the nurserywsfree. The copy reserve
and compacted nursery objects then become part of the nsggace, and the free space
is divided between a new nursery and a new copy reserve, asmshd-igure 3.1(c).

The situation where a compaction is required in the matuaeess analogous.

3.4 Related Work

Velascoet al make use of the same observation as in this work [17]. Thegrohéne
that the survival rate of collections is far below the spaocemally allocated as copy
reserve in an Appel style collector.

Their work differs from the present work in several ways. Ylaeopt a strategy of
dynamically tuning the nursery copy reserve size, whilg Work sets mature and nursery

copy reserves constant during execution. They suggestademple heuristics to deter-
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mine the optimal copy reserve size. In each case, the praboryi of the survival rate
is combined with a “security margin” at each collection tdettenine the space available
for the next series of allocations. A danger of this appraadhat it may lead to over-
estimation of the copy reserve requirement, as a singleuatiyshigh survival rate can
poison the heuristic.

Additionally, the work described by Velas@t al reduces only the nursery copy re-
serve. This misses the opportunity to utilize the memoryisethe mature space. While
the nursery space is larger shortly after a full collectias the mature space fills up the
amount of space required as a copy reserve similarly ineseashortly before a full
garbage collection, the mature space dominates the alaitaamory in the heap, mean-
ing that optimizing only the nursery will have little effect

The most important difference, however, lies in the recpwrategy in the case of
a missed prediction. While the design outlined in this ceaperforms a compacting
collection, the earlier work instead relies on the printipanepotism This refers to
garbage objects in the nursery being kept reachable by gadigects in the mature space.
In Figure 3.2(a), several objects in the mature space arenyel live. However, since the
mature space is not traced during a minor collection, thepls®me objects in the nursery,
which are not reachable from the program roots, alive thinowepotism. The authors rely
on the fact that by performing a full collection they will nobly free up memory from
the mature space but also reduce the survival rate of theemyuby eliminating these
redundant links.

Figure 3.2(b) shows this strategy. A minor collection hasrbgerformed, and the live
objects in the nursery are found to require more space tlearoiby reserve can supply. In
Figure 3.2(c), the unreachable objects in the mature spaeelieen removed, and so the
objects kept alive through nepotism are no longer seen abaibte. Figure 3.2(d) shows
the successful completion of the collection, since withbetadditional objects retained
through nepotism, all live objects fit in the copy reserve.

This argument is flawed, as can be seen in Figure 3.2(e). Evlea objects retained

through nepotism were removed, there would still be insiefficspace in the copy reserve.
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Figure 3.2. Reducing survival rate through nepotism

In the worst case, all objects could survive a collectionorder to maintain correctness,
an algorithm must be able to perform a collection under tieesemstances; it is for this
reason that the 100% copy reserve was required in the origemeerational copying col-

lector design. In the case where most or all objects surthe algorithm outlined by

Velascoet al would fail.
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The solution proposed in this chapter is able to handle thestwease safely. Should
all objects survive, those that fit in the copy reserve wilht@ved. The remaining objects
will be compacted inside the nursery, requiring no addél@pace. This is described in
Section 3.3.
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4 IMPLEMENTATION

This chapter describes an implementation of the colleatmpgsed in Section 3. The im-
plementation was based on the Appel-style generationalicgollector supplied with
MMTK [15] running with Jikes RVM [18]. It makes use of Jonkersference chaining
algorithm outlined in Section 2.2. Both MMTk and Jikes weredified during the imple-

mentation.

4.1 Heap Layout

Figure 4.1 shows the layout of the heap for this collectdollows a similar design to
that seen in Figure 2.3(a), with additional spaces due to MiMiplementation.

Spaces in MMTk have virtual address ranges fixed at build.tifitas allows refer-
ences to space limits to be propagated as constants dummgilation rather than being
stored and referenced as variables at runtime. Howevefuthaddress space is rarely
used for a given space. The size of a space is managed lgghnalhaintaining a record
of the number of pages assigned to each space. This way therm@and mature spaces

can be resized dynamically according to the requirementssodlgorithm.

Boot Immortal | Metadata Large Mature Mature Nursery
Space Space Space Object SemiSpace | SemiSpace
Space 1 2

Figure 4.1. Generational copy/compact collector’s hegpua
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4.1.1 Boot and Immortal Spaces

The boot space is made up of the classes and data structuresatgel as part of
the build process. This space is never garbage collecteddaes not grow beyond the
original size of the bootimage. By placing the boot spaceifirthe virtual address space,
offsets of code and data structures can be calculated alttoui regardless of the layout
of the rest of the heap.

The immortal space is also never garbage collected, andeid tasstore data that
will exist for the lifetime of the virtual machine. This inales parts of the classloader
and certain garbage collection data structures. Sinceajethe immortal space never
move, it is safe to use them during certain phases of garbatpeiton when data in the

heap must be regarded as inconsistent.

4.1.2 Large Object Space

The large object space is managed by Baker’s treadmillctadie algorithm [19]. This
incremental, concurrent collector operates over a freteallocated space. Objects larger
than a set threshold are allocated in this space, with memltogated in a page-sized

granularity.

