On the Usefulness of Liveness
for Garbage Collection and L eak Detection

Martin Hirzel', Amer Diwart, and Antony Hosking

L University of Colorado
Boulder, CO 80309
{hirzel, diwan}@s. col orado. edu
2 Purdue University
West Lafayette, IN 47907
hoski ng@s. pur due. edu

Abstract. The effectiveness of garbage collectors and leak detectors in identi-
fying dead objects depends on the “accuracy” of their reachability traversal. Ac-
curacy has two orthogonal dimensions: (i) whether the reachability traversal can
distinguish between pointers and non-pointers (type accuracy), and (ii) whether
the reachability traversal can identify memory locations that will be dereferenced
in the future (liveness accuracy). While prior work has investigated the impor-
tance of type accuracy, there has been little work investigating the importance of
liveness accuracy for garbage collection or leak detection. This paper presents an
experimental study of the importance of liveness on the accuracy of the reacha-
bility traversal. We show that while liveness can significantly improve the effec-
tiveness of a garbage collector or leak detector, the simpler liveness schemes are
largely ineffective. One must analyze globals using an interprocedural analysis to
get significant benefft.

1 Introduction

Garbage collection (GC), or automatic storage reclamation, has many well-known soft-
ware engineering benefits [29]. First, it eliminates memory management bugs, such as
dangling pointers. Second, unlike explicit deallocation, GC does not compromise mod-
ularity since modules do not need to know the memory management philosophies of
the modules that they use. It is therefore no surprise that even though C and C++ do not
mandate GC as part of the language definition, many C and C++ programmers are now
using it either for reclaiming memory or féeak detectionlt is also no surprise that
many newer programming languages (e.g., Java [14], Modula-3 [21], SML [20]) require
garbage collection. This increased popularity of garbage collection makes it more im-
portant than ever to fully understand the tradeoffs between different garbage collection
alternatives.

° This work was supported by NSF ITR grant CCR-0085792. Any opinions, findings and con-
clusions or recommendations expressed in this material are the authors’ and do not necessarily
reflect those of the sponsors.

J. Lindskov Knudsen (Ed.): ECOOP 2001, LNCS 2072, pp. L81-206, 2001.
© Springer-Verlag Berlin Heidelberg 2001

182 Martin Hirzel, Amer Diwan, and Antony Hosking

An idealgarbage collector or leak detector identifies all heap-allocated dﬁthats
are notdynamically live A dynamically-live heap object is one that will be used in the
future of the computation. More operationally, a dynamically-live heap object is one
that can be reached by following pointers that will be dereferenced in the future of
the computationdynamically-live pointers In order to retain only dynamically-live
objects, the ideal garbage collector must be able to exactly identify what memory loca-
tions contain dynamically-live pointers. Unfortunately, a real garbage collector or leak
detector has no way of knowing what pointers will be dereferenced in the future; thus
it may use compiler support to identify an approximation to dynamically-live pointers.
The precision of the garbage collector or leak detector in identifying dynamically-live
objects depends on tlaecuracyof the compiler support.

There are two dimensions to accuracy: the extent to which the compiler information
is able to distinguish pointers from non-pointdgge accuracyand the extent to which
the compiler information identifies live pointervéness accuraqy Prior work [17]
has mostly focused only on type accuracy and liveness accuracy has received only a
little attention in the literature [1]. In this paper we investigate the effect of different
levels of liveness accuracy; in prior work we investigated the effect of different levels
of type accuracy [17]. Our approach is to modify a garbage collector (particularly the
Boehm-Demers-Weiser collectar [[7, 9]) to accept and use different combinations of
type and liveness accuracy information.

One way to conduct this study is to implement a large number of accuracy schemes
in a compiler and garbage collector and to compare their performance. However, ac-
curacy schemes are difficult to implement and thus the above mentioned approach
would be infeasible. We therefore take a different approach: we implement the accuracy
schemes as a upper-bound approximation in a highly parameterized run-time analysis.
This approach is easier since at run time we have perfect alias and control-flow infor-
mation. However, our approach is limited in that it gives us only an upper bound on the
usefulness of accuracy schemes and also requires two identical runs of each program.
We do not intend our approach to be used directly for leak detection or garbage collec-
tion: the goal of our approach is to collect experimental results that will help to drive
subsequent work in leak detection and garbage collection.

To increase the applicability of this study, some of our benchmarks use explicit
deallocation while others use garbage collection. Benchmarks in the former group in-
clude many C programs from the SPECInt95 benchmark suite. Benchmarks in the latter
group include Eiffel programs and some C programs that were designed to be used with
a customized or conservative garbage collector.

Our results demonstrate that liveness accuracy significantly improves a garbage col-
lector or leak detector’s ability to identify dead objects. However we also find that sim-
ple liveness analyses (e.g., intraprocedural analysis of local variables [1]) are largely
ineffective for our benchmark programs. In order to get a significant benefit one must
use a more aggressive liveness analysis that is interprocedural and can analyze global
variables. We also show that our most aggressive liveness analysis is able to identify
small leaks in several of our benchmark programs.

1 We use the ternobjectto include any kind of contiguously allocated data record, such as C
structs and arrays as well as objects in the sense of object-oriented programming.

On the Usefulness of Liveness for Garbage Collection and Leak Detection 183

The remainder of the paper is organized as follows. Seflion 2 defines terminology
for use in the remainder of the paper. Secfibn 3 further motivates this work. Sgktion 4
reviews prior work in the area. Sectibh 5 describes our experimental methodology and
particularly our liveness analysis. Sectidn 6 presents the experimental results. Section
[7 discusses the usefulness of our approach in debugging garbage collectors and leak
detectors. Sectidd 8 suggests directions for future work and Séc¢tion 9 concludes.

2 Background

A garbage collector or leak detector identifies unreachable objects usazglaabil-

ity traversalstarting from local and global variables of the prog@mJ objects not
reached in the reachability traversal are dead and can be freed. In order to identify the
greatest number of dead objects, olive pointers that is, pointers that will be deref-
erenced in the future, must be traversed. Unfortunately, without prior knowledge of the
future of the computation it is impossible to precisely identify live pointers. Thus, reach-
ability traversals use conservative approximations to the set of live pointers. In other
words, a realistic reachability traversal may treat a non-pointer or a non-live pointer as
a live pointer, and may therefore fail to find all the dead objects. ddwiracyof a
reachability traversal refers to its ability to precisely identify live pointers.

