
On the Usefulness of Liveness
for Garbage Collection and Leak Detection

Martin Hirzel1, Amer Diwan1, and Antony Hosking2

1 University of Colorado
Boulder, CO 80309

{hirzel, diwan}@cs.colorado.edu
2 Purdue University

West Lafayette, IN 47907
hosking@cs.purdue.edu

Abstract. The effectiveness of garbage collectors and leak detectors in identi-
fying dead objects depends on the “accuracy” of their reachability traversal. Ac-
curacy has two orthogonal dimensions: (i) whether the reachability traversal can
distinguish between pointers and non-pointers (type accuracy), and (ii) whether
the reachability traversal can identify memory locations that will be dereferenced
in the future (liveness accuracy). While prior work has investigated the impor-
tance of type accuracy, there has been little work investigating the importance of
liveness accuracy for garbage collection or leak detection. This paper presents an
experimental study of the importance of liveness on the accuracy of the reacha-
bility traversal. We show that while liveness can significantly improve the effec-
tiveness of a garbage collector or leak detector, the simpler liveness schemes are
largely ineffective. One must analyze globals using an interprocedural analysis to
get significant benefit.0

1 Introduction

Garbage collection (GC), or automatic storage reclamation, has many well-known soft-
ware engineering benefits [29]. First, it eliminates memory management bugs, such as
dangling pointers. Second, unlike explicit deallocation, GC does not compromise mod-
ularity since modules do not need to know the memory management philosophies of
the modules that they use. It is therefore no surprise that even though C and C++ do not
mandate GC as part of the language definition, many C and C++ programmers are now
using it either for reclaiming memory or forleak detection. It is also no surprise that
many newer programming languages (e.g., Java [14], Modula-3 [21], SML [20]) require
garbage collection. This increased popularity of garbage collection makes it more im-
portant than ever to fully understand the tradeoffs between different garbage collection
alternatives.

0 This work was supported by NSF ITR grant CCR-0085792. Any opinions, findings and con-
clusions or recommendations expressed in this material are the authors’ and do not necessarily
reflect those of the sponsors.

J. Lindskov Knudsen (Ed.): ECOOP 2001, LNCS 2072, pp. 181–206, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

182 Martin Hirzel, Amer Diwan, and Antony Hosking

An idealgarbage collector or leak detector identifies all heap-allocated objects1 that
are notdynamically live. A dynamically-live heap object is one that will be used in the
future of the computation. More operationally, a dynamically-live heap object is one
that can be reached by following pointers that will be dereferenced in the future of
the computation (dynamically-live pointers). In order to retain only dynamically-live
objects, the ideal garbage collector must be able to exactly identify what memory loca-
tions contain dynamically-live pointers. Unfortunately, a real garbage collector or leak
detector has no way of knowing what pointers will be dereferenced in the future; thus
it may use compiler support to identify an approximation to dynamically-live pointers.
The precision of the garbage collector or leak detector in identifying dynamically-live
objects depends on theaccuracyof the compiler support.

There are two dimensions to accuracy: the extent to which the compiler information
is able to distinguish pointers from non-pointers (type accuracy) and the extent to which
the compiler information identifies live pointers (liveness accuracy). Prior work [17]
has mostly focused only on type accuracy and liveness accuracy has received only a
little attention in the literature [1]. In this paper we investigate the effect of different
levels of liveness accuracy; in prior work we investigated the effect of different levels
of type accuracy [17]. Our approach is to modify a garbage collector (particularly the
Boehm-Demers-Weiser collector [7, 9]) to accept and use different combinations of
type and liveness accuracy information.

One way to conduct this study is to implement a large number of accuracy schemes
in a compiler and garbage collector and to compare their performance. However, ac-
curacy schemes are difficult to implement and thus the above mentioned approach
would be infeasible. We therefore take a different approach: we implement the accuracy
schemes as a upper-bound approximation in a highly parameterized run-time analysis.
This approach is easier since at run time we have perfect alias and control-flow infor-
mation. However, our approach is limited in that it gives us only an upper bound on the
usefulness of accuracy schemes and also requires two identical runs of each program.
We do not intend our approach to be used directly for leak detection or garbage collec-
tion: the goal of our approach is to collect experimental results that will help to drive
subsequent work in leak detection and garbage collection.

To increase the applicability of this study, some of our benchmarks use explicit
deallocation while others use garbage collection. Benchmarks in the former group in-
clude many C programs from the SPECInt95 benchmark suite. Benchmarks in the latter
group include Eiffel programs and some C programs that were designed to be used with
a customized or conservative garbage collector.

Our results demonstrate that liveness accuracy significantly improves a garbage col-
lector or leak detector’s ability to identify dead objects. However we also find that sim-
ple liveness analyses (e.g., intraprocedural analysis of local variables [1]) are largely
ineffective for our benchmark programs. In order to get a significant benefit one must
use a more aggressive liveness analysis that is interprocedural and can analyze global
variables. We also show that our most aggressive liveness analysis is able to identify
small leaks in several of our benchmark programs.

1 We use the termobject to include any kind of contiguously allocated data record, such as C
structs and arrays as well as objects in the sense of object-oriented programming.

On the Usefulness of Liveness for Garbage Collection and Leak Detection 183

The remainder of the paper is organized as follows. Section 2 defines terminology
for use in the remainder of the paper. Section 3 further motivates this work. Section 4
reviews prior work in the area. Section 5 describes our experimental methodology and
particularly our liveness analysis. Section 6 presents the experimental results. Section
7 discusses the usefulness of our approach in debugging garbage collectors and leak
detectors. Section 8 suggests directions for future work and Section 9 concludes.

2 Background

A garbage collector or leak detector identifies unreachable objects using areachabil-
ity traversalstarting from local and global variables of the program.2 All objects not
reached in the reachability traversal are dead and can be freed. In order to identify the
greatest number of dead objects, onlylive pointers, that is, pointers that will be deref-
erenced in the future, must be traversed. Unfortunately, without prior knowledge of the
future of the computation it is impossible to precisely identify live pointers. Thus, reach-
ability traversals use conservative approximations to the set of live pointers. In other
words, a realistic reachability traversal may treat a non-pointer or a non-live pointer as
a live pointer, and may therefore fail to find all the dead objects. Theaccuracyof a
reachability traversal refers to its ability to precisely identify live pointers.

There are two dimensions to accuracy:type accuracyandliveness accuracy. Type
accuracy determines whether or not the reachability traversal can distinguish point-
ers from non-pointers. Liveness accuracy determines whether or not the reachability
traversal can identify variables whose value will be dereferenced in the future. Both
dimensions require compiler support.

Figure 1 gives an example of the usefulness of type accuracy. Let’s suppose the
variableshashandptr hold the same value (bit pattern) at program pointp3 even though
one is a pointer and the other is an integer. If a reachability traversal is not type accurate
it will find that the object allocated atp2 is reachable at pointp5 sincehash“points
to” it. If, instead, the traversal was type accurate, it would not treathashas a pointer
and could reclaim the object allocated atp2 (garbage collection) or report a leak to the
programmer (leak detection).

p1: int hash= hashValue(. . .);
p2: int ptr = (int)(malloc(. . .));
p3: 〈code using∗ptr〉
p4: ptr = null;
p5: . . .

Fig. 1. Type accuracy example

2 For simplicity, we do not discuss generational collectors which may also do a reachability
traversal starting from selected regions of the heap.