4.1.3 Mature Space

The mature space comprises two copy spaces. Apart fromgaiefds during garbage
collection, only one semispace is active at any time. Aliocato the mature space is
performed only during garbage collection, when objectscaqged from the nursery or
from one semispace to the other. Allocation in the matureepaperformed by a bump-
pointer allocator.

The implementation of the mature space in MMTk differs frdrattdescribed by Ap-
pel in that it does not remap the location of the oldspace.hénaigorithm outlined in

Section 2.3, upon evacuation of all nursery and mature sphgets into the copy re-
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serve, the memory containing live objects is remapped tsthe of the heap. This is
done in order that the nursery can be resized by simply githia location of the copy re-
serve space. Such a mechanism is not necessary in MMTk siecgrtual address space

allocated to the nursery is greater than the maximum sizéntohwthe nursery can grow.

4.1.4 Nursery Space

The nursery is the space in which all new allocation occuris d copy space, and is
allocated to by a bump pointer. The nursery is placed at theoéthe heap in order to
simplify write barrier code. To maintain remembered setlakeferences into the nursery
it is necessary to determine on every pointer store whellgetarget is in the nursery and
the source outside. By placing the nursery at the end of thp,aanly a single comparison

is necessary for each of these tests.

4.2 Triggering Compaction

At the start of a collection, a count is made of the number gdycreserve pages
remaining. This number is calculated as a percentage ofdpg eserve required by
Appel’s collector. As pages are allocated to the matureesf@acsurviving objects, this
count is decremented. When it reaches zero the copy resefull,iand a compacting

collection must be triggered.

4.3 Mark Stage

Upon the triggering of a compacting collection, the behagfmbject tracing changes.
Previously, an object, upon being found to be reachable,cop®d to the mature space
and replaced with a pointer to its new location. Under the gacting collector, objects
are instead marked and left in place. Once the tracing pisasemplete, an object in a

compacting space can be in one of three states: forwardeiethar garbage.
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During the mark stage of a major collection, a total of thesiaf live mature object
to be compacted is maintained. This indicates the amoumtasfesrequired by compacted
mature objects, and is used to determine the final placenfientgpacted nursery objects.

Section 4.5 details the need for this count.

4.4 Scanning

The compaction follows Jonkers’ algorithm described int®ac2.2. In this imple-
mentation, the word per object used by the algorithm is atpoimside the header to
per-class metadata. Since this is an aligned pointer,wsolaler bit is always zero, and
can thus be overwritten.

Some optimizations to the algorithm are made possible byementation in MMTK.
The chaining algorithm calls for two complete sweeps overtteap: one to update for-
ward references, the other to compact and update backwimmees. However, in the
generational system it is not necessary for these sweepw¢o the entire heap.

On a minor collection, there is no need to scan the entire fageferences to the
nursery. This information has already been logged in theerebered sets maintained
by the write barriers. As a result, the first sweep of the hemuires processing the
remembered sets and scanning the nursery. This is a majooverpent over the expense
of scanning every space in the system.

The initial sweep in a major collection, however, requirkattthe majority of the
heap be scanned. There exists no equivalent to the remedrdesefor the mature space,
meaning that pointers may exist anywhere in the heap. As 8 eptamization, it is not
necessary to sweep the metadata space. This is becausetdtataspace is only used
by the garbage collector, and is not used to determine lagimeother parts of the heap.

A difficulty arises in sweeping the heap in major collectioi$ie version of MMTk
upon which the implementation is based did not support fisegeeping through mem-
ory. All collection algorithms were implemented using trar As a result, the MMTk

implementation had different assumptions from those regluor a sweeping collector.
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During a sweep, all objects encountered are scanned amdthieters processed. In
order for this to function correctly, all pointers must béidaWhether they point to live
or dead objects, all pointers should go to an object headgintd?s that do not resolve
to an object header are dangling references, and can leats as described in Section
2.1.1.

Since the MMTKk collectors do not make use of scanning, theyatohave this re-
quirement. In a tracing collector is is necessary only tiladlgects reachable from the
program roots have valid references. Dangling pointersineachable objects will never

be seen, since such an object will not be visited by a trace.

Immortal Space Nursery Space Mature Space
Root A B C D E
gl \
\ \_ W
(4
(a) Prior to minor collection
Immortal Space Nursery Space Mature Space
Root A B C D E
W.ERNEN
v \/
(b) Reachable objects
Immortal Space Nursery Space Mature Space
Root A B C D
\ F G
\ 7 o
\%

(c) Danglingreference

Figure 4.2. Creation of dangling reference

Within the immortal and boot spaces of MMTK it is possible fiangling references
to be created. Figure 4.2(a) shows part of an object grajisplaas the immortal, nursery
and mature spaces. In the mature space, Objects A and B alabda from a root, while
object C is not. Figure 4.2(b) shows a minor collection; ot§&\, B and D are reachable,

while objects C and E are not. However, since the immortaispanot collected, objects
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A, B and C do not move. Object D is promoted to the mature spaiceé,B’s pointer
updated. Object E is reclaimed as garbage.

Figure 4.2(c) shows the state of the heap at the start of tktemmiaor collection. New
data has been allocated to the nursery. If this next cotleatises the standard tracing
mechanism, the traversal will occur as before. Howevemhthe collection use com-
paction, a sweep of the heap will be required. When the immhepace is swept, objects
A and B will be encountered and their pointers processed. éxdew when object C is
reached an error will occur. Its pointer is no longer validcei the object it referred to
(object E) no longer exists. Worse, it now points to the medafi object G, meaning that
random data will be interpreted as an object header.

