
Classifying Java Class Transformations
for Pervasive Virtualized Access

Phil McGachey
Department of Computer Science

Purdue University
West Lafayette, IN
phil@cs.purdue.edu

Antony L. Hosking ∗

Department of Computer Science
Purdue University
West Lafayette, IN

hosking@cs.purdue.edu

J. Eliot B. Moss
Department of Computer Science
University of Massachusetts

Amherst, MA
moss@cs.umass.edu

Abstract
The indirection of object accesses is a common theme for target
domains as diverse as transparent distribution, persistence, and pro-
gram instrumentation. Virtualizing accesses to fields and methods
(by redirecting calls through accessor and indirection methods) al-
lows interposition of arbitrary code, extending the functionality of
an application beyond that intended by the original developer.
We present class modifications performed by our RuggedJ

transparent distribution platform for standard Java virtual ma-
chines. RuggedJ abstracts over the location of objects by imple-
menting a single object model for local and remote objects. How-
ever the implementation of this model is complicated by the pres-
ence of native and system code; classes loaded by Java’s boot-
strap class loader can be rewritten only in a limited manner, and
so cannot be modified to conform to RuggedJ’s complex object
model. We observe that system code comprises the majority of a
given Java application: an average of 76% in the applications we
study. We consider the constraints imposed upon pervasive class
transformation within Java, and present a framework for systemat-
ically rewriting arbitrary applications. Our system accommodates
all system classes, allowing both user and system classes alike to
be referenced using a single object model.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming

General Terms Design, Languages, Measurement

Keywords Program transformation, Java, Object model

1. Introduction
Rewriting whole applications to augment them for transparent dis-
tribution or orthogonal persistence often relies on having all objects
implement a single uniform object model. For example, orthogonal
persistence relies on all instances having the capability to survive
from one execution of the program to another, meaning that they

∗ This research partially done while on leave as Visiting Fellow, Department
of Computer Science, Australian National University

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’09 October 4–5, 2009, Denver, Colorado, USA.
Copyright c© 2009 ACM 978-1-60558-494-2/09/10. . . $10.00

must all have the capability of being stabilized for persistent stor-
age. Similarly, transparent distribution relies on all instances hav-
ing the capability of remote reference and invocation. Such rewrites
most easily apply when extraneous barriers to transformation can
be ignored, such as system dependencies that constrain what code
can be rewritten (e.g., Java system classes or native code).
Here, we consider how to transform Java applications such that

the vast majority of object instances can be manipulated via a uni-
fied object model that virtualizes every direct field access or method
invocation in the original program. We convert those accesses and
invocations into interface invocations in the transformed program.
Virtualized manipulation permits straightforward interposition of
desired functionality to implement extensions such as transpar-
ent distribution or orthogonal persistence. The only exceptions to
pervasive virtualization in our scheme are those instances whose
classes we determine need not be rewritten, either for optimization
purposes or due to domain-specific constraints. In the absence of
such constraints, we are able to handle all of the classes that com-
prise typical Java applications, including classes that are imported
from the standard Java run-time environment (JRE) libraries. Han-
dling these is particularly critical since the majority of classes that
make up typical Java applications (76% on average for the standard
benchmarks we consider) belong to the JRE. Yet, it is non-trivial to
encompass these classes because Java’s class loading restrictions
and the presence of native code limit what parts of the JRE can be
rewritten. When direct rewriting is not possible we rely instead on a
series of transformation templates, tailored to the different charac-
teristics of source classes, which allow us to implement the uniform
object model throughout an application without directly modifying
constrained classes.
We transform the classes of an application at class-load time, us-

ing a specialized rewriting class loader. Deferring transformations
until load time permits flexibility in rewriting; we can transform
classes differently depending on the circumstances. We addition-
ally perform our transformations in a VM-agnostic manner. Thus,
when implementing transparent distribution, we readily support a
heterogeneous collection of hosts, so long as their class libraries
offer the same APIs. We do not modify the VM in any way, so our
implementation is portable and easily-maintained.

1.1 Contributions
Our contributions toward pervasive transformation of large appli-
cations include:

• An object model that allows virtualized access to the objects
throughout a system, enabling the developer to interpose arbi-
trary code that tailors the functionality of the application exe-
cuting on that system.

System Boundary
java.util.HashMap

javax.swing.JPanel

sun.audio.AudioData

org.xml.sax.XMLReader

dacapo.jython.Main

org.eclipse.core.runtime.EclipseStarter net.sourceforge.pmd.PMD

spec.jbb.JBBmain

Bootstrap
Class Loader

User Classes
jbb.jar

dacapo.jar
...

System Classes
rt.jar

Classes.jar
...

System
Class Loader

Java Virtual Machine

Figure 1. User and System Classes

System Boundary

Java Virtual Machine

UserClass

SystemClass

(a) Before transformation

SystemClassWrapper UserClassWrapper

System Boundary

Java Virtual Machine

UserClass

SystemClass

(b) After transformation

Figure 2. Transforming classes

• Enumerating major barriers to transforming applications, specif-
ically the presence of native code and system library code that
cannot be rewritten.

• Transformation templates that allow such classes to conform to
our object model, and discussion of how transformed classes
can inter-operate with unmodified code.

• The classification algorithm that determines which source
classes should be transformed in which ways.

• Finally, an evaluation of the results of the classification process,
with insights into the sources of overhead that accrue due to
virtualized access. For SPECjbb2005 [6], we find that the fully-
transformed benchmark produces 64% of the throughput of the
unmodified benchmark, showing that our approach is feasible
in practice.

1.2 Terminology
We use (and extend) various terms to characterize Java classes,
which we now briefly define.

1.2.1 System versus user classes
Figure 1 gives a simplified overview of class loading within our
system. We split classes into two sets, system and user classes, de-
pending on the class loader that defines them. System classes can be
thought of as those in the Java standard libraries, and so are loaded
by the virtual machine’s bootstrap class loader [3]. User classes,
produced by the application developer, form the remainder of the
application and are loaded by the user-defined system class loader.
This distinction is vital when considering load-time transformation,
as a user-level class loader can modify only user classes.
Within the Java VM itself we define the system boundary as a

logical distinction between the two sets of classes; user classes exist
above the system boundary, while system classes exist below. This
abstraction is convenient when considering interaction between
rewritten user and non-rewritten system code. We can enumerate
the ways in which references can cross the boundary, and so ensure
that rewritten references are never passed to system code.