184 Martin Hirzel, Amer Diwan, and Antony Hosking

Figure 2 gives an example of the usefulness of liveness accuracy. Let’s suppose
parse returns an abstract syntax tree and that afterp6 ast holds the only pointer to
the tree. Let’s suppose that the variableast is not dereferenced at or after program
point p8 (in other words, it is dead). A reachability traversal that does not use liveness
information will not detect that the object returned byparse is garbage at program
point p8. On the other hand a reachability traversal that uses liveness information will
find thatast is dead at program pointp8 and will reclaim the tree returned byparse
(garbage collection) or report it as a leak to the programmer (leak detection).

p6: Tree∗ast= parse();
p7: CFG∗cfg = translate(ast);
p8: 〈code that does not useast〉

Fig. 2. Liveness accuracy example

A major hindrance to both type or liveness accuracy is that they require significant
compiler support. In the case of type accuracy the compiler must preserve type infor-
mation through all the compiler passes and communicate it to the reachability traversal
[12]. In the case of liveness accuracy the compiler must conduct a liveness analysis and
communicate the liveness information to the reachability traversal. Unlike type infor-
mation, a compiler does not need to preserve liveness information through its passes if
the liveness analysis is the last pass before code generation.

3 Motivation

Prior work has focused almost exclusively on one aspect of accuracy – the ability to
distinguish pointers from non-pointers – and has considered liveness only as an af-
terthought. By separating the two aspects of accuracy, we can identify accuracy strate-
gies that are different from any that have been proposed before and are worth explor-
ing. For example, consider the problem of garbage collecting C programs. Prior work
has simply noted that C is unsafe and thus the garbage collector must be conservative
(type-inaccurate). While this is true with respect to the pointer/non-pointer dimension
of accuracy, it is not true with respect to the liveness dimension. A collector for C
and C++ programs which considers all variables with appropriate values to be pointers
would improve (both in efficiency and effectiveness) if it knew which variables were
live; variables that are not live need not be considered as pointers at GC time even if
they appear to be pointers from their value (see example in Figure 2).

Table 1 enumerates a few of the possible variations in each of the two dimensions of
accuracy. If prior work has proposed a particular combination of accuracy, the table also
references some of the relevant prior work. Many papers have proposed theno liveness
information/full type accuracyscheme and so we cite only a few of the relevant papers
in the table.

Even in this incomplete table, five out of nine combinations are unexplored in the lit-
erature. Several of the unexplored combinations have significant potential for advancing

On the Usefulness of Liveness for Garbage Collection and Leak Detection 185

Table 1. Some variations in the two dimensions of garbage collector accuracy

Level of type accuracy
Level of liveness accuracy NonePartial Full

None [6] [4, 10] [3, 18, 28]
Intraprocedural for local vars [1, 2, 12, 27]
Interprocedural for local and global vars(a) (b) (c)

the state of the art in leak detection and garbage collection. For example, consider the
combination ofinterprocedural liveness for local and global variableswith the three
possibilities forpointer information(marked (a), (b), and (c) in table). Possibility (a)
will be useful for unsafe languages, such as C, since it will allow even a type-inaccurate
reachability traversal to ignore certain pointers and thus improve both its precision and
efficiency. Possibility (c) will improve over the best type-accurate schemes used for
type-safe languages such as Java and Modula-3 [1, 12, 27] since it incorporates liveness
of globals which we expect to be much more useful than liveness for local variables.
Finally, possibility (b) may be useful for either safe or unsafe languages (with some
programmer support).

This paper explores a significant part of the accuracy space in order to better under-
stand the different possibilities for liveness and their usefulness in leak detectors and
garbage collectors.

4 Related Work

In this section we review prior work on comparing different garbage collection alterna-
tives, type and liveness accuracy for compiled languages, and leak detection.

Shahamet al. [23] and Hirzel and Diwan [17] present work that is most relevant to
this paper. Shahamet al.evaluate a conservative garbage collector using a limit study:
They find that the conservative garbage collector is not effective in reclaiming objects
in a timely fashion. However, unlike our work, they do not experimentally determine
how much of this is due to type inaccuracy versus liveness inaccuracy, or which level
of accuracy would make their underlying garbage collector more effective. Hirzel and
Diwan [17] present an investigation of different levels of type accuracy using an ear-
lier version of our framework. They demonstrate that the usefulness of type accuracy
in reclaiming objects depends on the architecture. In particular, type accuracy is more
important for 32-bit architectures than for 64-bit architectures. Hirzel and Diwan in-
vestigate only one dimension of accuracy, namely type accuracy, and ignore liveness
accuracy in their study.

Bartlett [4], Zorn [32], Smith and Morrisett [24], and Agesenet al.[1] compare dif-
ferent garbage collection alternatives with respect to memory consumption. Bartlett [4]
describes versions of his mostly-copying garbage collector that differ in stack accuracy.
Zorn [32] compares the Boehm-Demers-Weiser collector to a number of explicit mem-
ory management implementations. Smith and Morrisett [24] describe a new mostly-
copying garbage collector and compare it to the Boehm-Demers-Weiser collector. All

186 Martin Hirzel, Amer Diwan, and Antony Hosking

these studies focus on the total heap size. Measuring the total heap size is useful for
comparing collectors with the same accuracy, but makes it difficult to tease apart the
effects of fragmentation, allocator data structures, and accuracy. Since we are counting
bytes in reachable objects instead of total heap size, we are able to look at the effects of
garbage collector accuracy in isolation from the other effects. Agesenet al. investigate
the effect of intraprocedural local variable liveness on the number of reachable bytes
after an accurate garbage collection. Besides intraprocedural local-variable liveness we
also consider many other kinds of liveness.

Zorn [32], Smith and Morrisett [24], and Hickset al. [16] compare different mem-
ory management schemes with respect to their efficiency. Zorn [31] looks at the cache
performance of different garbage collectors. We do not look at run-time efficiency but
instead concentrate on the effectiveness of garbage collectors in reclaiming objects.

Boehm and Shao [8] describe a technique for obtaining type accuracy for heap
objects without compiler support which requires a moderate amount of programmer
support. Boehm and Shao do not report any results for the effectiveness of their scheme.

Diwan et al. [12], Agesenet al. [1], and Stichnothet al. [25] consider how to per-
form accurate garbage collection in compiled type-safe languages. Diwanet al.[12] de-
scribe how the compiler and run-time system of Modula-3 can support accurate garbage
collection. Agesenet al. [1] and Stichnothet al. [25] extend Diwanet al.’s work by in-
corporating liveness into accuracy and allowing garbage collection atall points and not
just safe points. Even though these papers assume type-safe languages, type accuracy
is still difficult to implement especially in the presence of compiler optimizations. Our
work identifies what kinds of accuracy are useful for reclaiming objects, which is im-
portant for deciding what kinds of accuracy to obtain by compiler analysis. Also, our
approach can be used in its current form for identifying leaks in both type-safe and
unsafe languages.

Hastings and Joyce [15], Dion and Monier [11], and GreatCircle [13] describe
leak detectors based on the Boehm-Demers-Weiser collector [9]. The Boehm-Demers-
Weiser collector can also be used as a leak detector [7]. Our scheme uses more accurate
information than these detectors and is thus capable of finding more leaks in programs.

5 Methodology

One approach to this study is to implement several different levels of accuracy in a com-
piler and communicate this information to a reachability traversal. However, because we
wanted to experiment with many different levels of accuracy the implementation effort
would have been prohibitive since implementing even a single accuracy scheme is a
challenging undertaking [12]. We therefore chose a different tactic.

Our basic approach (Figure 3) is to analyze a running program to determine different
levels of type and liveness information. This approach is easier than actually building
several levels of accuracy since at run time we have perfect aliasing and control flow
information. Moreover, at run time we do not have to worry about preserving any in-
formation through later optimization passes. An additional advantage is that we can do
a direct, detailed, and meaningful comparison between the different memory manage-
ment schemes. Section 5.1 describes our methodology for collecting type information,

On the Usefulness of Liveness for Garbage Collection and Leak Detection 187

and section 5.2 describes our methodology for collecting different levels of liveness in-
formation. Section 5.3 introduces the different accuracy levels that we consider in this
paper. Section 5.4 shows how we compare the effectiveness of reachability traversals
with different levels of accuracy information. Section 5.5 discusses the limitations of
our approach. Section 5.6 describes and gives relevant statistics about our benchmark
programs.