To work around this problem, two arrays are maintained tonetéiveness of objects
in the immortal and boot spaces. These arrays maintain aebiagdressable word in
these spaces. Upon marking an object, the bit correspondittigt object’s header is set.
Sweeping is performed by traversing these arrays to deterinieness, rather than by
by sweeping the spaces themselves. This solution is not, isieae it wastes space and
causes a small time overhead in the marking phase. Howevke iabsence of garbage
collection in the immortal and boot spaces, it is necessargdrrectness.

The second sweep, used to compact objects and update bdgbeimating references,
need only be performed in spaces being compacted. This riegtns a minor collection,
only a sweep of the nursery is required. In a major collechioth the mature space and
nursery must be swept. This is because by this point in therighgn all pointers have
either been chained or updated. Only the objects to be cdegbacust be scanned in

order to enchain any remaining pointers and to perform tingpeation.

4.5 Compaction

The addresses to which objects will be relocated must beileddd during both the
first and second scans in the compaction algorithm. Thidweganaintaining pointers for

the nursery and, if required, the mature space which aremmented upon scanning an
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object which will be compacted. Care must be taken to ensuatealignment constraints
are maintained, and that compacted objects do not overamteedded metadata.

The updated values of references must be adjusted to acfmwuhe fact that com-
pacted data is remapped in the final stage of the collectibns Bn object compacted to
the front of the nursery space will eventually be relocatethe end of the mature space.
The final address can be easily calculated using the knovimaviaddress ranges of the
spaces, and the current location of the mature space bumgepoi

This calculation is complicated slightly during major eations. This is because two
compacted regions, the nursery and old mature space, eaglocation. It is necessary to
know the size of one of the relocated spaces in order to @kethe address to which the
second space will be remapped. The information for thisutation is gathered during
the marking phase, where the total size of marked maturetstigemaintained. From this
it is possible to predict the address range required by thgeacted mature space, and by
extension the location to which the nursery objects will &mapped.

The compaction is performed in the second scan of the heajectSlare compacted
within their own spaces. The location to which objects anmgacted is determined in
the same way that the pointer was maintained in the previeps without the adjustment
for remapping to the mature space. This way predicted asgésesorrespond to actual

addresses.

4.6 Block Copy

Once all objects are compacted within their space, they mmeidtiock copied to the
appropriate location at the end of the mature space. In the @bminor collections, this
requires only remapping the nursery objects. In major cotbes, both the nursery and old
mature spaces must be remapped. An additional requiremémt no allocation occur
during the remapping, since this would allocate pages ejfua system’s budget.

Block copying is performed using the mmap system call. Byadif MMTk obtains

virtual address pages from the operating system’s scragctMbdifications to this system
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were made to instead allocate pages from a named heap file. aByaiming information
on the offset in the heap file mapped to a given virtual page gassible to remap the
data, effectively modifying the virtual address assodiatéh it. In this way, data can be
quickly remapped from one virtual address to another.

The existing MMTk collectors do not incur the overhead ofcgaanagement, be-
cause they do not unmap pages. When a virtual address rafiggt &located, MMTk
maps scratch memory to that range. However, when objecwvamiated from that ad-
dress range, MMTk simply stops using the memory, rather timmnapping it. This saves
the overhead of remapping when the same address range sdhagain. As a result, the
standard MMTK collectors will often have more memory mapihesh the maximum heap
size would allow.

This is not possible when remapping is required, as in the oashe generational
copying/compacting collector. In this case it is possihit 2 new physical address range
will be mapped to a given virtual address range. It is impurta ensure that two physical
addresses will not be mapped to a single virtual address.vdidl &his, memory is un-
mapped whenever it is not in use. While this adds some ovéroelaenchmarks elapsed
time, it is a more honest approach, since the amount of memapped is never more

than the maximum heap size.
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5 EXPERIMENTS

This chapter presents the results of running the new garbalfgetion algorithm with a

series of benchmarks.

5.1 Platform

The algorithm was implemented by modifying the GenCopysmtir distributed with
Jikes RVM version 2.3.4. Benchmarks were run using a machittean Intel Pentium
4 processor running at 2.26GHz and with 512 Mb of RAM. The @peg System was
Mandrake Linux 9.2, using kernel version 2.4.22-10mdk.

5.2 Benchmarks

The performance of the new garbage collector algorithm weagetl using several
benchmarks from the SPECjvm98 suite [20].

Of the full SPECjvm98 suite, several benchmarks were censdlto be uninteresting
from the perspective of garbage collection. For examj@22 mpegaudio requires virtu-
ally no garbage collection activity, meaning that differes between algorithms would be
insignificant. Several other benchmarks, such227 mtrt and_209.db have very short
object lifetimes, meaning that only nursery collectiors @quired. The benchmarks out-
lined below have sufficient allocation and garbage coltectequirements to make them

interesting candidates for this performance analysis.
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5.3 Metrics

Timing and garbage collection information for each of thiested benchmarks was
gathered. Both generational copying and generational madep collectors were ana-

lyzed for comparison with the new generational copying/paating collector.