There are two dimensions to accuratype accuracyandliveness accuracylype
accuracy determines whether or not the reachability traversal can distinguish point-
ers from non-pointers. Liveness accuracy determines whether or not the reachability
traversal can identify variables whose value will be dereferenced in the future. Both
dimensions require compiler support.

Figure[1 gives an example of the usefulness of type accuracy. Let's suppose the
variableshashandptr hold the same value (bit pattern) at program ppingven though
one is a pointer and the other is an integer. If a reachability traversal is not type accurate
it will find that the object allocated at, is reachable at points sincehash“points
to” it. If, instead, the traversal was type accurate, it would not theghas a pointer
and could reclaim the object allocatedpat(garbage collection) or report a leak to the
programmer (leak detection).

p1: int hash= hashVvalué. . .);
pe:int ptr = (int)(mallod. . .));
ps: (code usingkptr)

pa: ptr = null;

P5e...

Fig. 1. Type accuracy example

2 For simplicity, we do not discuss generational collectors which may also do a reachability
traversal starting from selected regions of the heap.

184 Martin Hirzel, Amer Diwan, and Antony Hosking

Figure[2 gives an example of the usefulness of liveness accuracy. Let's suppose
parsereturns an abstract syntax tree and that gfteast holds the only pointer to
the tree. Let's suppose that the variabl is not dereferenced at or after program
point ps (in other words, it is dead). A reachability traversal that does not use liveness
information will not detect that the object returned pgrseis garbage at program
point ps. On the other hand a reachability traversal that uses liveness information will
find thatastis dead at program poinig and will reclaim the tree returned tparse
(garbage collection) or report it as a leak to the programmer (leak detection).

pe: Treexast= parse);
pr: CFG xcfg = translatgast);
ps: (code that does not usest)

Fig.2. Liveness accuracy example

A major hindrance to both type or liveness accuracy is that they require significant
compiler support. In the case of type accuracy the compiler must preserve type infor-
mation through all the compiler passes and communicate it to the reachability traversal
[12]. In the case of liveness accuracy the compiler must conduct a liveness analysis and
communicate the liveness information to the reachability traversal. Unlike type infor-
mation, a compiler does not need to preserve liveness information through its passes if
the liveness analysis is the last pass before code generation.

3 Motivation

Prior work has focused almost exclusively on one aspect of accuracy — the ability to
distinguish pointers from non-pointers — and has considered liveness only as an af-
terthought. By separating the two aspects of accuracy, we can identify accuracy strate-
gies that are different from any that have been proposed before and are worth explor-
ing. For example, consider the problem of garbage collecting C programs. Prior work
has simply noted that C is unsafe and thus the garbage collector must be conservative
(type-inaccurate). While this is true with respect to the pointer/non-pointer dimension
of accuracy, it is not true with respect to the liveness dimension. A collector for C
and C++ programs which considers all variables with appropriate values to be pointers
would improve (both in efficiency and effectiveness) if it knew which variables were
live; variables that are not live need not be considered as pointers at GC time even if
they appear to be pointers from their value (see example in Higure 2).

Tablell enumerates a few of the possible variations in each of the two dimensions of
accuracy. If prior work has proposed a particular combination of accuracy, the table also
references some of the relevant prior work. Many papers have proposedal likeness
information/full type accuracgcheme and so we cite only a few of the relevant papers
in the table.

Evenin thisincomplete table, five out of nine combinations are unexplored in the lit-
erature. Several of the unexplored combinations have significant potential for advancing

On the Usefulness of Liveness for Garbage Collection and Leak Detection 185

Table 1. Some variations in the two dimensions of garbage collector accuracy

Level of type accuracy
Level of liveness accuracy NongPartia| Full
None [6] [0] BI18,28]
Intraprocedural for local vars (@, 2,[1227
Interprocedural for local and global vgrga) | (b) (c)

the state of the art in leak detection and garbage collection. For example, consider the
combination ofinterprocedural liveness for local and global variablegth the three
possibilities forpointer information(marked (a), (b), and (c) in table). Possibility (a)
will be useful for unsafe languages, such as C, since it will allow even a type-inaccurate
reachability traversal to ignore certain pointers and thus improve both its precision and
efficiency. Possibility (c) will improve over the best type-accurate schemes used for
type-safe languages such as Java and Modula-3][1L, 12, 27] since it incorporates liveness
of globals which we expect to be much more useful than liveness for local variables.
Finally, possibility (b) may be useful for either safe or unsafe languages (with some
programmer support).

This paper explores a significant part of the accuracy space in order to better under-
stand the different possibilities for liveness and their usefulness in leak detectors and
garbage collectors.

4 Related Work

In this section we review prior work on comparing different garbage collection alterna-
tives, type and liveness accuracy for compiled languages, and leak detection.

Shahanret al. [23] and Hirzel and Diwan [17] present work that is most relevant to
this paper. Shahaset al. evaluate a conservative garbage collector using a limit study:
They find that the conservative garbage collector is not effective in reclaiming objects
in a timely fashion. However, unlike our work, they do not experimentally determine
how much of this is due to type inaccuracy versus liveness inaccuracy, or which level
of accuracy would make their underlying garbage collector more effective. Hirzel and
Diwan [17] present an investigation of different levels of type accuracy using an ear-
lier version of our framework. They demonstrate that the usefulness of type accuracy
in reclaiming objects depends on the architecture. In particular, type accuracy is more
important for 32-bit architectures than for 64-bit architectures. Hirzel and Diwan in-
vestigate only one dimension of accuracy, namely type accuracy, and ignore liveness
accuracy in their study.

Bartlett [4], Zorn[[32], Smith and Morrisett[24], and Agesetral. [1] compare dif-
ferent garbage collection alternatives with respect to memory consumption. Bartlett [4]
describes versions of his mostly-copying garbage collector that differ in stack accuracy.
Zorn [32] compares the Boehm-Demers-Weiser collector to a number of explicit mem-
ory management implementations. Smith and Morrisett [24] describe a new mostly-
copying garbage collector and compare it to the Boehm-Demers-Weiser collector. All

186 Martin Hirzel, Amer Diwan, and Antony Hosking

these studies focus on the total heap size. Measuring the total heap size is useful for
comparing collectors with the same accuracy, but makes it difficult to tease apart the
effects of fragmentation, allocator data structures, and accuracy. Since we are counting
bytes in reachable objects instead of total heap size, we are able to look at the effects of
garbage collector accuracy in isolation from the other effects. Agesehinvestigate

the effect of intraprocedural local variable liveness on the number of reachable bytes
after an accurate garbage collection. Besides intraprocedural local-variable liveness we
also consider many other kinds of liveness.