Trace

Type−analysis
library

analysis
Liveness

Strength
selection

Instrumentor Link

Link

Type information

C Program +
Library routines Run−1

Liveness information
Run−2

Stubs +
BDW gc

Fig. 3. Framework

5.1 Approach for Type Accuracy

We use the same infrastructure for type accuracy as our previous study on type accuracy
[17] so we describe it only briefly here. We convert our C source programs into the
SUIF representation [26, 30], instrument the SUIF representation to make calls to a run-
time type-analysis library, link and run the program (Run-1). The type-analysis library
precisely tracks the flow of pointers at run time and determines which locations contain
pointers. At the end of Run-1, the instrumentation outputs type information in the form
of tables that describe which memory locations contain pointers. This information is
similar to compiler output in a real garbage collection system for a type-safe language.

Then, we link the same instrumented program with empty stubs instead of the type
analysis library and with the Boehm-Demers-Weiser (BDW) garbage collector [7]. We
have modified BDW so that it can use the type information during Run-2. Since memory
addresses of objects may be different in the second run, Run-1 assigns unique identi-
fiers to each heap-allocated object and global variable and uses these identifiers to refer
to objects. Run-1 communicates type-accurate information to Run-2 using location de-
scriptors, which take one of the following forms:

– 〈global id, offset〉: the global variable identified by global id contains a pointer at
offset.

– 〈heapid, offset〉: the heap allocated object identified by heapid contains a pointer
at offset.

188 Martin Hirzel, Amer Diwan, and Antony Hosking

– 〈proc name, offset〉: activation records for the procedure identified by proc name
contain a pointer at offset.

We output the above information for every call and allocation point. We do not
output any information about pointers in registers since we force all variables to live in
memory; registers serve only as scratch space and never contain pointers to objects that
are not also reachable from pointers in memory.

The set-up for type accuracy differs slightly from our earlier work on type accuracy
[17] in a few aspects. We exclude the activation records of the BDW garbage collector
itself from the root set of the reachability traversal. We found and fixed a leak in the
BDW collector. Finally, we force the heap to start at a slightly higher address in Run-2
to minimize interference with the data structures needed by our infrastructure.

5.2 Approach for Liveness

Besides generating type information, Run-1 also outputs a trace of events. We analyze
this trace to obtain liveness information. In addition to type information, Run-2 can also
use the liveness information to improve the precision of its reachability traversals.

Our analysis of the trace mirrors the actions of a traditional backward-flow liveness
analysis in a compiler. Like a traditional data-flow liveness analysis, there are two main
events in our run-time analysis: uses and definitions. Uses, such as pointer dereferences,
make a memory location live at points immediately before the use. Definitions, such as
assignments, make the defined memory location dead just before the definition. The
run-time analysis is parametrized so that it can realistically simulate a range of static
analyses.

Format of the Trace. The trace consists of a sequence of events that are recorded as
the program executes. Table 2 describes the kinds of events in a trace. The events in the
trace are designed to enable different flavors of liveness analysis.

Some events (such as “assign”) refer to memory locations. The trace represents the
memory locations using location descriptor instancesinstead of location descriptors as
described in Section 5.1, because we need to distinguish between multiple instances of
a local variable. Each global location descriptor has only one instance but local location
descriptors have multiple instances, one for each invocation of the local variable’s en-
closing procedure. Each local location descriptor instance, besides identifying its loca-
tion descriptor, has an attribute, Home, which identifies the activation record for which
the instance was created. Section 5.2 demonstrates how maintaining location descriptor
instances avoids imprecision in analyzing recursive calls.

Basic Algorithm. To obtain liveness information, we perform an analysis on the event
trace. In a nutshell, we read the sequence of events in reverse order and keep track of
which locations are live at any point during program execution. This approach reflects
the fact that liveness of pointers depends on the future, not the past, of the computation.

Our algorithm maintains two data structures: currentlyLiveand resultingLiveness.
For each location descriptor instance �, currentlyLive(�) indicates whether it is live at

On the Usefulness of Liveness for Garbage Collection and Leak Detection 189

Table 2. Trace events

Event Example Description

assign(lhs, rhs1, . . . , rhsn) x = y + z Assignment to location lhs from the locations
rhs1 . . . rhsn. Used to represent normal assignments,
parameter passing, and assignment of return value of a
call.

use(rhs) . . . ∗x . . . Use of location rhs. A pointer dereference is a use.
Also passing a parameter to an external function is a
use of the parameter.

call() →f(. . .) Call to a procedure.
return() →f(. . .) Return from a procedure. (For a longjmp, we generate

several return-events.)
allocation(p) malloc(. . .) Allocation of heap object number p (numbered con-

secutively since program startup).

the current point in the analysis. In other words, as the analysis processes the trace
events in reverse order, it keeps track of what is live at any given point of the original
execution of the benchmark. The resultingLivenessdata structure maintains liveness
information that will be output at the end of the program. When the liveness analysis
finishes, for a stack location descriptor s, resultingLiveness(s) ≡ {cs1, . . . , csn} is the
set of call sites where s is live, and for a global location descriptor g, resultingLive-
ness(g) ≡ {p1, . . . , pm} is the set of dynamic calls to malloc where g is live (these
include the points where we do reachability traversals in Run-2). We use stack location
descriptors rather than stack location descriptor instances in resultingLivenessto keep
the output of the analysis manageable. Note that we output more precise information for
globals than for stack variables since maintaining such detailed information for stack
locations was infeasible.

As the liveness analysis is processing the trace, it also also tracks the call point at
which each active procedure is stopped. For instance, if procedure p calls q, within the
body of q the stopping point for the activation record of p will be the call to q within
p. Given location description instance x, HomeCS(x) gives the stopping point of the
Homeactivation record of x.

Our analysis never directly reads the currentlyLiveflags, but instead uses the func-
tion isLive, which defaults to

proc isLive(�) { return currentlyLive(�); }
In Section 5.2, we describe how isLivehelps to obtain selective liveness.

Table 3 gives the actions that the liveness analysis performs on each event. The
actions for assignand useare similar to the corresponding transfer functions that a
compile-time liveness analysis would use. The actions for call are, however, more com-
plex, and we motivate and describe them in Section 5.2.

Our algorithm works by keeping the currentlyLiveflags up-to-date for all locations
�. The intuition here is that � must be live prior to any potential dereference of the value
it contains; i.e., a use, assignto another live location, or call of an external function that

190 Martin Hirzel, Amer Diwan, and Antony Hosking

sees �. When the analysis has completed, it outputs each location descriptor along with
its resultingLiveness.

Table 3. Liveness analysis

Event Action

assign(lhs, rhs1, . . . , rhsn) If isLive(lhs) ≡ true, then make currentlyLive(rhs1), . . . ,
currentlyLive(rhsn) true. If none of the rhsi is the same as the lhs,
make currentlyLivefalse for lhs.

use(rhs) Make currentlyLivetrue for the location descriptor instance rhs.
call() If this is an external call, for each externally visible location �,

make currentlyLive(�) true. Then, for each stack location descrip-
tor instance s with isLive(s) ≡ true, add HomeCS(s) to the result-
ingLivenessof s’s location descriptor.

return() Initialize data structures (such as ones that record the stopping
points).

allocation(p) For each global location � with isLive(�) ≡ true, add the dynamic
program point p to the resultingLivenessof �.