5.3.1 Methodology

The methodology used to obtain the numbers was the samedbroedlector. First,
a VM was built configured with the appropriate collector. Neach benchmark was run
11 times within a single VM invocation. The first run servedaagsarm-up, compiling all
necessary methods using Jikes RVM’s optimizing compileofd-level 2). This elimi-
nated the overhead of compilation from subsequent runs.r8héts for the compilation
run were discarded. The remaining ten runs were used agtimns. A full-heap garbage
collection was performed before each timing run.

In the remainder of this section, the traditional generati@opying collector will be
referred to assenCopy the generational mark sweep collector@GsnMSand the new

generational copying/compacting collectorGsnCC

5.3.2 Traditional Collectors

Data are reported for each interesting benchmark when rimg generational copy-
ing and generational mark and sweep collectors. These g&spbw a line plotting the
mean elapsed time of the benchmark, and a set of bars shdwangitmber of major and
minor garbage collections. The error bars on the elapsezldiaph represent confidence
intervals for a 90% confidence value.

Study of the elapsed time data for GenCopy and GenMS cottestmws that the times
of each collector/benchmark pair tends to stabilize as g@aplsize grows. The point of
inflection in the generational copying graph at which thigibe to occur was chosen as

the heap size for comparison to the new algorithm. The reagamas that the point of
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inflection was the optimal heap size for the generationayicmpcollector. Comparisons

at this heap size would therefore not unduly disadvantagexisting collectors.

5.3.3 \Variable Copy Reserve

Results for GenCC are given for a varying copy reserve sizereHthe heap size
remains constant, having been arrived at as indicated ab®wvee the copy reserve is
split into mature and nursery components, presentatiohisfdata necessitates several
graphs. Each represents data collected for a fixed heapasized nursery copy reserve
and a variable mature copy reserve.

On each graph the elapsed time of GenCC is shown as a consitexk line. Each
measurement on the line is accompanied by a set of error Hach wepresent a 90%
confidence interval. Also shown by red and green continuiogs lare the elapsed times
for the traditional GenCopy and GenMS collectors respebtiv These lines represent
the times for the traditional collectors at this heap sibeytare straight because these
collectors do not allow variable copy reserves. The dasimes laccompanying each of
these lines represent a 90% confidence interval.

The bars at the bottom of each graph show the number of gadwmlgetions per-
formed by the copying/compacting algorithm. The x-axistfos data is the same as for
the elapsed time, so the bars directly relate to the datagwirihe line above. The bars
categorize collections into minor and major, as well as cactipg and normal.

Graphs are not presented for all nursery copy reserve sizafl benchmarks. Gen-
erally the extreme values in the nursery copy reserve sbal\ sery poor performance
since these copy reserves are unreasonable. Efforts havenb&de to ensure that the

graphs shown are interesting yet representative.

5.3.4 \Variable Heap Size

Additional graphs show the performance of all three coiexbver a range of heap

sizes. In the variable heap size graphs, nursery and maipyereserves remain constant.
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Each is fixed at 20% which the variable copy reserve graphs shbe a reasonable value.
It is low enough that the space benefits of reducing the copgrve can be seen, while
high enough that compaction is not required. These copyvesézes would therefore be
likely to be used in any real-world implementation of the g@e&tional copying/compacting
collector.

The variable heap size graphs show the elapsed times fdnrak tcollectors. The
x-axis represents the heap size. The black line represeataew collector, while the
red and green lines represent the generational copying emergtional mark and sweep
collectors respectively. The error bars represent a 90%dmnce interval.

The bar chart below the elapsed time plots shows the numbgarbfige collections
performed by the new algorithm, broken down as in the previariable copy reserve

graphs.

5.4 Results
5.4.1 _201compress

_201 compress performs a modified LZW compression algorithm aviexed input.
The algorithm scans through the data set in order to ideatifigmon strings, and replaces

them with codes. It then performs the decompression process

Traditional Collectors

Of the benchmarks presented, compress has the highesbrfiratimajor collections.
This indicates that it has a low mature mortality rate. Thavstate at which mature
objects are collected forces more frequent major collastio

Figure 5.1(a) shows the elapsed time and number of colletiequired for compress
when using GenCopy. As can be seen, at small heap sizes dlaibsf the collections
are major. This ratio drops to a quarter at larger heap sfesgnilar trend can be seen in

Figure 5.1(b), where the benchmark is run using GenMS.
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Variable Copy Reserve

Figure 5.2(b) shows the elapsed time and number of garbdlgetions required for
the benchmark when a 20% nursery copy reserve is used. Ac®eh, the performance
of GenCC is poorer than that of the standard generationalicg@and generational mark
and sweep collectors. The reason for this is the higher garballection survival rate,
as described above. The advantage of the copying/comgadgorithm lies in its ability
to manage the available space better than a standard copyfiegtor. By doing so it
reduces the number of collections needed. However, if aleark’s live set makes
frequent collections unavoidable, the benefit of the cagligompacting scheme is lost.
All that remains in this case is the additional overhead isgoldby the algorithm.

When the nursery copy reserve percentage is varied, sipgléormance lags are seen.
However, Figure 5.2(a) shows an unusual result. While thpsald time performance of
the copying/compacting collector is still worse than thelitional collectors, the differ-
ence is less than when the 20% nursery copy reserve is useh bte seen, additionally,
that several nursery compacting collections are perforndmtmally, this would be ex-
pected to decrease performance. However, in this case dlee spved by the elimination
of the nursery copy reserve leads to fewer major collectioniis trade-off improves
performance over situations where the compacting coltestaot triggered.