1.2.2 Transformation
Figure 2 shows the implementation of wrapping; a common ap-
proach to handling system classes within a transformed application.
In Figure 2(a) we see one system and one user class before apply-
ing any transformations. Figure 2(b) shows the result of wrapping
each object. Class SystemClassWrapper contains a reference to
the unmodified SystemClass. Since the wrapper was not gener-
ated by the bootstrap class loader it exists above the system bound-
ary, with the reference crossing the boundary. In both cases, we
refer to the original classes SystemClass and UserClass as the
base class, while the two generated classes are wrappers.
Additionally, within our system we refer to SystemClass

Wrapper and UserClassWrapper as new types. They are gen-
erated at load-time by our rewriting class loader, and thus can
implement our object model. On the contrary, SystemClass and
UserClass are old types, as they come from the original appli-
cation. Both sets of types are necessary; new types implement the
uniform object model that allows all classes to be referenced in the
same manner, while old types can be passed safely to system or
native code that has not been rewritten to be aware of the presence
of generated code. We maintain a strict separation of the two sets
of types. User code refers exclusively to new types, while system
code refers exclusively to old.

1.3 Target Domain: Transparent Distribution in RuggedJ
We apply the pervasive virtualization transformations described
in this paper to RuggedJ, our prototype transparent distribution
framework for Java [4]. RuggedJ rewrites and distributes stan-
dard Java applications to run across a cluster of machines: we
allow developers to deploy their applications onto heterogeneous
and dynamically-changing computing platforms, enabling those
applications to be re-targeted seamlessly for different distribution
topologies.
A RuggedJ network consists of a number of nodes, each com-

prising a single instance of some Java virtual machine running on a
hardware host in the cluster. Each node contains a bytecode rewrit-
ing class loader and a run-time library; the class loader supplies
classes rewritten on-demand, while the run-time system interacts

Original
Application

Transformed Application

Class X

Interface X

Class X$local Class X$stubClass X$proxy

Figure 3. The RuggedJ object model

with other nodes to co-ordinate application distribution, as well as
providing library functionality to the rewritten bytecode.
Distributing an application requires transforming all of its

classes; not only do we add, remove, and modify code, we trans-
form fields and method descriptors and generate new classes. Pro-
gram transformations of this scale require not only modification of
user code but also manipulation of system code. We distribute ap-
plications by abstracting object location: transformed application
code manipulates local and remote objects transparently, executing
the same code against those objects regardless of their location.
Our object virtualization transformations allow the same flexibility
between user and system classes; system and user objects can be
manipulated in a uniform manner both by local and remote code.

2. The RuggedJ Object Model
The ability to distribute an application in RuggedJ stems from
the uniform object model that we apply to all objects. Figure 3
shows the transformation of a single user class X to conform to
the RuggedJ object model. While we discuss this object model in
the context of distributed Java, the theory behind it is equally ap-
plicable to other domains that use virtualization of object accesses.

2.1 Generated Classes
For each class within the original application we generate three
classes and one interface. Further, for distribution within RuggedJ
we generate an additional three classes and an interface for the
static parts of the class; this is necessary for distribution, but may
not be for other applications of the object model. We discuss static
data in Section 2.4.
The generated interface, X, contains the signatures of all the

original instance methods, along with new accessor methods for
all the original instance fields. It uses the same name as the original
class—this simplifies later rewriting of classes that refer to the orig-
inal class X, since we do not need to update type names in method
signatures, field definitions, or casts. Interface X is implemented
by three different representations of the members of the original
class. The first, X$local, contains rewritten implementations of
the instance methods of the original class, plus implementations of
the new field accessor methods. In the rewritten application, an in-
stance of X$local corresponds to an instance of class X from the
original application: an X$local object holds all the data present
in an old instance of X.
The second implementing class is used to refer to remote in-

stances on other nodes: X$stub contains forwarding implementa-
tions of all the methods of the new interface X, which simply call
the corresponding method on a remote X$local instance. Within a
distributed application, the local and stub instances have a 1:n re-
lation: any local object can be remotely referred to and invoked by
stubs from the n nodes in the cluster.
The third (and final) new class is X$proxy. A proxy encapsu-

lates a reference to either a local or stub (remote) instance, and
its methods simply forward all calls to the target local/stub. Proxy
indirection simplifies dynamic migration of instances to different
nodes: a migratable instance is referred to by proxy, so upon mi-
gration only the reference in the proxy need be updated. Rewrit-
ten application code types all references to the three implementing

S[]

T[]
Interface gen.Array_of_T_1

Class gen.Array_of_T_1_local

Class gen.Array_of_T_1_proxy

Class gen.Array_of_T_1_stub

Interface gen.Array_of_S_1

Class gen.Array_of_S_1_local

Class gen.Array_of_S_1_proxy

Class gen.Array_of_S_1_stub

Original
Application

Transformed Application

Figure 4. Generated array types

Original
Application

Transformed Application

V[][]

Interface gen.Array_of_V_2

Class gen.Array_of_V_2_local

Class V

Interface I

Class U

Interface gen.Array_of_V_1 []Interface gen.Array_of_I_2

Interface gen.Array_of_U_2

Class gen.Array_of_U_2_local

Interface gen.Array_of_U_1 []

Figure 5. Multi-dimensional arrays with interfaces

classes using interface X. However we can bypass the proxy in-
stance for objects that are known not to migrate. As all three classes
implement interface X we can use them interchangeably without
modification to any calling code. Determining which objects may
require proxies is beyond the scope of this paper. In RuggedJ we
use programmer input to determine how to partition an application
across the network; other systems may use a whole-program anal-
ysis to find where proxies are required.
All of the classes in an application can be adapted to imple-

ment the RuggedJ object model. As we shall see, we use several
techniques to generate local classes. However each implementation
strategy produces a class that implements the corresponding inter-
face, allowing proxy and stub classes to interact with any style of
local class in the same manner. As the designs of stubs and prox-
ies do not vary between implementation techniques, they are so
straightforward as to be uninteresting. We therefore focus only on
the local classes.