Analyzing Call Events. To understand the reason for the complexity in analyzing calls,
consider the a run of the code segment in Figure 4 where f calls itself recursively just
once. Consider the most recent invocation of f (which must be in the elsebranch, since
in this example, f recurses just once). The expression ∗∗b dereferences the variable c
but from the previous call tof . Thus, c from the previous invocation of f is live at the
recursive call to f . However, even though ∗∗b dereferences c, it does not dereference
the most recent instance of c and thus, c is not live at the call to g. Calls are the most
complex to analyze since that’s where we handle such situations precisely.

int a;
int ∗∗b;
void f(){

int ∗c; /∗ uninitialized ∗/
if(. . .){

b = &c;
f();

else{
∗b = &a;
g(); /∗ call site cg ∗/
. . . ∗∗b . . . ;

}
}

Fig. 4. Recursive call example

On the Usefulness of Liveness for Garbage Collection and Leak Detection 191

The intuition for how we handle calls is as follows. The liveness analysis maintains
the currentlyLiveflags for all location descriptor instances based on the actions in Table
3. When the liveness analysis encounters a call event, it updates the resultingLiveness
of all stack instances that are live at that call. To update the resultingLivenessfor a live
instance x, it adds HomeCS(x)to resultingLiveness(x). In other words, call events are
the points where we summarize the information in isLive into resultingLiveness.

Let’s consider what happens when we apply our method to the execution of the code
in Figure 4. As before, consider a run of the code in where f calls itself recursively just
once. Table 4 shows an event trace (in reverse order) of the above program along with
the actions our liveness analysis will take. For some events (such as returns) we do not
list any actions since these events serve to simply initialize auxiliary data structures.
During the trace generation we create two instances of the location descriptor for local
variable c: c1 for the first call to f and c2 for the second call to f . Note however that
our algorithm adds to the resultingLivenessof c on behalf of c1 and not on behalf of c2.
This is correct and precise since c2 is not dereferenced (or assigned to a variable that is
dereferenced) in this run.

Table 4. Processing a trace of the example program

Event Comment Analysis action

11: return() outer f returns
10: return() inner f returns to outer f
9: use(b) deref of b currentlyLive(b)← true
8: use(c1) deref of ∗b ≡ c1 currentlyLive(c1)← true
7: return() g returns to inner f
6: call() inner f calls g add HomeCS(c1) to resultingLiveness(c)
5: use(b) deref of b currentlyLive(b)← true
4: assign(c1) assign to ∗b ≡ c1 currentlyLive(c1)← false

else-part in inner f
3: call() outer f calls inner f no locals live, nothing happens!
2: assign(b) assign to b currentlyLive(b)← false

then-part in outer f
1: call() call to outer f

Selective Liveness. We consider three dimensions that determine the precision of live-
ness: (i) the region of memory for which we have liveness information (stack, heap, and
globals), (ii) whether we compute liveness only for scalar variables or also for record
fields and array elements (i.e., aggregates), and (iii) whether we compute liveness infor-
mation intraprocedurally or interprocedurally. We now describe how we vary the above
dimensions in the algorithm from Section 5.2.

By changing the implementation of isLive we can select the precision level of the
first two dimensions. For example, suppose we wish to compute liveness information
for scalars in the stack, then we use the implementation of isLive in Figure 5. In other

192 Martin Hirzel, Amer Diwan, and Antony Hosking

words, for those regions of memory and kinds of variables where we do not want live-
ness information, we assume they are always live.

proc isLive(�){
if(� ∈ Stackand � ∈ ScalarVars)

then return currentlyLive(�);
else return true;

}

Fig. 5. isLivewhen computing liveness for scalars in stack

By changing what calls are to external routines we can select the precision of the
third dimension. For example, if we wish to mimic intraprocedural analysis then we
consider all calls as being to external routines. The action for the call()-event in Table 3
will therefore make all externally visible locations (heap locations, global locations, or
stack locations whose address gets taken) live at all calls. For interprocedural analysis
all calls are to non-external routines. We handle library routines by providing stubs that
mimic their behavior.

5.3 Accuracy Levels in This Paper

Table 5. Schemes evaluated

Area of memory
Stack Stack+Globals

No type accuracy
None (N, N) (N, N)

Intraprocedural scalars (N, iscalar
s) (N, iscalar

sg)

Intraprocedural all (N, iall
s) (N, iall

sg)

Interprocedural scalars (N, Iscalar
s) (N, Iscalar

sg)

Interprocedural all (N, Iall
s) (N, Iall

sg)

With type accuracy
None (T, N) (T, N)

Intraprocedural scalars (T, iscalar
s) (T, iscalar

sg)

Intraprocedural all (T, iall
s) (T, iall

sg)

Interprocedural scalars (T, Iscalar
s) (T, Iscalar

sg)

Interprocedural all (T, Iall
s) (T, Iall

sg)

Table 5 gives the schemes that we evaluate in this paper along with abbreviations
for the schemes. The first part of the table lists schemes that do not include type accu-
racy but may include liveness accuracy. The second part of the table lists schemes that

On the Usefulness of Liveness for Garbage Collection and Leak Detection 193

include type accuracy and may also include liveness. The entries in the table are pairs,
the first element of which gives the level of type accuracy ((N, ·) are schemes with
no type accuracy and (T, ·) are schemes with type accuracy) and the second element
gives the level of liveness accuracy. The “ intraprocedural” configurations (·, i··) assume
the worst case for all externally visible variables (globals and locals whose address
has been taken) while the “ interprocedural” configurations (·, I ··) analyze across proce-
dure boundaries for externally visible variables. The “scalars” (·, ·scalar

·) configurations
compute liveness information only for scalar variables whereas the “all” (·, ·all·) configu-
rations compute it for all scalar variables, record fields, and array elements. The “stack”
configurations (·, ··s) compute liveness information only for stack variables whereas the
“stack and globals” (·, ··sg) configurations compute it for locations on the stack and for
statically allocated variables. While the abbreviations from Table 5 identify accuracy
levels, we will sometimes use them to mean the number of bytes occupied by reachable
objects when using that accuracy level.

(N , i all
s)

(N , i all
sg) (N , I scalar

sg)(N , I all
s)

(N , i scalar
sg)

(N , i scalar
s)

(N , I all
sg)

N)(,T

(N , I scalar
s)

N)(N ,

(, I all
sgT)

explicit

ideal

none

Fig. 6. Memory Management Schemes. Each node in this graph is a memory manage-
ment scheme. An edge indicates that the scheme with the lower vertical position is
strictly weaker than the scheme with the higher vertical position.

Figure 6 presents accuracy schemes organized as a lattice. The order is by strength,
with the strongest scheme at the top and the weakest scheme at the bottom.

Note that we decided not to look at liveness for the heap. To see why, let us first
imagine what it would mean in our context. Let 〈heapid, offset〉 be a heap location. If
we had heap-accurate liveness for aggregates, we might for example know that even
though the heap object heapid contains a pointer at offset, that pointer will not be used
in the future. But getting this information poses at least two challenges. First, in order to

194 Martin Hirzel, Amer Diwan, and Antony Hosking

compute heap liveness we need a precise pointer analysis which is often prohibitively
expensive. Second, how to communicate the heap liveness information to the garbage
collector? A precise pointer analysis may create many instances of each allocation site
and the information may therefore get to be very large. With our trace-based approach,
we could of course have obtained heap liveness information, but given the difficulty of
obtaining it at compile time, our results would have been a very loose upper bound.
Thus, we omitted a study of heap liveness for this paper.