While it might be expected that setting the nursery copyrrkest 0% would lead to
every minor collection requiring compaction, it can be s this is not the case. The
reason for this is that a small minimum copy reserve of eiglggs was allocatated as part
of the implementation. This copy reserve guarantees tisanéial VM data structures and
GC metadata are copied before any compaction is perfornredades where the copy
reserve is set to 0% yet a compaction is not required, it iglsirthat all live nursery

objects fit into these eight pages.
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Variable Heap

The GenCC algorithm performs particularly poorly at the 30Meap size. However,
in general the characteristics @01 compress disadvantage the copying/compacting col-
lector, meaning that the traditional collectors outperfat.

Figure 5.1(c) shows the elapsed time and number of garbdigetoos for_201.compress
when the heap size is varied. The nursery and mature spageasmgves for GenCC were
fixed at 20%. As can be seen, the new garbage collection #lgodoes not perform as
well as the other two for this benchmark. This is due to theabljfetime behavior de-
scribed above.

It is worth noting that, on average, the new algorithm doespeoform substantially
worse than the traditional algorithms. There are sevewrg be&zes around 30Mb, however,
where performance drops significantly. The graphs in thi§@e represent data gathered

at a heap size of 30Mb.

5.4.2 _202jess

202 jess is the Java Expert System Shell — an expert system shadl sit iteratively

applies a growing set of rules to a problem statement ungkithes a solution.

Traditional Collectors

Figure 5.3(a) shows the elapsed time and number of garbdigetamns for jess when
run using GenCopy. As can be seen, there are very few fukkctbdins. For heap sizes
greater than 30Mb, no full collections are required. Fighu@b) shows the same result.
Using GenMS, no full-heap collections are required oncehbap size grows beyond
20Mb.

This indicates that very few objects are promoted to the reatpace. This is due
to very short life spans of objects; the vast majority ardogge before the first minor

collection. This property would suggest that the copyingipacting algorithm should



Run time (ms)

Elapsed Time (ms)

Run time (ms)

0 10 20 30 o] 50 60 70
Heap Size (Mb)

(a) GenCopy

50083

4500 [
4000

3500

!

w
=]
S
S
|

0 10 20 30 o] 50 60 70
Heap Size (Mb)

(b) GenMS

50083

800

4500 T T

— GenCC
— GenCop
GenMS

I 750
- 700
I 650
I 600
[ 550

I 5008
[ 4502
L o

Normal Minor GCs
Compacting Minor GC|
Normal Major GCs
Compacting Major GC|

N
a
=}
s}
|
| B |

400 5
o o
4 350E
[ 5
- 300%
- 250

0 10 20 30 70

40 50
Heap Size (Mb)

(c) GenCC

Figure 5.3..202 jess

500 F 100
A I 50
0 Lo
60

— 200
— 150

80

42



43

perform well with the jess benchmark. Since the space reduior the copy reserve
is smaller, the nursery can grow to be larger. This gives tready short-lived objects
more time in which to become unreachable, and as a resulalaiv more garbage to be

collected in each minor collection.

Variable Copy Reserve

As expected, the high infant mortality rate @02 jess leads to performance improve-
ments in the new garbage collection algorithm over the ti@thl methods. This is most
noticeable at small copy reserve sizes, since they allomuaingery to grow to the largest
size.

Figure 5.4(a) shows the performance of GenCC when the mmimursery copy re-
serve is used. This consists of eight pages, used to copy \AM=&hrelated objects. It
is noticeable that these few pages are often sufficient toqmera minor collection. This
can be seen by the fact that not all minor collections reqrorapaction.

For small mature copy reserve sizes (up to 70%), GenCC duotpes both traditional
collectors. It is important to note that this is despite thetfthat many of the minor
collections are compactions, meaning that they are lessezftithan the normal copying
nursery collection.

Once the nursery copy reserve is increased to 20%, as shdviguire 5.4(b) there are
no more compacting collections. As before, when the copgruesfor the mature space
is also small, the performance gains achieved by the newitligoare substantial. Only
when the mature copy reserve grows beyond 70% does the parice degrade to that
of GenMS. This is because the overhead of the copying/cotimgaaigorithm is greater
than that of the other collectors.

As the size of the nursery copy reserve is increased, thentatya gained by using
GenCC diminishes. Once the nursery copy reserve is set at 8% Figure 5.4(c), the

performance advantage at small mature copy reserve sizesies statistically insignif-
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icant. When both the nursery and mature space copy resae/éamge, the performance

gains from effective use of space are outweighed by the eagerbf the new algorithm.

Variable Heap Size

Figure 5.3(c) shows a comparison between the three calectocan be seen that
when the heap size is large there is little difference betviiee algorithms’ elapsed times.
This is not surprising, since there are very few garbagesctitins performed, so the dif-
ferences in collection times are swamped by the elapseddithe rest of the benchmark.

At smaller heap sizes (up to 30%) the garbage collector rrewuéntly enough to
differentiate between the algorithms. Here it can be seahttie generational copy-

ing/compacting algorithm outperforms both traditiongaithms.