2.2 Referencing transformed objects
Within rewritten code, we exclusively refer to values with gener-
ated interfaces using that interface. This allows us to vary the im-
plementations of these interfaces among several alternatives (local,
proxy, and stub classes) without impacting code elsewhere in the
system.
Additionally, we use interfaces as a means of maintaining the

class hierarchy from the original application. While some of the
transformations we present in Section 3.2 do not maintain the
original relationship between their local classes, we ensure that
their generated interfaces do. Thus, since we refer to such classes
exclusively by interface, we can perform subtype and instance
checks correctly.

2.3 Arrays
We convert array types to new array classes, which allow us to
refer to them as we do any other transformed class. The new
array classes conform to the RuggedJ object model; we generate
an interface, local class, stub class, and proxy for each, as shown
in Figure 4. A one-dimensional array type T[] is represented by
an interface Array of T 1, while a two-dimensional array type
T[][] is represented by Array of T 2. An array type comprises
both an element type and the number of dimensions of the array,
so we encode both of these properties in the name of the new array
types. Java defines subtyping among array types having the same

Original
Application

Transformed Application

Class X

Interface X$static

Class X$static_local Class X$static_stubClass X$static_proxy

Figure 6. Handling static data for distribution

dimensions only if the element types are subtypes. We capture this
by making any generated array class for a subtype directly extend
the generated array class for its supertype (both having the same
dimensions).
We implement arrays using wrapping: the generated array class

wraps a regular Java array having the same component type as the
wrapping array class. The implementation also provides methods
to obtain the array length and to perform the standard operations
that arrays inherit from Object, such as clone.
Figure 5 expands on the handling of arrays, showing the classes

generated for a two-dimensional array type V[][] whose element
type V extends U and also implements an interface I. We omit the
new stub and proxy classes for clarity. This example highlights
some interesting features of our generated classes.
Looking at the wrapped array within the local class, we see

that the component type of the wrapped array is the same as that
of the wrapper, with one less dimension. This mirrors the Java
definition of arrays as a single dimension of components, where
each component can be a sub-array. A useful consequence of this
approach is that we do not place restrictions on the implementations
of the components of the wrapped array, so long as they implement
the appropriate interface. Thus, in RuggedJ, sub-arrays can be
distributed across different nodes, regardless of the location of their
enclosing array.
Figure 5 also illustrates that the old subtyping relationships

between array elements and interfaces must also be represented
in the new types. When passing array instances as arguments it
is necessary for Array of V 2 to implement Array of I 2. If
an original method signature expects an array argument whose
elements implement a given interface I, then in the rewritten new
method we will expect an argument that implements some interface
Array of I n (for some dimension n), so capturing the proper
type constraint. Within that new method all aaload operations are
rewritten as get invocations on the argument. The type constraint
ensures that any argument passed to the new method will have an
appropriate get method to return a value implementing I.

2.4 Static Data
A class’s static state presents a complication in a distributed setting,
since an application must see just one version of the static state.
Simply rewriting class fields as static fields in the transformed
application will result in each node having a separate loaded class
with that field, whose states will not be coherent across the nodes.
We approach this issue through the use of static singletons. We
extract the static parts of each class to form a single instance, which
we handle as any other object within the system. The state of this
singleton object represents the static state of the original class, and
can be accessed from any node.
Since static singletons are required only to maintain a canonical

version of static data, we do not need to create a singleton for a class
that has no static fields. Our analysis shows that static singletons are
required in only 18% of classes in the applications we studied.
Static singletons implement the RuggedJ object model as shown

in Figure 6. Interface X$static complements the instance inter-
face X; it contains the static members of original class X. We trans-
form the static members of the original class into instance members

of X$static local, and use the RuggedJ run-time library to en-
sure that only one instance of that class is ever created. Thus, sim-
ply rewriting all static invocations to use the static singleton ensures
that the static data is indeed unique.
The stub class X$static stub performs the same remote ac-

cess function as its instance counterpart. The final class in Figure 6,
X$static proxy, acts as a per-node cache for the appropriate
static local/stub object. We never instantiate X$static proxy; it
simply contains a static field, providing a means to obtain a pointer
to the appropriate static singleton.
RuggedJ’s static singletons are an orthogonal concern to the

main rewriting process that we have described. While the separa-
tion of statics is necessary within a distributed setting, it may not be
when working in other contexts. The program transformations that
we describe in this paper are equally valid with or without static
singletons.

3. System Classes
The presence of system code within an application complicates
the implementation of the RuggedJ object model. In this section
we examine the issues involved when handling system code, and
present the transformations that allow us to integrate system code
into our object model.
We examine the restrictions imposed upon our system before

we consider the (presumably) more interesting user code, because
we find that system code is generally subject to more constraints
than user code. Thus, as we will see in Section 5, the majority
of constraints on user code are caused by dependencies on system
classes.

3.1 Barriers to transformation
The fundamental problem concerning the transformation of system
classes relates to class loading. System classes are loaded by the
virtual machine’s bootstrap class loader, which we cannot modify
without changing the VM. This would tie us to a particular VM
implementation, making our system less portable.
While we cannot implement a custom class loader for system

code, we are able to perform limited rewrites on the majority of
system classes. By implementing a Java VM Tool Interface agent
[8] we can intercept classes before they are loaded. However we
cannot perform the full range of transformations on these classes.
For example, we can only modify existing classes rather than gen-
erating multiple new classes. Additionally, and more crucially, we
cannot insert references to non-system classes. Due to the hierar-
chial nature of Java class loading (as discussed by Liang and Bracha
in [3]) a class can reference only those classes loaded by its own,
or a parent of its own, class loader. Thus a system class loaded by
the bootstrap class loader can reference only other system classes.
We do, however, make use of a JVMTI agent to perform some

minor modification to certain system classes within the applica-
tion. The implementation of some transformations, for example, is
complicated by Java’s access control mechanism; if we change the
package to which a class belongs, we can no longer access other
classes with default access in the original package. We use a JVMTI
agent to bypass these restrictions. Such a modification does not re-
quire reference to any additional classes, and does not alter pro-
gram semantics, because the access control was checked statically
at compile time.
A second barrier to rewriting system classes is that some

of these classes are effectively hard-wired into the VM. The
bytecode that represents classes contains direct references to
java.lang.String and java.lang.Class; both appear in the
constant pool of a class file, and can be directly accessed using the
LDC bytecode (that directly loads a constant to the stack). Again,
changing the representation of these classes would require modi-