5.4 Measurement Methodology

To collect our numbers, we execute Run-2 multiple times for each benchmark, once for
each liveness scheme. To facilitate comparison of the different accuracy schemes, we
trigger the reachability traversal at the same time for each level of accuracy. For this
study we trigger a reachability traversal every A/n bytes of allocation where A is the
total allocation throughout the benchmark run and n = 50. Thus for each program and
accuracy scheme we end up with a vector of approximately 50 numbers representing the
reachable bytes found at each traversal. To compare two liveness schemes, we simply
subtract their vectors to determine how they compare at each traversal. The numbers we
present in Section 6 are typically averages computed over the difference vectors.

Here is an example for our metric, where for simplicity we assume n = 3. Let
the conservative garbage collector (N, N) encounter (100, 200, 200) bytes in reach-
able heap objects after its three collections. Let our strongest liveness scheme (N, Iall

sg)
encounter (100, 180, 160) bytes in reachable heap objects after its three collections.

We write avg
(N,N)−(N,Iall

sg)

(N,N) to mean 1
n

(
(N,N)1−(N,Iall

sg)1
(N,N)1

+ . . . +
(N,N)n−(N,Iall

sg)n

(N,N)n

)
,

which is 1
3

(
100−100

100 + 200−180
200 + 200−160

200

)
= 10% in our concrete example. In other

words, with strong liveness accuracy, the heap would on average be 10% smaller after
garbage collections.

An alternative metric is to measure the heap size (including fragmentation and GC
data structures) or the process footprint instead of bytes in reachable heap objects. These
are useful metrics but unfortunately not ones we can measure easily in our infrastruc-
ture since our instrumentation and extensions to the Boehm-Demers-Weiser collector
increase the memory requirements of the host program.

5.5 Limitations

The two main limitations of our approach are: (i) it is a limit study and thus not guar-
anteed to expose the realizablepotential of liveness, and (ii) our instrumentation may
perturb program behavior and thus, we could suffer from Heisenberg’s uncertainty prin-
ciple.

Our results are an upper bound on the usefulness of liveness information because
our analysis has perfect alias information, and because a location may not be live in a
particular run, even though there exists a run where it is live. To reduce the possibility
of having large errors of this sort, we ran a selection of our benchmarks on multiple
inputs and compared the results across the inputs. Section 6.5 presents these results.

On the Usefulness of Liveness for Garbage Collection and Leak Detection 195

Also, we spent significant time manually inspecting the output of our liveness analysis
when it yielded a significant benefit. While our manual inspection was not exhaustive
(or anywhere close), we found no situations where our liveness analysis’ results were
specific only to a particular run.

The methodology that we use to obtain our data influences the results itself because
we force all local variables to live on the stack, even when they could otherwise have
been allocated in registers. Register allocation in a conventional compiler may use its
own liveness analysis and may reuse the register assigned to a variable if that variable is
dead. Thus, at garbage collection time the dead pointer is not around anymore. In other
words, the compiler is passing liveness information to the garbage collector implicitly
by modifying the code rather than explicitly. Since register allocators typically use only
intraprocedural liveness analysis of scalars, this effect is likely to be strictly weaker than
our intraprocedural liveness scheme for scalars on the stack.

5.6 Benchmarks

We used three criteria to select our benchmark programs. First, we picked benchmarks
that performed significant heap allocation. Second, we picked benchmarks that we
thought would demonstrate the difference between accurate and inaccurate garbage col-
lection. For example, we picked anagramsince it uses bit vectors which may end up
looking like pointers to a conservative garbage collector. Third, we included a number
of object-oriented benchmarks.

Table 6 describes our benchmark programs. Lang.gives the source language of the
benchmark programs. Linesgives the number of lines in the source code of the program
(including comments and blank lines). Total alloc.gives the number of bytes allocated
throughout the execution of the program. Two of our benchmarks, gctestand gctest3,
are designed to test garbage collectors [4, 5]. These benchmarks both allocate and cre-
ate garbage at a rapid rate. The original version of these programs contained explicit
calls to the garbage collector. We removed these calls to allow garbage collection to
be automatically invoked. The benchmarks bshift, erbt, ebignum, and gegrepare Eiffel
programs that we translated into C with the GNU Eiffel compiler SmallEiffel. We used
the option -no gc and linked the generated C code up with our collector. Likewise, we
disabled the garbage collector included in the Lisp interpreter li from the SPECInt95
benchmark suite to use our collector instead. The remaining programs use standard C
allocation and deallocation to manage memory. We conducted all our experiments on a
AMD Athlon workstation.

Due to the prohibitive cost of our analyses,3 we had to pick relatively short runs
for most of the programs. However, for those programs where we were able to do both
shorter and longer runs, we found little difference between the two runs as far as our
results are concerned.

3 Some of these benchmarks take over 24 hours on a 850 MHz Athlon with 512MB of memory
to run all the configurations.

196 Martin Hirzel, Amer Diwan, and Antony Hosking

Table 6. Benchmarks

Name Lang. Lines Total alloc. Main data structures Workload

Programs written with gc in mind:
gctest3 C 85 2 200 004 lists and arrays loop to 20,000
gctest C 196 1 123 180 lists and trees only repeat 5 in listtest2
bshift Eiffel 350 28 700 dlists scales 2 through 7
erbt Eiffel 927 222 300 red-black trees 50 trees with 500 nodes each
ebignum Eiffel 3 137 109 548 arrays twice the included test-stub
li C 7 597 9 030 872 cons cells nqueens.lsp, n = 7

gegrep Eiffel 17 185 106 392 DFAs ’[A-Za-z]+\-[A-Za-z]+’ t
Programs with explicit deallocation:
anagram C 647 259 512 lists and bitfields words < input.in
ks C 782 7 920 D-arrays and lists KL-2.in
ft C 2 156 166 832 graphs 1000 2000
yacr2 C 3 979 41 380 arrays and structures input4.in
bc C 7 308 12 382 400 abstract syntax trees find primes smaller 500
gzip C 8 163 14 180 Huffman trees -d texinfo.tex.gz
ijpeg C 31 211 148 664 various image repn. testinput.ppm -GO

6 Results

We now present experimental results to answer the following questions about the use-
fulness of liveness for garbage collection and leak detection:

1. Does liveness enable us to identify more garbage objects?
2. How does liveness accuracy compare to type accuracy in reclaiming objects?
3. How powerful should a liveness analysis be before it is useful?
4. Do our more powerful liveness schemes allow us to find more memory leaks in our

benchmarks?

Sections 6.1, 6.2, 6.3, and 6.4 present results to answer the above questions. Section
6.5 validates our methodology. Section 6.6 discusses the implications of our results for
garbage collectors and leak detectors. Finally, Section 6.7 summarizes our results.

6.1 Usefulness of Liveness

In this section we consider whether liveness enables the reachability traversal to de-
tect more of the dead objects as compared to a reachability traversal that does not use
liveness information. Table 7 compares our strongest liveness scheme, (N, Iall

sg), to no
liveness, (N, N). To make this and other tables in this paper easier to read, we leave all
zero entries blank. Note that there are still some “0” entries in the table: these entries
represent values that are less than 1% but not zero.

The first column of Table 7 gives the benchmark program. The second column gives
the additional unreachable bytes that (N, Iall

sg) identifies over (N, N) as a percent of
the bytes that (N, N) identifies as reachable. The data in this column is an average

On the Usefulness of Liveness for Garbage Collection and Leak Detection 197

over the data collected at each of the reachability traversals. A non-empty cell in this
column means that (N, Iall

sg) identified more unreachable bytes than (N, N). An empty
cell in this column means that (N, N) performed as well as (N, Iall

sg). The third column
gives an indication of the increased memory requirement of (N, N) over (N, Iall

sg): it
compares the maximum number of bytes that are reachable with the two schemes as a
percent of the maximum number of bytes that are reachable with (N, N). The fourth
column gives the percent of reachability traversals after which (N, Iall

sg) retained fewer
objects than (N, N). Recall that we trigger reachability traversals approximately 50
times for each benchmark run (Section 5.4). A non-empty cell in this column means
that at some traversals (N, Iall

sg) identified more unreachable bytes than (N, N).