5.4.3 _209.db

The _209.db benchmark reads an input file and creates a database inrgnemo
then performs various actions on this database, includisgrtions, deletions, sorts and

searches.

Traditional Collectors

Figure 5.5(a) shows the performance_d09.db when run with GenCopy. There are
few major collections once the heap size grows beyond 34lthil&8ly, in Figure 5.5(b),
it can be seen that there are no major collections once thedieagrows beyond 20Mb.
This indicates that much of the data in the benchmark is dived.

It is interesting to note that GenCopy runs significantlydagor this benchmark than
GenMS. This may be because of spatial locality effects indlldespace. The database
structure is likely to be allocated within a relatively shrt of the memory space. Since
the copying collector automatically groups objects by amtivity, the structure is likely

to fit inside the cache.
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Variable Copy Reserve

As seen above, GenCopy greatly outperforms the GenMS fa2db benchmark.
As such, it would be expected that GenCC, which shares maimgaharacteristics of the
generational copying collector, will do likewise. This gagition is supported by Figure
5.6(a). Here, the benchmark is run using a 38Mb heap and a 2@8ény copy reserve. It
can be seen that the performance of the new algorithm is ald@dical to the traditional
generational copying collector.

When the size of the nursery copy reserve is increased to 8% Figure 5.6(a),
there is still very little difference between the algorithnA slight performance decrease
is seen in Figure 5.6(c), where the nursery copy reserveuialéq the size of the nursery.

The minor differences observed when varying the copy restow this benchmark
indicate that allocation and garbage collection do not tgke significant portion of the
program’s elapsed time. This is supported by the sloweopmdnce of the generational
mark and sweep collector. The mark and sweep collector datday out related data in
contiguous memory locations. As a result, itis likely the performance decrease caused
by the loss of spatial locality would outweigh any differescaused by the allocation and

garbage collection times.

Variable Heap Size

Figure 5.5(c) shows the performance of the three colleetbien the heap size is var-
ied. As might be expected, the performance of GenCC is vemilaito GenCopy. How-
ever, as the heap size grows large, the new algorithm rugistislislower than GenCopy.
This is because the allocation rate is low enough that theheaels of GenCC slightly

outweigh the benefits.
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5.4.4 _213javac

The 213 javac benchmark runs the Java compiler included with Surrddicstem’s
JDK 1.0.2. It performs compilation to bytecode on a serieigpiit files several times.

Of the benchmarks presente@]13 javac exhibits the full effect of the generational
hypothesis most clearly. It has a fairly high infant mottatate, and those objects that
do survive tend to live for some time afterward. Additiogathe allocation rate is higher
than most of the other benchmarks. Itis, from a garbageat@iepoint of view, the most

interesting of the benchmarks.

Traditional Collectors

Figure 5.7(a) shows the performance_gi3javac when run with GenCopy. There
are frequent major collections at lower heap sizes. Beyeidts the number of major
collections drops to three, and then to two beyond 64Mb. Tépsesents substantially
more major collections than most other benchmarks. In Eiguv(b) there are fewer

major collections. This is because GenMS allows more of tarine space to be utilized.

Variable Copy Reserve

Since_213javac contains interesting behavior from a garbage cadlecttandpoint,
two sets of results are presented here. The first indicatepenformance of the new
collector when the heap is relatively small (36Mb), while #econd shows performance
for alarge heap (74Mb).

Figure 5.8(a) shows the performance of the generationaliegftompacting collec-
tor when a minimum copy reserve is used. As might be expeetenind half of the
collections are compacting collections, and as a resulpdr®rmance suffers. This is
an indication of why it is not advisable to use the copyingipacting collector when

frequent compactions are likely to be necessary.
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When a reasonable nursery copy reserve is used, as in Fi@bg,5t can be seen that
the copying/compacting collector outperforms both tiadil collectors. For all mature
copy reserve sizes below 80% there is a clear advantage tethalgorithm. As in the
other benchmarks, once the mature copy reserve becomeartmy the benefits of the
new algorithm are outweighed by the performance overhdtidsalso useful to note that,
even with a copy reserve as low as 20%, no compacting callestre required.

A larger nursery copy reserve is used in Figure 5.8(c). Haran be seen that until the
mature copy reserve reaches 50% there is a clear perforraduantage to GenCopy. This
shows that, even for comparatively large copy reservegdpging/compacting algorithm
benefits from its more effective space management.

Finally, Figure 5.8(d) shows that, for small mature copyeress, a performance ad-
vantage can still be gained when the nursery copy resertd 30&6. However, it can also
be seen that when both the nursery and mature copy resee/eghri.e., the collector is
behaving as a traditional generational copying collectbg performance is significantly
worse than the standard collectors. This is to be expedtetk the new algorithm comes
with overheads that are not encountered by traditionaéctuts.

Figure 5.9(a) shows a significant performance gain when éwe algorithm is used
with a minimal nursery copy reserve. Since the heap is ldlgge are no major collec-
tions required. The entire working set can be collectedgusimor collections over the
expanded nursery. While some of these minor collectionslwevcompaction, the time
saved by avoiding major collections more than compensatehé longer minor collec-
tions. Since there are no major collections, the matureespager grows. This makes
varying the mature copy reserve meaningless, since it iseegpd as a percentage of zero.