Class S Class UClass T

Interface gen.S Interface gen.UInterface gen.T

Class gen.S$local Class gen.U$localClass gen.T$local

System Boundary

(a) Wrapping class hierarchy

Class S Class UClass T

Interface gen.S Interface gen.UInterface gen.T

Class gen.S$local Class gen.U$localClass gen.T$local

System Boundary

(b) Extending class hierarchy

Interface gen.S Interface gen.UInterface gen.T

Class gen.S$local Class gen.U$localClass gen.T$local

System Boundary

(c) Promotable class hierarchy

Class S Class UClass T

System Boundary

(d) Direct class hierarchy

Figure 7. Class hierarchies

fying the VM to understand the modified versions, which violates
our goal for being able to run on any (unmodified) Java VM.
Interestingly, native and reflective code do not present any diffi-

culty at the system level. Both types of code could break a system
that transforms classes (and, indeed, must be accounted for within
user code). However, since we do not rewrite system code, native
and reflective operations perform as they would in an unmodified
system.

3.2 Rewriting Templates
Our class transformations use four basic techniques to obtain new
types, shown in Figure 7:

• The local instance of a Wrapping class holds a reference to a
paired instance of the old type.

• Extending classes implement the object model through subtyp-
ing, with the generated local class extending the original system
class.

• Promotable classes are not referenced by native code or by any
other system classes, and so can be turned into user classes.

• Direct classes are not transformed, and so do not conform to the
object model, solely because it does not make sense to for the
target domain (the other transformations can be applied to such

classes, but would result in unnecessary overhead for the target
domain). In a distributed system, immutable objects such as
Integer are an example; in a persistent system, open network
connections would likely be Direct.

3.2.1 System Wrapping
Wrapping is the most straightforward of the transformation tem-
plates and is shown in Figure 7(a). In this approach, a set of classes
are generated above the system boundary, in a special user-level
package chosen to prevent name conflicts. For conciseness we re-
fer to this package as gen. The base class is loaded by the bootstrap
class loader, and is not modified. The local class contains new-type
implementations of all the methods of the base class, each of which
translates the arguments from new to old, invokes the method on
the wrapped base object, then performs an old-to-new translation
on the return value if necessary. In this way a given object can be
referred to by new type above the system boundary, and by old type
below.
Unwrapping objects when passing from user to system code

is a trivial operation. However, we must be more careful when
performing the inverse; wrapping objects that are passed from
system to user code. In this case we need to ensure that a given
object that has previously been wrapped is reunited with its original
wrapper; to do otherwise would create two wrappers for a single
base object, which would not preserve identity. To this end, we
maintain a hash table against which we check for existing wrappers
before generating a new one.
As with all classes that conform to the RuggedJ object model,

wrapping classes maintain the inheritance hierarchy of the original
through their generated interface. That the local classes also sub-
class the relevant local class is merely a convenience—if they did
not, every wrapper would have to implement redirect methods for
the methods of every superclass, rather than just those in its base.
The System Wrapping template can be considered the “uni-

versal solvent” for system classes. We can generate wrappers for
any system class, which ensures that all objects in the application
can conform to our object model. Unfortunately, the SystemWrap-
ping template also carries the highest overhead (as objects must
be wrapped and unwrapped, which can be expensive), making the
other templates more desirable.

3.2.2 System Extending
The System Extending template is an alternative means of handling
system classes that eliminates the overhead of unwrapping. Under
this technique, the generated local class extends the original base
class, as shown in Figure 7(b). The generated interface and local
class conform to our object model, while the base class remains
unchanged. Note that in this case there is no inheritance relation-
ship between the local classes; this is not important because the
interfaces maintain the class hierarchy above the system boundary,
while the base classes maintain it below.
An extending class can be passed to system or native code

without any conversion process, since it extends the unmodified
base. However we cannot create a new instance of an extending
class within system code (as we cannot rewrite the allocation site
to refer to T$local rather than T). This limits the applicability of
this template to system classes that are only ever allocated above
the system boundary. Further, while we obviously cannot extend
final classes, we can also not override final methods. This may
be an issue if a final method includes an old type as an argument
or return value; the object model requires that such methods be
overridden in order to be called by user code, which only uses new
types. Thus, while the System Extending template is preferable to
System Wrapping, due to its lower overhead it can be used only in
limited cases.

3.2.3 Promotable
Promotable classes are a subset of system classes that are not
referenced by any other non-Promotable system class or by native
code. In this case we know that any reference to a Promotable class
will either be in user code or in other Promotable classes. We can
therefore move Promotable classes above the system boundary (by
renaming their classes to form part of the gen package), and treat
them as we do any other user class. Promotable classes often exist
in cliques within the system libraries, with no external uses from
other classes in the libraries. An example that we have encountered
is the Java XML processing library. If an application uses XML
processing, much of the library is loaded into the VM. However
these classes refer only to one another. Thus, we can promote these
classes en-masse.
The structure of a Promotable class is shown in 7(c). This is

the most straightforward implementation of the object model, with
each local class implementing its interface. While the inheritance
hierarchy is maintained by generated interfaces, the local classes
retain the original relationship. In the System Wrapping and Ex-
tending templates the actual method implementations were located
in the base classes, Promotable local classes contain complete im-
plementations of all their methods. Thus, Promotable classes must
extend their parent so as to have their parent’s methods available.
The Promotable template is similar to the Twin Class Hierarchy

(TCH) approach proposed by Factor et al. [2], in that it loads system
classes into the user space in order to perform transformations.
However there is one important difference: the TCH system allows
both modified and unmodified versions of the code to exist within
a VM. We promote only those classes that are not used by other
system code, so the promoted version is the only one in the system.