Table 7. Usefulness of liveness

Benchmark avg
(N,N)−(N,Iall

sg)

(N,N)
%

max(N,N)−max(N,Iall
sg)

max(N,N)
% Traversals different

Num traversals %

gctest3 0 0 79
gctest
bshift 42 23 94
erbt 19 6 98
ebignum 13 18 87
li 0 2
gegrep 59 43 98

anagram
ks
ft
yacr2 21 15 90
bc 2 0 98
gzip 11 17 50
ijpeg 1 20

From Table 7 we see that (N, Iall
sg) benefits 10 out of our 14 benchmark programs.

For two of the programs (gctest3and li) the improvement due to liveness is small. For
six of the programs (bshift, erbt, ebignum, gegrep, yacr2, and gzip) liveness reduces the
maximum number of reachable bytes by up to 43%. From the fourth column we see that
several of the programs leak memory for most of the execution (i.e., the leaks, on aver-
age, are not short lived). Thus from these numbers we conclude that liveness (at least in
its most aggressive form) has the potential to significantly improve the effectiveness of
garbage collectors and leak detectors.

6.2 Liveness versus Type Accuracy

In this section we investigate the individual and cumulative benefits of type and liveness
accuracy. Table 8 compares reachability traversals using type accuracy only ((T, N)),
liveness accuracy only ((N, Iall

sg)), and both type accuracy and the best liveness accuracy

198 Martin Hirzel, Amer Diwan, and Antony Hosking

((T, Iall
sg)). The columns of this table present the difference between the bytes retained

by (N, N) and the bytes retained by (T, N), (N, Iall
sg), and (T, Iall

sg) as a percent of the
bytes retained by (N, N). As with Table 7, the data in Table 8 is an average across
all the reachability traversals in a program run. Column 3 of this table is the same as
Column 2 of Table 7.

Table 8. Liveness and type accuracy. All benchmarks that see no benefit from liveness
or type accuracy are omitted.

Benchmark avg (N,N)−(T,N)
(N,N)

% avg
(N,N)−(N,Iall

sg)

(N,N)
% avg

(N,N)−(T,Iall
sg)

(N,N)
%

gctest3 0 0
bshift 42 42
erbt 19 19
ebignum 0 13 13
li 0 0
gegrep 59 59

yacr2 21 21
bc 2 2
gzip 1 11 12
ijpeg 1 1 1

From Table 8 we see that just adding type information to a reachability traversal
yields relatively modest improvements for these benchmark runs (though type accuracy
may yield greater benefits on other architectures [17]). In comparison there is a signifi-
cant benefit to using liveness information in a reachability traversal. From Column 4 we
see that there is little benefit to adding type information to liveness for identifying dead
objects. In other words, the information that the aggressive liveness analysis computes
is sufficient for identifying live pointers. There may, however, be performance benefits
to type information since a type-accurate collector can compact reachable memory and
thus affect its memory system behavior.

6.3 Strength of Liveness Analysis

In this section we investigate the usefulness of different levels of liveness. Since more
precise liveness information is more difficult to implement and expensive to compute, it
is important to determine the point of diminishing return for liveness. Table 9 gives the
impact of the precision of liveness information on the reachability traversal’s ability to
identify dead objects. Table 9 is divided into two parts: Stack livenesspresents the data
when we compute liveness only for variables on the stack and Stack and global live-
nesspresents the data when we compute liveness for variables on the stack and global
variables. Each part has three columns. The first column of each part is the baseline:
it shows the benefit of computing simple liveness (i.e., only for scalar variables and
using an intraprocedural analysis). We compute the first column of each section in the

On the Usefulness of Liveness for Garbage Collection and Leak Detection 199

same manner as the columns of Table 8. The second and third columns of each section
indicate how the value in the first column would increase if we used interprocedural
liveness and computed liveness for elements of aggregate variables (i.e., record fields
and array elements). There was no benefit to analyzing aggregates in an intraprocedural
analysis of stack or global variables and thus we omitted those columns from the table.

Table 9. Varying the strength of the liveness analysis. Columns 2 and 5 (baseline)
give the benefit of intraprocedural liveness of scalars for stack and globals. Columns
3, 4, 6, and 7 give the additional benefit of interprocedural analysis and analysis of
aggregates over their corresponding baselines. All benchmarks that see benefit from
neither liveness nor type accuracy are omitted.

Program Stack liveness Stack and global liveness

avg (N,N)−(N,iscalar
s)

(N,N)
% +IP +IP+aggr avg

(N,N)−(N,iscalar
sg)

(N,N)
% +IP +IP+aggr

gctest3 0 0
bshift 0 0 3 42
erbt 1 19
ebignum 13 0 0 13 0 0
li 0 0
gegrep 0 9 9 0 23 58

yacr2 0 1 20 20
bc 0 0 1 2
gzip 11 11 11 11
ijpeg 1 1

From Table 9 we see that there is little or no benefit from adding intraprocedural
stack liveness for our benchmarks. This is consistent with behavior observed by Agesen
et al. [1]. Indeed, until we do an interprocedural analysis we get almost no benefit
from stack liveness. Note that once we have added interprocedural liveness, analyzing
aggregates helps only slightly. Thus, if one is implementing only a stack analysis, then
the best bet is to implement an interprocedural liveness analysis and not bother with
analyzing non-scalars.

The majority of the benefit of liveness analysis comes from analyzing global vari-
ables (see second set of columns in Table 9). The relative importance of local and global
variable liveness is not too surprising: unlike local variables, global variables are around
for the entire lifetime of the program and thus a dead pointer in a global variable will
have a much bigger impact on reachability traversal than a dead pointer in a (relatively
short lived) local variable. However, even for global variables, liveness analysis yields
little benefit unless the liveness analysis is interprocedural. The cumulative impact of
adding aggregate and interprocedural analysis is greater than the sum of the parts. For
example, in benchmark bshift the benefit of interprocedural analysis is 3% and the ben-
efit of analyzing aggregates is 0%, but the benefit of adding both is 42%.

200 Martin Hirzel, Amer Diwan, and Antony Hosking

Figure 7 illustrates how the combined effect of analyzing aggregates and interproce-
dural analysis is greater than the sum of their parts. In this example s is a global record.
Assume for this example that the fields of s are used consistently with their types. If
we analyze procedure f using an interprocedural analysis without aggregates then we
would have to conclude that the two fields of s may contain pointers at the call to g
since the analysis is conservative about record fields. If we analyze procedure f using
an intraprocedural liveness analysis that analyzes aggregates then once again we would
have to conclude that the fields of s may contain live pointers at the call to g since the
intraprocedural analysis assumes the worst case for calls. Only when we analyze proce-
dure f using an interprocedural liveness analysis that analyzes aggregates are we able
to determine that the fields of s do not contain pointers.

var s : record i : ref int; j : ref int; end
proc f()

. . .
call g()
. . .

Fig. 7. Example of the synergy between analyzing aggregates and doing interprocedural
analysis

To summarize, Figure 8 shows both the theoretical (Figure 8(a)) and experimental
(Figure 8(b)) relationship between the different liveness analyses. Figure 8(a) is the
segment of Figure 6 that contains the liveness accurate memory management schemes.
Figure 8(b) is the same graph, but with a different interpretation of vertical position. For
each scheme S in (b), the vertical position corresponds to the metric avg (N,N)−S

(N,N) %,
which is explained in Section 5.4. The horizontal lines in Figure 8(b) connect accuracy
schemes that differ in strength only theoretically but not in our experiments.