Zorn [32], Smith and Morrisetf [24], and Hiclet al. [16] compare different mem-
ory management schemes with respect to their efficiency. Zoin [31] looks at the cache
performance of different garbage collectors. We do not look at run-time efficiency but
instead concentrate on the effectiveness of garbage collectors in reclaiming objects.

Boehm and Shaa [8] describe a technique for obtaining type accuracy for heap
objects without compiler support which requires a moderate amount of programmer
support. Boehm and Shao do not report any results for the effectiveness of their scheme.

Diwan et al. [12], Ageseret al.[1], and Stichnottet al. [25] consider how to per-
form accurate garbage collection in compiled type-safe languages. RBiveafil2] de-
scribe how the compiler and run-time system of Modula-3 can support accurate garbage
collection. Agesert al.[1] and Stichnottet al.[25] extend Diwaret al’s work by in-
corporating liveness into accuracy and allowing garbage collectialh pbints and not
just safe points. Even though these papers assume type-safe languages, type accuracy
is still difficult to implement especially in the presence of compiler optimizations. Our
work identifies what kinds of accuracy are useful for reclaiming objects, which is im-
portant for deciding what kinds of accuracy to obtain by compiler analysis. Also, our
approach can be used in its current form for identifying leaks in both type-safe and
unsafe languages.

Hastings and Joyce [15], Dion and Moniér[[11], and GreatCiricle [13] describe
leak detectors based on the Boehm-Demers-Weiser collé¢tor [9]. The Boehm-Demers-
Weiser collector can also be used as a leak detector [7]. Our scheme uses more accurate
information than these detectors and is thus capable of finding more leaks in programs.

5 Methodology

One approach to this study is to implement several different levels of accuracy in a com-
piler and communicate this information to a reachability traversal. However, because we
wanted to experiment with many different levels of accuracy the implementation effort
would have been prohibitive since implementing even a single accuracy scheme is a
challenging undertaking [12]. We therefore chose a different tactic.

Our basic approach (Figurk 3) is to analyze a running program to determine different
levels of type and liveness information. This approach is easier than actually building
several levels of accuracy since at run time we have perfect aliasing and control flow
information. Moreover, at run time we do not have to worry about preserving any in-
formation through later optimization passes. An additional advantage is that we can do
a direct, detailed, and meaningful comparison between the different memory manage-
ment schemes. Sectibnb.1 describes our methodology for collecting type information,

On the Usefulness of Liveness for Garbage Collection and Leak Detection 187

and sectiof 5]2 describes our methodology for collecting different levels of liveness in-
formation. Sectiof 513 introduces the different accuracy levels that we consider in this
paper. Sectioh 514 shows how we compare the effectiveness of reachability traversals
with different levels of accuracy information. Section]5.5 discusses the limitations of
our approach. Sectidn 5.6 describes and gives relevant statistics about our benchmark
programs.

Type-analysis Strength
library selection
C Program + . _T_ra_of_e___ Liveness
Library routines Instrumentor Link Run-1 analysis
T

: Typeinformation

v :

1
> f ' ——————
<
Liveness information
Stubs +
BDW gc

Fig. 3. Framework

5.1 Approach for Type Accuracy

We use the same infrastructure for type accuracy as our previous study on type accuracy
[17] so we describe it only briefly here. We convert our C source programs into the
SUIF representation [[26,(30], instrument the SUIF representation to make callsto arun-
time type-analysis librarylink and run the program (Run-1). The type-analysis library
precisely tracksthe flow of pointersat run time and determineswhich locations contain
pointers. At the end of Run-1, the instrumentation outputs type information in the form
of tables that describe which memory locations contain pointers. This information is
similar to compiler output in areal garbage collection system for a type-safe language.

Then, we link the same instrumented program with empty stubs instead of the type
analysislibrary and with the Boehm-Demers-Weiser (BDW) garbage collector [[7]. We
have modified BDW so that it can use the typeinformation during Run-2 Since memory
addresses of objects may be different in the second run, Run-1 assigns unique identi-
fiersto each heap-allocated object and global variable and uses these identifiersto refer
to objects. Run-1 communicates type-accurate information to Run-2 using location de-
scriptors which take one of the following forms:

— (globalid, offse}: the global variable identified by globalid contains a pointer at
offset

— (heapid, offse}: the heap allocated object identified by heapid contains a pointer
at offset

188 Martin Hirzel, Amer Diwan, and Antony Hosking

— (proc_.nameoffse}: activation records for the procedure identified by proc.name
contain a pointer at offset

We output the above information for every call and allocation point. We do not
output any information about pointersin registers since we force al variablesto livein
memory; registers serve only as scratch space and never contain pointersto objects that
are not also reachable from pointersin memory.

The set-up for type accuracy differsslightly from our earlier work on type accuracy
[17] in afew aspects. We exclude the activation records of the BDW garbage collector
itself from the root set of the reachability traversal. We found and fixed a leak in the
BDW collector. Finally, we force the heap to start at a dightly higher addressin Run-2
to minimize interference with the data structures needed by our infrastructure.

5.2 Approach for Liveness

Besides generating type information, Run-1 also outputs a trace of events. We analyze
thistraceto obtain livenessinformation. | n addition to typeinformation, Run-2 can also
use the liveness information to improve the precision of its reachability traversals.

Our analysis of the trace mirrorsthe actions of atraditional backward-flow liveness
analysisin acompiler. Like atraditional data-flow liveness analysis, there are two main
eventsin our run-time analysis: uses and definitions. Uses, such as pointer dereferences,
make amemory location live at pointsimmediately before the use. Definitions, such as
assignments, make the defined memory location dead just before the definition. The
run-time analysis is parametrized so that it can realistically simulate a range of static
analyses.

Format of the Trace. The trace consists of a sequence of events that are recorded as
the program executes. Table2]describes the kinds of eventsin atrace. The eventsin the
trace are designed to enable different flavors of liveness analysis.

Some events (such as “assign”) refer to memory locations. The trace represents the
memory locations using location descriptor instancasstead of |ocation descriptors as
described in Section[5.7] because we need to distinguish between multiple instances of
alocal variable. Each global location descriptor has only oneinstance but local location
descriptors have multiple instances, one for each invocation of the local variable's en-
closing procedure. Each local location descriptor instance, besides identifying its loca-
tion descriptor, has an attribute, Home which identifies the activation record for which
the instance was created. Section[5.2 demonstrates how maintaining location descriptor
instances avoids imprecision in analyzing recursive calls.