3.2.4 System Direct
The final set of classes, System Direct, do not conform to the
RuggedJ object model. This template exists as an optimization; as
we have seen, any class can conform to the object model through
the System Wrapping template. However there are classes for
which it is not necessary to conform to the object model. For
example, when distributing an application with RuggedJ, we do
not want to transform immutable objects. If we know that an ob-
ject will never change, we can replicate it on multiple nodes, and
eliminate the overhead of remote method calls. Similarly, there
are classes that are closely tied to the individual VM (such as
java.lang.Class) that do not make sense to reference remotely.
Similar examples can be imagined for other contexts in which these
transformations may be used.
Those classes we designate to be System Direct are not trans-

formed in any way (as shown in Figure 7(d)). As such they do not
incur any overheads, and can be freely passed between system and
user code, as well as to native methods. However, since they do not
conform to the RuggedJ object model, they cannot be modified to
extend the original application’s functionality.

3.3 Subtyping
Since all of the transformation templates described above rewrite
classes differently, we cannot freely “mix and match” techniques
between super- and subclasses. Each rewriting technique therefore
imposes restrictions on the classes of its hierarchy.
Since System Direct classes do not conform to the RuggedJ

object model, we must ensure that they have only other Direct
classes in their hierarchy. To do otherwise would violate our rule
that inheritance is maintained through interfaces; a Direct class has
no interface, and so cannot fit into this scheme.
Likewise, System Wrapping classes can have only other Wrap-

ping classes in their hierarchies. A Wrapping class cannot extend
an Extending or Promotable class in case it is returned to user code

from system code. There would be no way to produce a new-type
representation of the Extending or Promotable superclass. The ar-
gument as to why a Wrapping class can only be extended by other
Wrapping classes is similar. An Extending class that extends a
Wrapping class removes our ability to translate from an old type to
a new. In the case of a Promotable subclass, the local class would
have to subclass the Wrapping subclass (since a Promotable object
does not have a base class). This relationship would be lost when
the base class was unwrapped.
A System Extending class can extend only another Extending

class, since the local class must directly extend the base, and we
cannot change the superclass hierarchy of the base class. How-
ever an Extending class can act as the superclass for a Promotable
class; the System Extending template does not require unwrapping,
so a Promotable local class can extend a System Extending local
class without any loss of information should the object be passed
to system or native code. This further indicates the usefulness of
the System Extending template over SystemWrapping. Promotable
classes offer more options when extending an application’s func-
tionality, and by increasing the number of Extending classes, we
likewise increase the number of potentially Promotable classes.
Our discussion of subtyping must also consider the original in-

terfaces implemented by classes (as opposed to those generated as
part of the RuggedJ object model). We rewrite interfaces in much
the same way as classes: user-level interfaces contain signatures
using new types, while system-level interfaces contain old types.
Thus, system-level interfaces must be System Direct (if they con-
tain only primitive or Direct arguments and return values) or Sys-
tem Extending (if they contain Extending, Wrapping, or Uncon-
strained arguments).

3.4 Classification
We refer to the process by which templates are chosen for each
class as classification. A given class’s classification may be deter-
mined by its subclasses or its references from elsewhere in the sys-
tem, so we require knowledge of the entire application. We run the
classification algorithm only on the classes that make up the ap-
plication; analyzing the entire Java class libraries would introduce
false dependencies, and limit our flexibility in transforming the ap-
plication. We need to run the classification only once per applica-
tion for a given set of class libraries.
We arrange the various classification templates using a partial

ordering. Direct classes are handled first, as they are an optimiza-
tion and otherwise fall into at least one other classification. Next
we find Promotable classes, which maximize the flexibility of our
rewrites, then Extending classes that handle the remaining classes
with less overhead. Wrapping classes account for the remainder.
The algorithm is iterative, since changes to the classification of

one class may affect others. We present the algorithm as a decision
graph, which produces the classification for a given class, assuming
that all other classes have already been correctly classified. To
generate a full classification, we simply run the algorithm until a
fixed point is reached. The decision graph for system classes is
shown in Figure 8. Note that this graph was designed for RuggedJ,
with Direct classes chosen due to immutability. In other contexts
the determining factors for Direct classes may be different.

4. User Classes
The transformation of system classes constrains that of user code.
As we discussed in Section 3.3, the classification of a given type
can affect the classification of its super- and sub-classes. This
requirement extends above the system boundary, meaning that we
need to create equivalent versions of the four templates within user
classes. Additionally, native code can be present in user as well as
system code, which limits our ability to rename and rewrite classes.

System
Wrapping

System
DirectPromotableSystem

Extending

Natives?

Yes

Yes

Direct in
hierarchy?

Yes

No

Hierarchy
contains

Wrapping? Yes

No

Start

No

No

Referenced by
system code?

Yes

No

Superclasses all
Extending or
Promotable?

No

Subclasses all
Promotable?

Yes

Yes

No

Passed to interface
implemented by or

method overridden by
user class?

Yes

No

No

Yes

Returned by
native code?

No

Yes

Returned to user
code by system

code?

No
Yes

Interface?

Argument or
return value of
system class?

Yes
No

Yes

No

Extending in
Hierarchy?

No
Yes

Immutable or
VM-specifc?

Yes

No

Final?

Accessible eld
of system class?

Figure 8. Classification for system classes

The four templates for rewriting user code closely mirror those
for system. Classes can be User Wrapping, User Extending, User
Unconstrained (the user-level equivalent of Promotable), or User
Direct. As might be expected, occurrences of user-level native code
or the subclassing of system classes are rare. As we show in Section
5, the vast majority of user classes are either User Direct or User
Unconstrained.

4.1 Rewriting
User code differs from system code in one important manner: the
classes are loaded by our user-level class loader, and so can be
rewritten. This has implications for User Direct classes, as well as
the base classes for User Extending, and Wrapping.
When rewriting user code, we define two invariants:

1. Values with generated interfaces (User Wrapping, Extending or
Unconstrained) are always typed using that interface. This al-
lows us to vary the implementations of these interfaces among
several alternatives (as discussed in Section 2). If we know that
these instances will always be manipulated through the inter-
face methods then any implementation of those interfaces is
safely encapsulated and we can freely decide on that implemen-
tation without worrying if that decision impacts other code.

2. User code exclusively refers to new types. By strictly ensur-
ing that all rewritten code uses new types, we define a clear
separation between old and new types. We can maintain this
invariant because instances cross the system boundary in well-
defined places (passed as arguments, returned from methods,
etc.). Thus, we never need to check dynamically if an instance
is of an old or new type; the context from which the instance is

referenced (system or user) decides statically if the instance has
an old or new type.