6.4 Effectiveness in Finding Leaks

The previous sections shed light on the impact of different kinds of liveness informa-
tion on garbage reclamation or leak detection. In this section we discuss whether or not
liveness was able to identify leaks in any of our benchmark programs. We define a leak
as an object that is never deallocated by the original program but could have been deal-
located before the program ended. This is a rather weak notion of leaks, however, since
it does not incorporate timelinessof deallocation. For example, if an object becomes
useless early in the program and is not explicitly deallocated till much later it would not
qualify as a leak under our definition.

Of our seven benchmarks that use explicit deallocation (anagram, ks, ft, yacr2, bc,
gzip, and ijpeg) (N, Iall

sg) found leaks in yacr2, bc, and ijpeg. Of these, the leaks in bc
and ijpeg are an insignificant percentage of total allocation (less than 1%). The leak in
yacr2however is significant and accounts for 60% of total allocation (i.e., 60% of of the
space is leakage). Since yacr2does only a modest amount of total allocation in our run,

On the Usefulness of Liveness for Garbage Collection and Leak Detection 201

a leak of 60% is not as critical as it sounds. However, it is important to keep in mind
that most of the benchmarks we used (particularly the C codes) are well-established
and well-studied programs; thus it would have been surprising to find significant leaks
in them.

0

1

12

10

5

2

3

4

6

7

8

11

13

9

N)(N ,
N)(N ,

−S
%avg

(N , i scalar
s)

(N , i all
s)

N)(N ,

(N , I scalar
s)(N , i scalar

sg)

(N , I all
s) (N , I scalar

sg)(N , i all
sg)

(N , I all
sg)

(N , I all
sg)

(N , I scalar
sg)

(N , I scalar
s)

(N , i scalar
s)

N)(N ,

(N , i all
s)

(N , i all
sg)

(N , I all
s)

(N , i scalar
sg)

(a)

(b)

Fig. 8. Theoretical (a) and experimental (b) liveness strength.

202 Martin Hirzel, Amer Diwan, and Antony Hosking

6.5 Validation of Our Methodology

Our approach extracts liveness information from a single run of the program and thus
it is possible that the liveness information is specific only to that run. In this section we
consider how the liveness information varies across runs. A high variation means that
our methodology is computing loose upper bounds and thus is severely limited in its
usefulness.

To investigate the variation across runs, we ran three benchmarks with a different
input and compared the results to our previous runs. If a stack or global location had a
different liveness at any point in the two runs we counted that location as “different” .
Table 10 gives the stack and global locations that are different as a percent of total stack
and global locations when using (N, Iall

sg). The results for other levels of accuracy are
similar or better. As with our other tables, we leave the “0” entries blank; 0.0 in this
table means that the value is smaller than 0.1% but not 0.

Table 10. Number of stack and global locations that are different as a percent of total
static stack and global locations

Stack Global
Benchmark Count % different Count % different

gegrep 30484 0.7 48717 0.0
yacr2 586 2.7 384
gzip 2075 1.3 84158 2.2

From Table 10 we see that there is little difference between the liveness information
for our two runs. We also measured the effectiveness of different levels of accuracy in
identifying dead objects (similarly to Table 7). We found that the results were identical
for the two runs in terms of the relative usefulness of the different accuracy schemes.
The number of bytes that each liveness scheme was able to identify as dead was of
course different between the two runs. Thus, it is likely that our run-time methodology
is computing a tight upper bound.

6.6 Implications for Leak Detection and GC

Our results demonstrate that a liveness-accurate reachability traversal will find many
more dead bytes than one that is not liveness accurate even if it is type accurate. Par-
ticularly, even garbage collectors and leak detectors written for unsafe programs can be
much more effective with strong liveness information.

A significant advantage of liveness accuracy over type accuracy is that it is more
widely applicable since it does not require a compiler to propagate liveness informa-
tion across its optimization passes and also it does not require type-safe languages. One
could even imagine using it to null out pointers in the source code instead of commu-
nicating it to the garbage collector in form of tables. Yet the benefits (in reclaiming
objects) of liveness information are even greater than the benefits of type information.

On the Usefulness of Liveness for Garbage Collection and Leak Detection 203

Thus, we believe that a liveness analysis deserves to become an integral part of garbage
collectors and leak detectors.

6.7 Summary of Results

Our results demonstrate that while liveness accuracy significantly improves a reacha-
bility traversal’s ability to identify dead objects, the simpler liveness analyses are rarely
useful. For liveness accuracy to have a significant impact, the liveness analysis must
analyze both local and global variables and use an interprocedural analysis. Adding
analysis of aggregate variables further improves interprocedural liveness of local and
global variables but has no impact on intraprocedural liveness.

7 Experiences

Besides demonstrating that certain kinds of liveness can be valuable in identifying dead
objects, our experiments also had an unexpected side effect: they enabled us to identify
leaks in the BDW collector [7]. The BDW collector is a mature and extremely useful
tool that has been used heavily by a large user community for over 10 years and there
are even commercial leak detection products that are based on this collector [11]. Thus
we were surprised to find any leaks in this collector. Our experience leads us to believe
that experiments such as ours may be valuable to implementors of garbage collectors
and leak detectors in fine tuning their systems.

Broadly speaking there are two kinds of bugs in a garbage collector or leak detector:
(i) it can incorrectly identify a live object as dead and (ii) it can fail to identify a dead
object. The existence of a bug of the first kind, particularly in a garbage collector, will
probably be exposed quickly since freeing a live object will cause the program to exhibit
unexpected behavior or to crash. The existence of a bug of the second kind is much
harder to detect since it does not cause the program to crash: it just causes the program
to use more memory. Since most programmers treat a garbage collector as a black box,
they will not realize if the leak is due to a bug in the garbage collector or if it is due to
an unfortunate pointer in their own code. All bugs we found in the BDW collector were
of the second kind.

How did our experiments help us in finding leaks in the BDW collector? We ex-
perimented with a wide range of variations in the BDW collector, some of which minor
(such as intraprocedural liveness of local scalar variables) and some of which significant
(such as ones involving interprocedural analysis). We discovered the leaks when we saw
behavior in one of our variations that did not make sense. For instance, in one case we
found that incorporating intraprocedural liveness of global and local variables found
many more dead objects than intraprocedural liveness for just local variables. When we
tried to imagine how such a situation could happen we ended up with contrived exam-
ples which seemed unlikely to appear in real programs. Thus, we investigated further
and found the source of the problem: the BDW collector was mistakenly using some of
its own global variables as roots. When we provided liveness information for globals
to the BDW collector it circumvented BDW’s mechanism for finding roots in global
variables and thus avoided this problem.

204 Martin Hirzel, Amer Diwan, and Antony Hosking

To summarize, garbage collectors and leak detectors are notoriously hard to write
and debug. Our experimental methodology provides implementors of these tools with
an additional mechanism for identifying potential performance problems.

8 Future Work

Our work demonstrates that while liveness is useful for both garbage collection and
leak detection our method is not practical for real-world applications since it requires
two identical runs. To remedy this we are working on a compiler support for computing
liveness information that obviates the need for two runs at the loss of some precision.
We expect that this will not only result in a reachability traversal that users can use
for leak detection or garbage collection but it will also allow us to run much larger
experiments with liveness. The results in this paper will guide us in determining what
kinds of compiler analyses to build in order to improve the effectiveness of reachability
traversals.