Basic Algorithm. To obtain liveness information, we perform an analysis on the event
trace. In a nutshell, we read the sequence of eventsin reverse order and keep track of
which locations are live at any point during program execution. This approach reflects
the fact that liveness of pointers depends on the future, not the past, of the computation.
Our algorithm maintains two data structures. currentlyLiveand resultingLiveness
For each location descriptor instance ¢, currentlyLive () indicates whether it is live at

On the Usefulness of Liveness for Garbage Collection and Leak Detection 189

Table 2. Trace events

|Event |[Example [Description |
assigr{lhs, rhsy, ..., rhs,) |z = y + z |Assignment to location lhs from the locations
rhs; ...rhs,. Used to represent normal assignments,
parameter passing, and assignment of return value of a|
cal.

usgrhs) ...xxz ... |Use of location rhs. A pointer dereference is a use.
Also passing a parameter to an external function is a
use of the parameter.

call() ~f(...) |Cadl toaprocedure.

return() —f(...) |Returnfrom aprocedure. (For alongjmp, we generate
several return-events.)

allocation(p) mallod(. . .)|Allocation of heap object number p (numbered con-

secutively since program startup).

the current point in the analysis. In other words, as the analysis processes the trace
eventsin reverse order, it keeps track of what islive at any given point of the original

execution of the benchmark. The resultingLivenesslata structure maintains liveness
information that will be output at the end of the program. When the liveness analysis
finishes, for a stack location descriptor s, resultingLiveness) = {cs,,...,cs,} isthe
set of call sites where s is live, and for a global location descriptor g, resultingLive-
nessg) = {p1,...,pm} isthe set of dynamic calls to malloc where g is live (these
include the points where we do reachability traversalsin Run-2). We use stack location

descriptors rather than stack location descriptor instances in resultingLivenesso keep
the output of the analysis manageable. Note that we output more preciseinformation for

globals than for stack variables since maintaining such detailed information for stack

locations was infeasible.

As the liveness analysis is processing the trace, it also also tracks the call point at
which each active procedureis stopped. For instance, if procedure p calls g, within the
body of q the stopping point for the activation record of p will be the call to g within
p. Given location description instance z, HomeCS() gives the stopping point of the
Homeactivation record of z.

Our analysis never directly reads the currentlyLiveflags, but instead uses the func-
tionisLive, which defaultsto

procisLive(?) { return currentlyLive?); }

In Section5.2, we describe how isLive helpsto obtain selective liveness.

Table[3 gives the actions that the liveness analysis performs on each event. The
actions for assignand useare similar to the corresponding transfer functions that a
compile-timeliveness analysiswould use. The actionsfor call are, however, more com-
plex, and we motivate and describe them in Section[5.2

Our algorithm works by keeping the currentlyLiveflags up-to-date for al locations
£. Theintuition hereisthat ¢ must be live prior to any potential dereference of the value
it contains; i.e., ause assignto another livelocation, or call of an external function that

190 Martin Hirzel, Amer Diwan, and Antony Hosking

sees /. When the analysis has completed, it outputs each location descriptor along with
itsresultingLiveness

Table 3. Liveness analysis

|Event |Action |

assigrilhs, rhsy, ..., rhs,)|If isLive(lhs) = true, then make currentlyLivgrhs;),...,
currentlyLiverhs,,) true. If none of therhs; isthe same asthe |hs,
make currentlyLivefase for lhs.

us€rhs) Make currentlyLivetrue for the location descriptor instance rhs.
call() If this is an external call, for each externally visible location ¢,
make currentlyLiveg¢) true. Then, for each stack location descrip-
tor instance s with isLive(s) = true, add HomeCS{) to the result-
ingLivenes®f s’'slocation descriptor.

return() Initialize data structures (such as ones that record the stopping
points).
allocation(p) For each global location ¢ with isLive(¢) = true, add the dynamic

program point p to the resultingLivenessf ¢.

Analyzing Call Events. To understand the reason for the complexity in analyzing calls,
consider the a run of the code segment in Figure[d where f callsitself recursively just
once. Consider the most recent invocation of f (which must bein the elsebranch, since
in this example, f recurses just once). The expression b dereferences the variable ¢
but from the previous call tgf. Thus, ¢ from the previousinvocation of f islive at the
recursive call to f. However, even though * « b dereferences ¢, it does not dereference
the most recent instance of ¢ and thus, ¢ is not live at the cal to ¢g. Calls are the most
complex to analyze since that’s where we handl e such situations precisely.

int a;
int xxb;
void f(){
int xc; /* uninitialized x/
if(...){
b=&ec;
f0;
elsef
*b=&a;
90); /x cal sitecy */
R I
}
}

Fig.4. Recursive cal example

On the Usefulness of Liveness for Garbage Collection and Leak Detection 191

Theintuition for how we handle callsis as follows. The liveness analysis maintains
the currentlyLiveflagsfor all location descriptor instances based on the actionsin Table
When the liveness analysis encounters a call event, it updates the resultingLiveness
of al stack instancesthat are live at that call. To update the resultingLivenesgor alive
instance x, it adds HomeCS(x}o resultingLiveness(x)n other words, call events are
the points where we summarize the information in isLiveinto resultingLiveness

Let’s consider what happenswhen we apply our method to the execution of the code
in Figure[d. Asbefore, consider arun of the codein where f callsitself recursively just
once. TableH] shows an event trace (in reverse order) of the above program along with
the actions our liveness analysis will take. For some events (such as returns) we do not
list any actions since these events serve to simply initialize auxiliary data structures.
During the trace generation we create two instances of the location descriptor for local
variable c¢: ¢, for thefirst call to f and ¢ for the second call to f. Note however that
our algorithm addsto the resultingLivenessf ¢ on behalf of ¢; and not on behalf of c.
Thisis correct and precise since ¢, is not dereferenced (or assigned to avariable that is
dereferenced) in this run.

Table 4. Processing atrace of the example program

|Event |Comment |Analysis action

11: return() |outer f returns

10: return() inner f returnsto outer f

9: use€b) deref of b currentlyLive(d) < true

8 usdci) deref of xb = 1 currentlyLiveci) < true

7: return() g returnstoinner f

6: call() inner f calsg add HomeC&c:) to resultingLiveness)

5: us€b) deref of b currentlyLive(d) < true

4: assigric1) assigntoxb =c; ||currentlyLivgc,) « false

else-partininner f

3 call() outer f calsinner f no locals live, nothing happens!