Figure 5.9(b) shows that with a larger nursery copy reseh\208& GenCC still out-
performs the traditional collectors. Since the number dections is still relatively small,
the triggering of an extra full collection can severely affthe elapsed time of the bench-
mark. This is seen when the mature copy reserve is set at 308te tHe heap layout

causes an additional full GC to be triggered, leading to atsuitially slower overall time.
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It is clear from this that the elapsed time of the benchmadoiminated by the muta-
tor rather than the garbage collector. In other benchméuksniclusion of an additional
collection has not caused such a major change in performdris would be expected,
since the size of the heap allows the mutator to perform & gesl of allocation without
interruption by the garbage collector.

Finally, Figure 5.9(c) shows that, for large heap sizes pdrdormance of GenCC is
comparable to that of the traditional collectors even wéityé copy reserve sizes. Since
the elapsed time is dominated by the mutator rather than dhector, the cost of the
copying/compacting collector is amortized over longer atmt periods, meaning that it

has a smaller effect on the total time.

Variable Heap Size

Figure 5.7(c) shows that, for the majority of heap sizes,rtéwe generational copy-
ing/compacting algorithm outperforms both the GenCopytaedsenMS collectors. This
is particularly noticeable at larger heap sizes where,@bdap size increases, so does the
advantage to the new collector. The reason for this can he lsgeomparing Figure
5.7(c) with Figures 5.7(a) and 5.7(b). GenCC performs fetwan half the number of
minor collections, and does not perform any major colletdio

It is also interesting that with 20% nursery and mature cagserves there are no
compacting collections. This means that the new algoritamgall the benefits of the

increased usable heap area without the cost of compaction.

5.4.5 _228jack

_228jack is a Java parser generator based on the Purdue ComepiietrGction Tool
Set. It is an early version of javacc. The benchmark usest@mgenerate the parser for

itself multiple times.
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Traditional Collectors

As can be seen in Figure 5.10(a228 jack has many minor collections, but very few
major collections. This indicates that objects tend to dieng, with few being promoted
to the mature space. Figure 5.10(b) shows a similar result.

As in the case 0f202jess, the high yield of minor collections should work to the
advantage of GenCC. The space available for the nursenpwilarger and, as a result,

objects will have more time to become garbage.

Variable Copy Reserve

In Figure 5.11(a) it can be seen that the performance of thergdonal copying/compacting
algorithm is better than the traditional collectors for #reapy reserve sizes. When the
nursery copy reserve is set at 20% and the mature copy reisdass than 60% GenCC
clearly outperforms the generational copying collectohé the mature copy reserve is
larger, the performance is comparable to that of the geineedtcopying algorithm, while
still outperforming GenMS.

Figure 5.11(b) shows the performance improvement when tingeny copy reserve
is larger. As would be expected, the improvement is less. d¥ew for small mature
copy reserves (those smaller than 30%) GenCC still outpeddoth traditional collec-
tors. However, the performance difference between the deotor and the generational
copying collector is minimal. Only at mature copy resenaesilarger than 90% does the

performance become comparable to the GenMS collector.

Variable Heap Size

In Figure 5.10(c), it can be seen that GenCC outperformsaberaditional collectors
for almost all heap sizes. At larger heap sizes (those griate 60Mb) the elapsed times
of the three collectors converge. A this point the heap hasrbe large enough that the

time spent in garbage collection is no longer significant.



Run time (ms)

Run time (ms)

Run time (ms)

6000+ 350
300
250
j%2]
(8]
2009
o
@
Qo
150 €
4
100
50
0
0 10 20 30 40 50 60 70 80
Heap Size (Mb)

(a) GenCopy
6000+ 350
5500i H Minor GCs| |
5000 H Major GCs| — 300
4500 %

] - 250
4000

F j%2]

1 (8]
3500 20092

4 k]
3000 o o)

.| Qo
2500 1505

4 4
2000

b — 100
1500
1000 L 50
500

0 0
0 10 20 30 40 50 60 70 80
Heap Size (Mb)

(b) GenMS
6000+ 350
i — GenCC L

5500f — GenCop
5000 [~ 300
4500 |
B = 250
4000 F (]
i Normal Minor GCs Q
3500 Compacting Minor GCs ~ — 2009
.| N o
3000 W Normal Major Gps [ 5
i W Compacting Major GCs .g
2500 1505
4 4
2000 [
b — 100
1500
1000 L 50
500 L
0 0
0 10 20 30 70 80

40 50
Heap Size (MB)

(c) GenCC

Figure 5.10.228 jack

56



Time (ms)

Time (ms)

5000 T T T I T I T m 150
i —— - 140
4500—E =S = = = = - e S B
N — 130
4000 — 120
- W Normal Minor GCs — GenCC C 110
3500 Compacting Minor GCs GenCopy i
i B Normal Major GCs — GenMS — 100
3000 B Compacting Major GC5 " 90
I - 80
2500
i 70
2000 60
i 50
1500
N 40
1000 30
20
500
0 0
0 20 40 60 80 100
Mature Copy Reserve (%)
(a) 20% nursery copy reserve
5000 T T I T I T I T m 150
T o ——
= =——=——3-140
e e s - T
4500—= = = T -
N — 130
4000 — 120
- W Normal Minor GCs — GenCC C 110
3500 Compacting Minor GCs GenCopy i
i B Normal Major GCs — GenMS 100
3000 B Compacting Major GCs 90
i 80
2500
i 70
2000 60
i 50
1500
40
1000 30
20
500
10
0 0
0 20 40 60 80 100

Mature Copy Reserve (%)

(b) 60% nursery copy reserve

Figure 5.11. 213 javac with 36Mb heap

Number of GCs

Number of GCs

57



58

As seen before, there are no compacting collections redjwitesn the nursery and

mature copy reserves are both set to 20%.