A limitation of our current infrastructure is that it can handle only C programs or
programs that can be converted into C. Given that Java is the current mainstream lan-
guage that uses garbage collection it would be worthwhile to repeat a similar set of
experiments for Java programs. Java programs may behave quite differently from C or
Eiffel programs and thus the results may be different for Java programs. We tried using
Toba [22] to translate Java programs to C and then use them as benchmarks for this
study. Unfortunately the C code that Toba generates even for tiny applications is too
large for our infrastructure (since it includes not just the user program but also the Java
standard libraries). We are now moving our analysis infrastructure to the Jalapeño JVM
[2] which will allow us to experiment with Java programs.

9 Conclusions

We describe a detailed investigation of the impact of liveness and type accuracy on the
effectiveness of garbage collectors and leak detectors. By separating the two dimensions
of accuracy—type accuracyand liveness accuracy—we are able to identify interesting
new accuracy schemes that have not been investigated in the literature. We use a novel
methodology that uses a trace-based analysis to enable us to easily experiment with a
wide range of liveness schemes.

Our experiments reveal that liveness can have a significant impact on the ability
of a garbage collector or leak detector in identifying dead objects. However, we show
that the simple liveness schemes are largely ineffective: we need to use an aggressive
liveness scheme that incorporates interprocedural analysis of global variables before we
see a significant benefit. Our aggressive liveness schemes are also able to find memory
leaks in our suite of well-studied benchmarks.

On the Usefulness of Liveness for Garbage Collection and Leak Detection 205

Acknowledgements

We thank the anonymous reviewers for their helpful comments and suggestions. We
also thank Michael Hind and Urs Hoelzle for comments on a draft of this paper, and
John DeTreville for fruitful discussions about our methodology and results.

References

[1] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection and local variable
type-precision and liveness in Java virtual machines. In ACM conference on programming
language design and implementation, pages 269–279, Montreal, Canada, June 1998.

[2] Bowen Alpern et al. The Jalapeño virtual machine. IBM Systems Journal, 39(1):211–238,
February 2000.

[3] Andrew W. Appel. A Runtime System. Lisp and Symbolic Computation, 3(4):343–380,
November 1990.

[4] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Technical Report
88/2, DEC Western Research Laboratory, Palo Alto, CA, February 1988. Also in Lisp
Pointers1(6):2-12, April-June 1988.

[5] Joel F. Bartlett. Mostly-copying garbage collection picks up generations and C++. Techni-
cal report, DEC Western Research Laboratory, Palo Alto, CA, October 1989.

[6] Hans Boehm, Alan Demers, and Scott Shenker. Mostly parallel garbage collection. In
ACM conference on programming language design and implementation, pages 157–164,
Minneapolis, MN, November 1991.

[7] Hans Boehm, Alan Demers, and Mark Weiser. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

[8] Hans Boehm and Zhong Shao. Inferring type maps during garbage collection. In OOPSLA
’93 Workshop on Memory Management and Garbage Collection, September 1993.

[9] Hans Boehm and Mark Weiser. Garbage collection in an uncooperative environment.
Software—Practice and experience, pages 807–820, September 1988.

[10] Dominique Colnet, Philippe Coucaud, and Olivier Zendra. Compiler support to customize
the mark and sweep algorithm. In Proceedings of the International Symposium on Memory
Management, pages 154–165, Vancouver, October 1998.

[11] Jeremy Dion and Louis Monier. Third degree.
http://research.compaq.com/wrl/projects/om/third.html.

[12] Amer Diwan, J. Eliot B. Moss, and Richard L. Hudson. Compiler support for garbage
collection in a statically typed language. In ACM conference on programming language
design and implementation, pages 273–282, San Francisco, CA, July 1992.

[13] Great Circle – Real-time error detection and code diagnosis for developers.
http://www.geodesic.com/products/greatcircle.html.

[14] James Gosling, Bill Joy, and Guy Steele. The Java language specification. Addison-Wesley,
1996.

[15] Reed Hastings and Bob Joyce. Fast detection of memory leaks and access errors. In
Proceedings of the Winter ’92 USENIX conference, pages 125–136, 1992.

[16] Michael Hicks, Jonathan Moore, and Scott Nettles. The measured cost of copying garbage
collection mechanisms. In Functional Programming, pages 292–305, June 1997.

[17] Martin Hirzel and Amer Diwan. On the type accuracy of garbage collection. In Proceedings
of the International Symposium on Memory Management, pages 1–12, Minneapolis, MN,
October 2000.

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://research.compaq.com/wrl/projects/om/third.html
http://www.geodesic.com/products/greatcircle.html

206 Martin Hirzel, Amer Diwan, and Antony Hosking

[18] Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and Christopher F. Weight. A language-
independent garbage collector toolkit. Technical Report 91-47, University of Massachusetts
at Amherst, September 1991.

[19] Richard Jones and Rafael Lins. Garbage collection: algorithms for automatic dynamic
memory management. John Wiley & Sons, 1st edition, 1997.

[20] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
Cambridge, Massachusetts, 1990.

[21] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, New Jersey,
1991.

[22] Todd Proebsting, Gregg Townsend, Patrick Bridges, John Hartman, Tim Newsham, and
Scott Watterson. Toba: Java for applications – a way ahead of time (WAT) compiler. In
USENIX COOTS, pages 41–53, June 1997.

[23] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. On the effectiveness of GC in Java.
In Proceedings of the International Symposium on Memory Management, pages 12–17,
Minneapolis, MN, October 2000.

[24] Frederick Smith and Greg Morrisett. Comparing mostly-copying and mark-sweep conser-
vative collection. In Proceedings of the International Symposium on Memory Management,
pages 68–78, October 1998.

[25] James Stichnoth, Guei-Yuan Lueh, and Michaeł Cierniak. Support for garbage collection at
every instruction in a Java compiler. In ACM conference on programming language design
and implementation, pages 118–127, May 1999.

[26] Stanford University SUIF Research Group. Suif compiler system version 1.x.
http://suif.stanford.edu/suif/suif1/index.html.

[27] David Tarditi, Greg Morrisett, P. Cheng, C. Stone, Robert Harper, and Peter Lee. TIL: A
type-directed optimizing compiler for ML. In ACM conference on programming language
design and implementation, pages 181–192, May 1996.

[28] David Ungar. Generation scavenging: A non-disruptive high performance storage recla-
mation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, pages 157–167, 1984.

[29] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching considerations for gener-
ational garbage collection. In 1992 ACM Conference on Lisp and Functional Programming,
pages 32–42, San Francisco, California, June 1992.

[30] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe,
Jennifer-Ann M. Anderson, Steven W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng,
Mary W. Hall, Monica S. Lam, and John L. Hennessy. SUIF: An infrastructure for re-
search on parallelizing and optimizing compilers. ACM SIGPLAN Notices, 29(12):31–37,
December 1984.

[31] Benjamin Zorn. The effect of garbage collection on cache performance. Technical Report
CU-CS-528-91, University of Colorado at Boulder, May 1991.

[32] Benjamin Zorn. The measured cost of conservative garbage collection. In Software–
Practice and Experience, pages 733–756, July 1993.

http://suif.stanford.edu/suif/suif1/index.html

	Introduction
	1 Introduction
	Background

	2 Background
	Motivation

	3 Motivation
	Related Work

	4 Related Work
	Methodology
	5 Methodology
	Approach for Type Accuracy

	Approach for Liveness
	Accuracy Levels in This Paper
	Measurement Methodology
	Limitations
	Benchmarks

	Results
	6 Results
	Usefulness of Liveness

	Liveness versus Type Accuracy
	Strength of Liveness Analysis
	Effectiveness in Finding Leaks
	Validation of Our Methodology
	Implications for Leak Detection and GC
	Summary of Results

	Experiences
	7 Experiences
	Future Work

	8 Future Work
	Conclusions

	9 Conclusions
	Acknowledge
	References