2: assigr(b) assigntob currentlyLived) — false
then-part in outer f

1: call() cal to outer f

Selective Liveness. We consider three dimensionsthat determine the precision of live-
ness. (i) the region of memory for which we have livenessinformation (stack, heap, and
globals), (ii) whether we compute liveness only for scalar variables or also for record
fieldsand array elements (i.e., aggregatey and (iii) whether we compute livenessinfor-
mation intraprocedurally or interprocedurally. We now describe how we vary the above
dimensionsin the algorithm from Section5.2]

By changing the implementation of isLive we can select the precision level of the
first two dimensions. For example, suppose we wish to compute liveness information
for scalars in the stack, then we use the implementation of isLivein Figure[In other

192 Martin Hirzel, Amer Diwan, and Antony Hosking

words, for those regions of memory and kinds of variables where we do not want live-
ness information, we assume they are alwayslive.

proc isLive(¢){
if(¢ € Stackand ¢ € ScalarVarg
then return currentlyLivg?);
elsereturn true,

}

Fig.5. isLivewhen computing livenessfor scalars in stack

By changing what calls are to external routines we can select the precision of the
third dimension. For example, if we wish to mimic intraprocedura analysis then we
consider al calls as being to external routines. The action for the call()-event in Table[3]
will therefore make all externally visible locations (heap locations, global locations, or
stack |ocations whose address gets taken) live at al calls. For interprocedural analysis
all calls areto non-external routines. We handle library routines by providing stubs that
mimic their behavior.

5.3 Accuracy Levelsin ThisPaper

Table 5. Schemes evaluated

Area of memory
Stack |Stack+Globals
No type accuracy
None (N,N)
Intraprocedural scalars|(
Intraprocedural all (
Interprocedural scalars| (N, I59)
Interprocedural all (

With type accuracy

None ((
Intraprocedura scalars|((
Intraprocedural al ~ [(7,:¥) [(T,)
((
((

Interprocedural scalars
Interprocedural all

Table B gives the schemes that we evaluate in this paper along with abbreviations
for the schemes. The first part of the table lists schemes that do not include type accu-
racy but may include liveness accuracy. The second part of the table lists schemes that

On the Usefulness of Liveness for Garbage Collection and Leak Detection 193

include type accuracy and may aso include liveness. The entries in the table are pairs,
the first element of which gives the level of type accuracy ((INV,-) are schemes with
no type accuracy and (7', -) are schemes with type accuracy) and the second element
givesthe level of liveness accuracy. The “intraprocedural” configurations (-, i:) assume
the worst case for al externally visible variables (globals and locals whose address
has been taken) while the “interprocedural” configurations (-, I") analyze across proce-
dure boundaries for externally visible variables. The “scalars’ (-, -%¥¥) configurations
compute livenessinformation only for scalar variableswhereasthe“all” (-, -3 configu-
rations computeit for all scalar variables, record fields, and array elements. The “ stack”
configurations (-, -,) compute livenessinformation only for stack variables whereasthe
“stack and globals’ (-, -;,) configurations compute it for locations on the stack and for
statically allocated variables. While the abbreviations from Table[H identify accuracy
levels, we will sometimes use them to mean the number of bytes occupied by reachable
objects when using that accuracy level.

none

Fig.6. Memory Management Schemes. Each node in this graph is a memory manage-
ment scheme. An edge indicates that the scheme with the lower vertical position is
strictly weaker than the scheme with the higher vertical position.

Figure[@ presents accuracy schemes organized as alattice. The order is by strength,
with the strongest scheme at the top and the weakest scheme at the bottom.

Note that we decided not to look at liveness for the heap. To see why, let us first
imagine what it would mean in our context. Let (heapid, offse} be a heap location. If
we had heap-accurate liveness for aggregates, we might for example know that even
though the heap object heapid contains a pointer at offset that pointer will not be used
in the future. But getting thisinformation poses at |east two challenges. First, in order to

194 Martin Hirzel, Amer Diwan, and Antony Hosking

compute heap liveness we need a precise pointer analysis which is often prohibitively
expensive. Second, how to communicate the heap liveness information to the garbage
collector? A precise pointer analysis may create many instances of each allocation site
and the information may therefore get to be very large. With our trace-based approach,
we could of course have obtained heap livenessinformation, but given the difficulty of
obtaining it at compile time, our results would have been a very loose upper bound.
Thus, we omitted a study of heap liveness for this paper.

5.4 Measurement Methodology

To collect our numbers, we execute Run-2 multiple times for each benchmark, once for
each liveness scheme. To facilitate comparison of the different accuracy schemes, we
trigger the reachability traversal at the same time for each level of accuracy. For this
study we trigger a reachability traversal every A/n bytes of allocation where A isthe
total allocation throughout the benchmark run and n = 50. Thusfor each program and
accuracy schemewe end up with avector of approximately 50 numbersrepresenting the
reachable bytes found at each traversal. To compare two liveness schemes, we simply
subtract their vectorsto determine how they compare at each traversal. The numberswe
present in Section[glare typically averages computed over the difference vectors.

Here is an example for our metric, where for simplicity we assume n = 3. Let
the conservative garbage collector (N, N') encounter (100,200, 200) bytes in reach-
able heap objects after its three collections. Let our strongest liveness scheme (IV, 13])
encounter (100, 180, 160) bytes in reachable heap objects after its three collections.

_ al _ al _ al
We write avg;t(N’A?N’E\J,\;’IS) to mean 1 49_(1\/,1\/()]1\[715[1;/1,15)1 +...+ %N,NE&&J)\:I&)”>,

which is 1 (109100 . 200-480 4 200-160) — 10% in our concrete example. In other
words, with strong liveness accuracy, the heap would on average be 10% smaller after
garbage collections.

An aternative metric is to measure the heap size (including fragmentation and GC
datastructures) or the processfootprint instead of bytesin reachable heap objects. These
are useful metrics but unfortunately not ones we can measure easily in our infrastruc-
ture since our instrumentation and extensions to the Boehm-Demers-Weiser collector

increase the memory reguirements of the host program.

55 Limitations

The two main limitations of our approach are: (i) it is alimit study and thus not guar-
anteed to expose the realizablepotentia of liveness, and (ii) our instrumentation may
perturb program behavior and thus, we could suffer from Heisenberg’s uncertainty prin-
ciple.