We occasionally break the second invariant to optimize base
classes. However, these violations are always localized transfor-
mations (an old-type reference never escapes the method in which
it is used), and so do not impact the system as a whole.

4.2 Native and reflective code
When transforming user code, we must make allowances for native
code (for which we do not assume that we have source code) and for
reflective code. We observe that either native or reflective code can
break any large-scale series of transformations by introspecting on
any class in the system. Should a class, field, or method be renamed
or removed, hard-wired assumptions in native or reflective code
may fail. We accept that an adversarial programmer, or one that
makes extensive use of such code, can disrupt our system.We focus
instead on permitting the widest possible range of common usages
of both native and reflective code.
In the case of reflection, we do this at run time by intercepting

reflective methods that refer to rewritten code and converting the
results to the appropriate new types. In the case of native code, we
exploit the heuristics laid down in J-Orchestra [11] that determine
which classes are most likely to be accessed by native code, and en-
sure that they conform to the User Direct, Wrapping, or Extending
templates. This way they retain a base object upon which native
code can operate. They define classes with native methods to be
unmodifiable, as well as the types of their fields and superclasses
(dynamic dispatch can result in calling an overridden method in-
directly from native code). These heuristics are adequate for the
applications we consider.

4.3 Base Classes
User Wrapping and Extending classes are largely similar to their
System equivalents, with the difference that their base classes are
above the system boundary and so can be rewritten. Following the
second invariant, we rewrite the method signatures and bodies of
the base class to use new types rather than old. This simplifies the
local classes that wrap or extend the base, since they do not have to
translate between old and new types.
However, since user-level base classes may be passed to natives

or system code (typed as interfaces or system-level superclasses), a
base class must retain the signature of its unmodified original. New
fields and methods may be added and the bodies of methods may
be rewritten, but the class cannot be renamed, and its fields and
methods must retain their original names and types. This violates
our second invariant, that user code exclusively refer to new types.
We overcome this for methods by providing old-type implemen-

tations that simply redirect to their new-type equivalents. For fields
this is more difficult. We ensure that any field that may be accessed
by native code is not classified as User Unconstrained by the defini-
tion of unmodifiable classes above; a field of an unmodifiable class
is itself considered unmodifiable, and so can not be classified as
User Unconstrained. We observe that system code cannot directly
access the fields of user classes, since they are loaded by different
class loaders. Of the remaining templates, Direct and Extending
classes are trivially compatible with system and native code (al-
though we must type Extending classes as their base, and then cast
upon use in user code). User Wrapping classes are also typed by
their base, but since the wrapper is a separate object, we maintain
a cached copy of the wrapper as an additional field. System or na-
tive code use the base class, while user code uses the new wrapper
field. Note that the casting and wrapping of fields is required only
in the base class itself; all other user classes refer to the object by
interface and so can never access the field directly.
Another violation of our invariant occurs when a method ac-

cesses its this pointer. The type of the this pointer in a base class
is an old type. We must therefore convert the reference to a new
type, either by casting if it is a User Extending class or by wrapping
if it is User Wrapping. This way the invariant is maintained. There
are, however, some situations in which this is not desirable and
some in which it is not allowed. If the this reference is loaded to
the stack in order to execute a field access, for example, we would
rather perform the access directly rather than going through the get
method of the interface. More importantly, if the pointer is loaded
in preparation for a superclass constructor call (as required in every
constructor) it would be incorrect to wrap the reference. Doing so
would lead to the constructor being called on the wrapper rather
than the base, which would cause a run-time error.
We determine which this references to convert using a def-

use analysis. If the reference escapes the current method (by being
passed as an argument or stored as a field) we convert it, otherwise
we do not. While this violates our invariant that rewritten code
exclusively refers to new types, it does so only in a localized
manner. Note that we can also use this optimization when accessing
local fields within Unconstrained classes.

4.4 Classification
The classification of user code follows a similar approach to that
of system classes. Figure 9 shows the decision graph for user
classes. The user classification process uses the same ordering as
the system; Direct classes are handled first, then Unconstrained,
Extending, and Wrapping.

5. Evaluation
We evaluate our classification system using experimental results
obtained from RuggedJ. We examine the output of our classifica-
tion algorithm on a variety of benchmark applications, and provide
some insight into the sources of overhead introduced by our system.

5.1 Configuration
Since the focus of this paper is the rewriting process within
RuggedJ rather than the distribution process, we limit ourselves
to describing performance on a single-node network. This allows
us to analyze the overheads of the rewriting process without the ad-
ditional complication of network interaction. We do not, however,
optimize our implementation based on this network configuration.
While a single-node network will never need to reference an object
remotely or to perform migration, we do not disable the generation
of stubs and proxies, and perform all rewrites as we would in a
distributed system, referring to objects via our new interfaces, etc.
All results were generated on an Apple computer, using Mac OS

X 10.5.6, and version 1.6.0 07 of Apple’s Hotspot-based Java VM.
This affects the results of the classification; different implementa-
tions of the standard class libraries may produce slightly different
classifications. The test machine was configured with a 2.16GHz
Intel Core 2 Duo processor and 2 GB of RAM.

5.2 Classification
We ran the classification algorithm on applications from differ-
ent benchmark suites, producing the results shown in Table 1.
The first block consists of ten benchmarks from the the DaCapo
suite (version 2006-10-MR2 [1]). The remaining benchmarks come
from the Standard Performance Evaluation Corporation: nine from
SPECjvm2008 [7], plus SPECjbb2005 [6]. To obtain an accurate
count of the classes referred to by the DaCapo applications, we
analyzed them without the DaCapo harness. This way we classified
only those classes referred to by the application, not by the harness.
As Table 1 shows, the majority of classes (74% on average) in

an application belong to the standard libraries. This is due to the
degree of interaction between system classes: a single reference can
cause a large closure of classes to load. This strongly demonstrates
the need to handle system classes within a rewriting system.
The user classes are split between User Direct (8% of the total

application) and User Unconstrained (9% of the application). Very
few classes are User Extending or User Wrapping. There was no
user-level native code in the applications we studied, so these two
classifications were used only for user classes that extended system
classes.We see that only four classes in any of the benchmarks were
classified as User Extending. While the number of User Extending
classes seems insignificant, we must retain the classification tem-
plate for these classes. Recall that an Extending class cannot ex-
tend a Wrapping class, so eliminating the User Extending template
causes more system classes to be Wrapping rather than Extending,
which we wish to avoid due to the wrapping overhead.
Below the system boundary, System Wrapping classes are the

most common, representing 42% of the applications on average.
This can be attributed to the need to wrap objects that are passed or
returned to user code. System Extending classes are less common,
representing 14% of classes, while 14% are System Direct. Finally,
1% of classes on average can be promoted.