5.5 Summary of Results

In general, the results show that the generational copyamgpacting collector with
well-chosen parameters performs well when compared taaldibnal collectors. In the
majority of benchmarks, GenCC has elapsed time similartbetier than, both GenCopy
and GenMS.

It can be seen from the variable copy reserve graphs that Wigecopy reserve size
is too small the compacting collector is triggered too freafly. This leads to a perfor-
mance loss, since the overhead of the compaction is far higha a normal collection.
Similarly, when the copy reserve size is too large, the begeafned by freeing up space
is insufficient to account for the additional implementataverheads of the GenCC algo-
rithm. Therefore, it can be seen that an optimal copy resareeis as small as possible,
while still preventing frequent compacting collectiondiefexperiments have shown that
this size is 20% for these benchmarks.

It can also be observed that the GenCC collector shows thé impsovement over
the GenCopy and GenMS collectors when there is a high ratbocktion and when the
object lifetimes obey the weak generational hypothesighikcase, the additional time
taken for the larger nursery space to fill allows longer fgeots to die. As a result, fewer
objects are promoted to the mature space, and there is mare apailable to the nursery

on subsequent allocation cycles.
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6 CONCLUSIONS

The run time performance of a generational copying garbagkector can be improved

by reducing the size of the copy reserve

6.1 Summary

This thesis presented the design, implementation and maasat of an a new gen-
erational copying garbage collection algorithm, in whidhnealitional Appel-style collec-
tor was improved by reducing the necessary copy reservere@oess was maintained
through the use of a compacting collector in the rare ocoadioat the smaller copy re-
serve was insufficient. The thesis outlined the foundatigmsn which the work was
based, detailed the reasoning behind the design, outlomaé eteresting features of the
implementation and presented experimental results.

Through the implementation and measurement of the gart@igetor, the thesis has
been proven to be correct. By reducing the copy reserve eadrbf a generational copy-
ing collector the overall performance can be improved. &Hellow some conclusions

drawn through the evaluation of the experimental results.

6.2 Copy Reserve Size

While it is important to minimize the space used for the cogserve, it is not always
beneficial to eliminate it completely. The experimentatiitsssshown in Chapter 5 indicate
that if the copy reserve is too small performance sufferss iBunderstandable, since the
compacting collection takes significantly longer than ammalrcollection, and so too many

compactions will hurt performance.
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Similarly, the performance of the collector suffers if thepg reserve is too large.
While in theory a collector with nursery and mature copy resg set to 100% should per-
form exactly as a traditional Appel-style collector theugsshow that this is not the case.
The implementation adds overheads such as increased coyjethe space manage-
ment in order to allow the block copy mechanism and additiamak performed during
the scanning stage. These overheads are necessary for ppagyge management in the
presence of remapping; the traditional collectors are tbdoid them by mapping a vir-
tual address range once and then never releasing it. Whesogyereserve is too large,
these overheads outweigh any performance improvement.

From the results in the previous chapter, it can be seennhat benchmarks exam-
ined, a 20% nursery and mature copy reserve will accommadblige objects without
compaction. This copy reserve size generally allows en@pgte to be repartitioned
over the traditional generational collector to show a penfnce improvement, while not

suffering the overhead of compaction.

6.3 Mutator Effects

It can be seen from the results presented that the chasdaterof the benchmark
have a large effect on the performance of the collector. iBhiemonstrated even for the
relatively simple benchmarks shown.

As described in201.compress benchmark (Section 5.4.1), the new collector wloes
perform as well on benchmarks with a high survival rate asé@sdon those with a low
survival rate. Even when the survival rate does not triggenmaction it leaves less space
for the collector to use. In these cases the savings gainestloging the copy reserve are
smaller, and the implementation overheads dominate.

Benchmarks such ag13 javac, however, allow the advantages of the new algorithm
to be exploited. In this case, the object lifespans closelyfamm to the generational

hypothesis. Few nursery objects are promoted, meaninghbahature space does not
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grow quickly. This increases the space available for théectdr, and maximizes the

improvement seen by reducing the copy reserve.

6.4 Future Work

There remain several avenues of research that could beampedafter this work.

An adaptive system could be implemented. This would meabrsurvival rate of a
benchmark over the course of its execution and tune the ag®rve appropriately. The
design of the algorithm allowed for this possibility by seagang the mature and nursery
copy reserves. This would allow flexibility in tailoring dacopy reserve in response to the
benchmark. It would be interesting to see how great an ingrant would be measured
in performance over the current system with fixed 20% copgries.

It would also be of interest to run larger benchmarks usinggifistem. The stability
of Jikes RVM at the time of writing meant that it was not possib run large benchmarks
for enough iterations to gain a statistically significardule However, it may be that

improvements in Jikes RVM make this possible in the future.
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