Our results are an upper bound on the usefulness of liveness information because
our analysis has perfect alias information, and because a location may not be livein a
particular run, even though there exists arun where it is live. To reduce the possibility
of having large errors of this sort, we ran a selection of our benchmarks on multiple
inputs and compared the results across the inputs. Section [6.5 presents these results.

On the Usefulness of Liveness for Garbage Collection and Leak Detection 195

Also, we spent significant time manually inspecting the output of our liveness analysis
when it yielded a significant benefit. While our manual inspection was not exhaustive
(or anywhere close), we found no situations where our liveness analysis' results were
specific only to aparticular run.

The methodol ogy that we use to obtain our datainfluences the results itself because
we force all local variablesto live on the stack, even when they could otherwise have
been allocated in registers. Register allocation in a conventional compiler may use its
own liveness analysis and may reusethe register assigned to avariableif that variableis
dead. Thus, at garbage collection time the dead pointer is not around anymore. In other
words, the compiler is passing liveness information to the garbage collector implicitly
by modifying the code rather than explicitly. Since register allocatorstypically use only
intraprocedural livenessanalysis of scalars, thiseffect islikely to be strictly weaker than
our intraprocedural liveness scheme for scalars on the stack.

5.6 Benchmarks

We used three criteriato select our benchmark programs. First, we picked benchmarks
that performed significant heap allocation. Second, we picked benchmarks that we
thought would demonstrate the difference between accurate and inaccurate garbage col -
lection. For example, we picked anagramsince it uses bit vectors which may end up
looking like pointers to a conservative garbage collector. Third, we included a number
of object-oriented benchmarks.

Table[6 describes our benchmark programs. Lang. gives the source language of the
benchmark programs. Linesgivesthe number of linesin the source code of the program
(including comments and blank lines). Total alloc. gives the number of bytes allocated
throughout the execution of the program. Two of our benchmarks, gctestand gctest3
are designed to test garbage collectors [4, 5]. These benchmarks both allocate and cre-
ate garbage at a rapid rate. The original version of these programs contained explicit
calls to the garbage collector. We removed these calls to allow garbage collection to
be automatically invoked. The benchmarks bshift, erbt, ebignum and gegrepare Eiffel
programs that we trandated into C with the GNU Eiffel compiler SmallEiffel. We used
the option - no_gc and linked the generated C code up with our collector. Likewise, we
disabled the garbage collector included in the Lisp interpreter li from the SPECInt95
benchmark suite to use our collector instead. The remaining programs use standard C
allocation and deall ocation to manage memory. We conducted all our experiments on a
AMD Athlon workstation.

Due to the prohibitive cost of our analysesE we had to pick relatively short runs
for most of the programs. However, for those programs where we were able to do both
shorter and longer runs, we found little difference between the two runs as far as our
results are concerned.

3 Some of these benchmarks take over 24 hours on a 850 MHz Athlon with 512MB of memory
to run al the configurations.

196 Martin Hirzel, Amer Diwan, and Antony Hosking

Table 6. Benchmarks

[Name [[Lang.| Lines|Total alloc.[Main data structures|Workload
Programs written with gc in mind:

gctest3 ||C 85| 2200004 |listsand arrays loop to 20,000

getest ||C 196| 1123 180(listsand trees only repeat 5 in listtest2

bshift ||Eiffel| 350 28 700|dlists scales 2 through 7

erbt Eiffel| 927| 222 300|red-black trees 50 trees with 500 nodes each
ebignum|(Eiffel| 3137| 109 548|arrays twice the included test-stub

li C 7597 9030 872|conscells nqueens.|lsp,n="7

gegrep ||Eiffel |17185| 106 392|DFAs "[A-Za-z] H\-[A-Za-z] + t

Programs with explicit deallocation:

anagram||C 647| 259512|listsand bitfields |words < input.in

ks C 782 7920|D-arraysand lists |[KL-2.in

ft C 2156 166 832|graphs 1000 2000

yacr2 ||C 3979 41 380|arrays and structures|i nput 4. i n

bc C 7308|12 382 400|abstract syntax trees|find primes smaller 500

gzip C 8163 14 180|Huffman trees -d texinfo.tex.gz

ijpeg C 31211| 148664|variousimagerepn. |t esti nput. ppm - GO
6 Results

We now present experimental results to answer the following questions about the use-
fulness of liveness for garbage collection and leak detection:

1. Does liveness enable usto identify more garbage objects?

2. How does liveness accuracy compare to type accuracy in reclaiming objects?

3. How powerful should aliveness analysis be beforeit is useful ?

4. Do our more powerful liveness schemes allow usto find more memory leaksin our
benchmarks?

Sectionsl6.1,[6.2,[6.3] and[6.4 present results to answer the above questions. Section
[6.5 validates our methodol ogy. Section[6.6 discusses the implications of our results for
garbage collectors and leak detectors. Finally, Section[6.7 summarizes our results.

6.1 Usefulnessof Liveness

In this section we consider whether liveness enables the reachability traversal to de-
tect more of the dead objects as compared to a reachability traversal that does not use
liveness information. Table[Zl compares our strongest liveness scheme, (IV, I2), to no
liveness, (N, V). To make this and other tablesin this paper easier to read, we leave all
zero entries blank. Note that there are still some “0” entries in the table: these entries
represent values that are less than 1% but not zero.

Thefirst column of Table[d givesthe benchmark program. The second column gives
the additional unreachable bytes that (IV, I%) identifies over (\V, N) as a percent of
the bytes that (IV, N) identifies as reachable. The data in this column is an average

On the Usefulness of Liveness for Garbage Collection and Leak Detection 197

over the data collected at each of the reachability traversals. A non-empty cell in this

column meansthat (IV, I2)) identified more unreachable bytes than (IV, V). An empty

cell in this column meansthat (N, N) performed aswell as (NN, Ig';). Thethird column

gives an indication of the increased memory requirement of (N, N) over (N, I;’"g'): it
compares the maximum number of bytes that are reachable with the two schemes as a
percent of the maximum number of bytes that are reachable with (N, N). The fourth
column gives the percent of reachability traversals after which (N, I g‘g) retained fewer
objects than (N, N). Recall that we trigger reachability traversals approximately 50
times for each benchmark run (Section[B.4). A non-empty cell in this column means

that at some traversals (V, I%) identified more unreachable bytesthan (N, N).