5.3 Performance
When considering the performance of our system, we focus upon
steady-state behavior. While start-up time (including class load-
ing and hence rewriting time) is a major factor for small applica-
tions, the usefulness of rewriting such applications is limited. With
RuggedJ, for example, there is little to be gained by distributing
an application whose running time is dominated by start-up costs.

Start
Exposed to

native code?

Yes No

User
Wrapping

User
Direct

User
Unconstrained

User
Extending

Immutable?No

Yes

Super and
Subclasses all

Direct?

Yes

No

Superclass
Wrapping?

Yes

NoSuperclass
Wrapping?

No
Yes

No

Yes

Any Subclass
Wrapping?

Yes
No

Final?

Yes

Interface?

Yes

No

Extending in
Hierarchy?

No

Yes

No

Returned by class
exposed to native?

Yes

No

Subclasses
 all Unconstrained?

Figure 9. Classification of user classes

Benchmark User UD UU UE UW System SD P SE SW
antlr 140 (16%) 47 (5%) 90 (10%) 0 (0%) 3 (0%) 721 (83%) 147 (17%) 10 (1%) 132 (15%) 432 (50%)
bloat 270 (26%) 74 (7%) 193 (18%) 0 (0%) 3 (0%) 755 (73%) 152 (14%) 4 (0%) 136 (13%) 463 (45%)
chart 302 (18%) 130 (7%) 153 (9%) 0 (0%) 19 (1%) 1365 (81%) 222 (13%) 10 (0%) 305 (18%) 828 (49%)
eclipse 1847 (70%) 770 (29%) 1019 (38%) 0 (0%) 58 (2%) 781 (29%) 209 (7%) 24 (0%) 138 (5%) 410 (15%)
fop 800 (48%) 286 (17%) 499 (30%) 0 (0%) 15 (0%) 849 (51%) 176 (10%) 19 (1%) 165 (10%) 489 (29%)
hsqldb 145 (15%) 54 (5%) 84 (9%) 0 (0%) 7 (0%) 783 (84%) 164 (17%) 4 (0%) 153 (16%) 462 (49%)
jython 655 (45%) 75 (5%) 571 (39%) 0 (0%) 9 (0%) 792 (54%) 162 (11%) 5 (0%) 144 (9%) 481 (33%)
luindex 112 (12%) 43 (4%) 66 (7%) 0 (0%) 3 (0%) 750 (87%) 149 (17%) 4 (0%) 136 (15%) 461 (53%)
lusearch 149 (17%) 51 (5%) 94 (10%) 0 (0%) 4 (0%) 727 (82%) 150 (17%) 4 (0%) 133 (15%) 440 (50%)
pmd 557 (41%) 260 (19%) 291 (21%) 0 (0%) 6 (0%) 796 (58%) 199 (14%) 11 (0%) 139 (10%) 447 (33%)
xalan 480 (36%) 189 (14%) 276 (21%) 0 (0%) 15 (1%) 818 (63%) 192 (14%) 34 (2%) 148 (11%) 444 (34%)
compiler 297 (12%) 151 (6%) 122 (5%) 0 (0%) 24 (1%) 2037 (87%) 339 (14%) 103 (4%) 442 (18%) 1153 (49%)
compress 299 (15%) 152 (7%) 126 (6%) 0 (0%) 21 (1%) 1618 (84%) 284 (14%) 98 (5%) 340 (17%) 896 (46%)
crypto 288 (14%) 147 (7%) 120 (6%) 0 (0%) 21 (1%) 1672 (85%) 297 (15%) 106 (5%) 342 (17%) 927 (47%)
derby 1146 (39%) 483 (16%) 605 (21%) 4 (0%) 54 (1%) 1729 (60%) 321 (11%) 103 (3%) 371 (12%) 934 (32%)

mpegaudio 317 (16%) 164 (8%) 132 (6%) 0 (0%) 21 (1%) 1638 (83%) 290 (14%) 98 (5%) 348 (17%) 902 (46%)
scimark 288 (15%) 146 (7%) 120 (6%) 0 (0%) 22 (1%) 1615 (84%) 283 (14%) 98 (5%) 339 (17%) 895 (47%)
serial 309 (15%) 161 (8%) 126 (6%) 0 (0%) 22 (1%) 1668 (84%) 290 (14%) 98 (4%) 360 (18%) 920 (46%)
sunflow 396 (19%) 201 (9%) 173 (8%) 0 (0%) 22 (1%) 1633 (80%) 284 (13%) 98 (4%) 345 (17%) 906 (44%)
xml 290 (12%) 147 (6%) 121 (5%) 0 (0%) 22 (0%) 1944 (87%) 338 (15%) 31 (1%) 403 (18%) 1172 (52%)

SPECjbb 69 (4%) 32 (2%) 33 (2%) 0 (0%) 4 (0%) 1466 (95%) 262 (17%) 157 (10%) 277 (18%) 770 (50%)
Geo. Mean 19% 8% 9% 0% 0% 74% 14% 1% 14% 42%

Table 1. Classification by benchmark

Therefore, we will concentrate here on SPECjbb2005. As well as
being one of the more complex benchmarks that we evaluated, it
also exhibits measurable steady-state behavior.
We ran an unmodified version of SPECjbb2005 in single-user

mode ten times, using the server version of the Hotspot VM. The
benchmark was configured to use four-minute timing runs for eight
warehouses. We averaged the benchmark score, representing the
steady-state throughput. We then ran the benchmark under RuggedJ
using the same configuration, again averaging the scores. Overall
our rewritten system produces 64% of the throughput of unmodi-
fied SPECjbb2005. By running the system under the YourKit Java
profiler [13], we found that the overheads of the rewritten system
come from two sources: Wrapping classes and proxies.