Table 7. Usefulness of liveness

gencmariavg e [T e 5D o Teyersls difen,
gctest3 0 0 79
gctest

bshift 42 23 94
erbt 19 6 98
ebignum 13 18 37
li 0 >
gegrep 59 43 93
anagram

ks

ft

yacr2 21 15 0
bc 2 0 98
gzip 11 17 50
ijpeg 1 20

From Table[7lwe see that (IV, I2)) benefits 10 out of our 14 benchmark programs.
For two of the programs (gctest3and li) the improvement due to livenessis small. For
six of the programs (bshift erbt, ebignumgegrep yacr2, and gzip) liveness reducesthe
maximum number of reachable bytes by up to 43%. From the fourth column we see that
several of the programsleak memory for most of the execution (i.e., the leaks, on aver-
age, are not short lived). Thus from these numberswe conclude that liveness (at least in
its most aggressive form) has the potential to significantly improve the effectiveness of
garbage collectors and leak detectors.

6.2 Livenessversus Type Accuracy

Inthis section we investigatethe individual and cumulative benefits of type and liveness
accuracy. Table[8 compares reachability traversals using type accuracy only ((7', N)),

livenessaccuracy only (N, I g‘g)), and both type accuracy and the best liveness accuracy

198

(T

Ia”

»tsg

Martin Hirzel, Amer Diwan, and Antony Hosking

)). The columns of this table present the difference between the bytes retained

by (N, N) and the bytes retained by (T, N), (N, 13!

»tsg

), and (

T Ia”

»tsg

) as a percent of the

bytes retained by (N, N). As with Table[7 the data in Table[8 is an average across
all the reachability traversals in a program run. Column 3 of this table is the same as
Column 2 of Table[d

Table 8. Liveness and type accuracy. All benchmarksthat see no benefit from liveness
or type accuracy are omitted.

all all
(N,N)—(N,Isg (N,N)—(T,Isg

Benchmark|avg (A=) og g (1)U 0ea) gl avg M0 ea) o
gctest3 0 0
bshift 42 42
erbt 19 19
ebignum 0 13 13
li 0 0
gegrep 59 59
yacr2 21 21
bc 2 2
gzip 1 11 12
ijpeg 1 1 1

From Table[8 we see that just adding type information to a reachability traversal
yieldsrelatively modest improvementsfor these benchmark runs (though type accuracy
may yield greater benefits on other architectures[17]). In comparison there is a signifi-
cant benefit to using livenessinformation in areachability traversal. From Column 4 we
see that thereis little benefit to adding type information to liveness for identifying dead
objects. In other words, the information that the aggressive liveness analysis computes
is sufficient for identifying live pointers. There may, however, be performance benefits
to type information since a type-accurate collector can compact reachable memory and
thus affect its memory system behavior.

6.3 Strength of Liveness Analysis

In this section we investigate the usefulness of different levels of liveness. Since more
precise livenessinformation is more difficult to implement and expensive to compute, it
isimportant to determine the point of diminishing return for liveness. Table[@ givesthe
impact of the precision of livenessinformation on the reachability traversal’s ability to
identify dead objects. Table[@is divided into two parts: Stack livenespresents the data
when we compute liveness only for variables on the stack and Stack and global live-
nesspresents the data when we compute liveness for variables on the stack and global
variables. Each part has three columns. The first column of each part is the baseline:
it shows the benefit of computing ssimple liveness (i.e., only for scalar variables and
using an intraprocedural analysis). We compute the first column of each section in the

On the Usefulness of Liveness for Garbage Collection and Leak Detection 199

same manner as the columns of Table8l The second and third columns of each section
indicate how the value in the first column would increase if we used interprocedural
liveness and computed liveness for elements of aggregate variables (i.e., record fields
and array elements). There was no benefit to analyzing aggregatesin an intraprocedural
analysis of stack or global variables and thus we omitted those columns from the table.

Table 9. Varying the strength of the liveness analysis. Columns 2 and 5 (baseline)
give the benefit of intraprocedural liveness of scalars for stack and globals. Columns
3, 4, 6, and 7 give the additional benefit of interprocedural analysis and analysis of
aggregates over their corresponding baselines. All benchmarks that see benefit from
neither liveness nor type accuracy are omitted.

Program Stack liveness Stack and globa liveness
avg)= NN~ (NS o

O —— 7w~ | +HIP+IP+agor|avg——x 5y %| +IP|+I1P+aggr
gctest3 0 0
bshift 0 o 3 42
erbt 1 19
ebignum 3] 0 0 3] 0 0
li 0 0
gegrep 0o 9 9 0] 23 58
yacr2 0 1| 20 20
bc 0 0 1 2
gzip 11 11 11 11
ijpeg 1 1

From Table[@ we see that there is little or no benefit from adding intraprocedural
stack livenessfor our benchmarks. Thisis consistent with behavior observed by Agesen
et al. [1]. Indeed, until we do an interprocedural analysis we get ailmost no benefit
from stack liveness. Note that once we have added interprocedural liveness, analyzing
aggregates helps only dightly. Thus, if oneisimplementing only a stack analysis, then
the best bet is to implement an interprocedural liveness analysis and not bother with
analyzing non-scalars.

The majority of the benefit of liveness analysis comes from analyzing global vari-
ables (see second set of columnsin Tabled). Therelativeimportance of local and global
variablelivenessisnot too surprising: unlikelocal variables, global variablesare around
for the entire lifetime of the program and thus a dead pointer in a global variable will
have a much bigger impact on reachability traversal than a dead pointer in a (relatively
short lived) local variable. However, even for global variables, liveness analysis yields
little benefit unless the liveness analysis is interprocedural. The cumulative impact of
adding aggregate and interprocedural analysisis greater than the sum of the parts. For
example, in benchmark bshiftthe benefit of interprocedural analysisis 3% and the ben-
efit of analyzing aggregatesis 0%, but the benefit of adding both is 42%.