By far the largest overhead came from wrapping those classes
that were passed or returned from system to application code. 19%
of the execution time within the timing periods was spent wrapping
instances of system classes for use by application code. Of that
time, 67% was spent in hash-table lookups determining whether
an object had been wrapped previously. Additionally, 10% of the
wrapping time was spent reflectively creating wrappers for objects
that had not previously been wrapped.
Another 10% of the timing period was spent executing prox-

ies, particularly the proxy objects for one-dimensional int arrays.
SPECjbb2005 contains several methods that iterate over large ar-
rays, making the overhead for indirection particularly obvious for
these objects. However the majority of the performance overhead
came from the proxy, rather than the local class. Methods of lo-

cal array classes represented less than 1% of the execution time.
Therefore this overhead could be substantially reduced by elimi-
nating proxies for arrays that are known to be local.

6. Related Work
The issue of rewriting system code has been considered in the
past. The Twin Class Hierarchy (TCH) approach of Factor et al.
[2] copies relevant system classes into a user-level package, which
can then be rewritten, and is referred to by rewritten user code.
Because the original system classes remain unchanged, any instru-
mentation inserted into the rewritten versions can safely refer to
system classes without affecting the statistics gathered or causing
an infinite loop. The TCH system does not allow rewritten system
classes to interact with the original classes below the system bound-
ary, making it too limited for our needs. Additionally, the TCH ap-
proach requires custom wrappers for all native methods. This ap-
proach does not scale, and could require that separate wrappers be
written for different implementations of the standard class libraries,
compromising ease of deployment over heterogeneous Java VMs.
The Automatic Test Factoring system [5] produces “mock” ver-

sions of objects which return memoized results from a previous
measuring run, allowing developers to speed up the testing of in-
dividual application components. Their system uses the same in-
terface technique that allows us to refer to proxy and local stubs
transparently; in their case the interfaces allow them to switch real
classes with their mock equivalents, determining which parts of an
application are to be tested. The Test Factoring system differs in the
way it handles system code. Rather than redirecting through wrap-
pers or extending classes, they directly rewrite the system library
to include mock objects. This is not feasible in our system, due
to the limitations of visibility between class loaders. Such rewrites
are possible only if classes are not renamed, and any referenced
libraries are stored in the boot class path.
We present our work in the context of the transparent distri-

bution of Java applications. The closest work in that area is J-
Orchestra [9, 10, 12], which also performs transparent distribution,
targeted at a different domain. J-Orchestra partitions an application
across a fixed, small number of hosts while RuggedJ distributes
across large clusters. This difference is visible in our rewriting ap-
proach: RuggedJ performs all rewriting at class load time, taking
advantage of the particular configuration of a given network, while
J-Orchestra is able to use its advance knowledge of the network to
generate a customized jar file ahead of time for each site.

7. Conclusion
We have described a series of virtualizing transformations that can
be applied to the various classes that comprise an application to al-
low them to conform to a unified object model, as well as the clas-
sification process to determine which template should be applied to
each class. We can transform nearly every class in an application
to be distributable or remotely accessible, permitting fine-grained
distribution of objects across a cluster of nodes. We have described
the implementation of our prototype system, and presented both an
analysis of the classification process when applied to several bench-
marks and a discussion of the overheads imposed by the transfor-
mations. We have demonstrated the feasibility and generality of our
transformations, and shown that their performance overheads are
low enough for practical use.

Acknowledgments
This work is supported by the National Science Foundation under
grants Nos. CNS-0720505/0720242, CNS-0551658/0509186, and
CCF-0540866/0540862, and by Microsoft, Intel, and IBM. Any

opinions, findings, and conclusions expressed herein are the au-
thors’ and do not necessarily reflect those of the sponsors.

References
[1] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analy-
sis. In OOPSLA ’06: Proceedings of the 21st annual
ACM SIGPLAN conference on Object-Oriented Program-
ing, Systems, Languages, and Applications, pages 169–190,
New York, NY, USA, October 2006. ACM Press. doi:
http://doi.acm.org/10.1145/1167473.1167488.

[2] Michael Factor, Assaf Schuster, and Konstantin Shagin. In-
strumentation of standard libraries in object-oriented lan-
guages: the Twin Class Hierarchy approach. In Proceedings of
the ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 288–300,
2004.

[3] Sheng Liang and Gilad Bracha. Dynamic class loading in
the Java virtual machine. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 36–44, 1998. doi:
10.1145/286936.286945.

[4] Phil McGachey, Antony L. Hosking, and J. Eliot B.Moss. Per-
vasive load-time transformation for transparently distributed
Java. In Proceedings of the International Workshop on Byte-
code Semantics, Verification, Analysis, and Transformation,
2009.

[5] David Saff, Shay Artzi, Jeff H. Perkins, and Michael D. Ernst.
Automatic test factoring for Java. In Proceedings of the In-
ternational Conference on Automated Software Engineering,
pages 114–123, 2005.

[6] Standard Performance Evaluation Corporation. SPEC
JBB2005 Benchmark. http://www.spec.org/jbb2005, .

[7] Standard Performance Evaluation Corporation. SPEC
JVM2008 Benchmark. http://www.spec.org/jvm2008/, .

[8] Sun Microsystems, Inc. The JVM Tool Interface.
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti.

[9] E. Tilevich and Y. Smaragdakis. J-Orchestra: Enhancing Java
programs with distribution capabilities. ACM Transactions on
Software Engineering and Methodology, 2009. To appear.

[10] Eli Tilevich and Yannis Smaragdakis. J-Orchestra: Automatic
Java application partitioning. In Boris Magnusson, editor,
Proceedings of the European Conference on Object-Oriented
Programming, volume 2374 of Lecture Notes in Computer
Science, pages 178–204. Springer-Verlag, 2002.

[11] Eli Tilevich and Yannis Smaragdakis. Transparent program
transformations in the presence of opaque code. In Proceed-
ings of the International Conference on Generative Program-
ming and Component Engineering, Lecture Notes in Com-
puter Science, pages 89–94, 2006.

[12] Eli Tilevich, Yannis Smaragdakis, and Marcus Handte. Ap-
pletizing: Running legacy Java code remotely from a Web
browser. In Proceedings of the IEEE International Confer-
ence on Software Maintanance, pages 91–100, 2005.

[13] YourKit, LLC. The yourkit java profiler. URL
http://www.yourkit.com/.