200 Martin Hirzel, Amer Diwan, and Antony Hosking

Figure[illustrates how the combined effect of analyzing aggregates and interproce-
dural analysisisgreater than the sum of their parts. In thisexample s isaglobal record.
Assume for this example that the fields of s are used consistently with their types. If
we analyze procedure f using an interprocedural analysis without aggregates then we
would have to conclude that the two fields of s may contain pointers at the call to ¢
since the analysis is conservative about record fields. If we analyze procedure f using
an intraprocedural liveness analysis that analyzes aggregates then once again we would
have to conclude that the fields of s may contain live pointers at the call to g since the
intraprocedural analysis assumes the worst case for calls. Only when we analyze proce-
dure f using an interprocedural liveness analysis that analyzes aggregates are we able
to determine that the fields of s do not contain pointers.

var s :record i : refint; j : ref int;end
proc £()

call g()

Fig. 7. Example of the synergy between analyzing aggregates and doing interprocedural
analysis

To summarize, Figurel8 shows both the theoretical (Figure[8(a)) and experimental
(Figure[8(b)) relationship between the different liveness analyses. Figure[8(a) is the
segment of Figurel@that contains the liveness accurate memory management schemes.
Figurel8(b) isthe same graph, but with adifferent interpretation of vertical position. For
each scheme S in (b), the vertical position corresponds to the metric a\/g(A([]’V]\f])V’)S %,
which isexplained in Section5.4l The horizontal linesin FigurelB(b) connect accuracy
schemesthat differ in strength only theoretically but not in our experiments.

6.4 Effectivenessin Finding L eaks

The previous sections shed light on the impact of different kinds of liveness informa-
tion on garbage reclamation or leak detection. In this section we discuss whether or not
liveness was able to identify leaksin any of our benchmark programs. We define aleak
as an object that is never deallocated by the original program but could have been deal-
located before the program ended. Thisis arather weak notion of leaks, however, since
it does not incorporate timelinessof deallocation. For example, if an object becomes
useless early inthe program and is not explicitly deallocated till much later it would not
qualify as aleak under our definition.

Of our seven benchmarksthat use explicit deallocation (anagramks ft, yacr2, bc,
gzip, and ijpeg) (N, I2) found leaks in yacr2, bc, and ijpeg. Of these, the leaks in bc
and ijpeg are an insignificant percentage of total allocation (less than 1%). Theleak in
yacr2however is significant and accounts for 60% of total allocation (i.e., 60% of of the
spaceisleakage). Since yacr2does only a modest amount of total allocation in our run,

On the Usefulness of Liveness for Garbage Collection and Leak Detection 201

aleak of 60% is not as critical as it sounds. However, it is important to keep in mind
that most of the benchmarks we used (particularly the C codes) are well-established
and well-studied programs; thus it would have been surprising to find significant leaks
in them.

13} ag™NN-S,
(N,N)

12 |
11 |

10 |

(N.ig) N.ig)

(N,i? (N,ig)

(N,N) (b)

Fig. 8. Theoretical (a) and experimental (b) liveness strength.

202 Martin Hirzel, Amer Diwan, and Antony Hosking

6.5 Validation of Our Methodology

Our approach extracts liveness information from a single run of the program and thus
it is possible that the livenessinformation is specific only to that run. In this section we
consider how the liveness information varies across runs. A high variation means that
our methodology is computing loose upper bounds and thus is severely limited in its
usefulness.

To investigate the variation across runs, we ran three benchmarks with a different
input and compared the results to our previousruns. If a stack or global location had a
different liveness at any point in the two runs we counted that location as “different”.
Table[10 givesthe stack and global locationsthat are different as a percent of total stack
and global locations when using (I, 1;;";). The results for other levels of accuracy are
similar or better. As with our other tables, we leave the “0” entries blank; 0.0 in this
table means that the valueis smaller than 0.1% but not O.

Table 10. Number of stack and global locations that are different as a percent of total
static stack and global locations

Stack Global
Benchmark| Count|% different| Count| % different
gegrep 30484 0.748717 0.0
yacr2 586 2.7 384
9zip 2075 13(84158 22

From Table[I0lwe see that there is little difference between the livenessinformation
for our two runs. We also measured the effectiveness of different levels of accuracy in
identifying dead objects (similarly to Table[7). We found that the results were identical
for the two runs in terms of the relative usefulness of the different accuracy schemes.
The number of bytes that each liveness scheme was able to identify as dead was of
course different between the two runs. Thus, it is likely that our run-time methodol ogy
is computing a tight upper bound.

6.6 Implicationsfor Leak Detection and GC

Our results demonstrate that a liveness-accurate reachability traversal will find many
more dead bytes than one that is not liveness accurate even if it is type accuratdar-
ticularly, even garbage collectors and leak detectorswritten for unsafe programs can be
much more effective with strong liveness information.

A significant advantage of liveness accuracy over type accuracy is that it is more
widely applicable since it does not require a compiler to propagate liveness informa-
tion acrossits optimization passes and also it does not require type-safe languages. One
could even imagine using it to null out pointersin the source code instead of commu-
nicating it to the garbage collector in form of tables. Yet the benefits (in reclaiming
objects) of liveness information are even greater than the benefits of type information.

On the Usefulness of Liveness for Garbage Collection and Leak Detection 203

Thus, we believe that aliveness analysis deservesto become an integral part of garbage
collectors and leak detectors.

6.7 Summary of Results

Our results demonstrate that while liveness accuracy significantly improves a reacha-
bility traversal’s ability to identify dead objects, the simpler liveness analyses are rarely
useful. For liveness accuracy to have a significant impact, the liveness analysis must
analyze both local and global variables and use an interprocedural analysis. Adding
analysis of aggregate variables further improves interprocedural liveness of local and
global variables but has no impact on intraprocedural liveness.

7 Experiences

Besides demonstrating that certain kinds of liveness can be valuablein identifying dead
objects, our experiments also had an unexpected side effect: they enabled us to identify
leaks in the BDW collector [[7]. The BDW collector is a mature and extremely useful
tool that has been used heavily by alarge user community for over 10 years and there
are even commercial leak detection productsthat are based on this collector [11]. Thus
we were surprised to find any leaks in this collector. Our experience leads us to believe
that experiments such as ours may be valuable to implementors of garbage collectors
and leak detectorsin fine tuning their systems.

Broadly speaking there are two kinds of bugsin agarbage collector or |eak detector:
(i) it can incorrectly identify alive object as dead and (ii) it can fail to identify a dead
object. The existence of a bug of the first kind, particularly in a garbage collector, will
probably be exposed quickly sincefreeing alive object will causethe programto exhibit
unexpected behavior or to crash. The existence of a bug of the second kind is much
harder to detect since it does not cause the program to crash: it just causes the program
to use more memory. Since most programmerstreat a garbage collector as a black box,
they will not realize if the leak is due to a bug in the garbage collector or if it is due to
an unfortunate pointer in their own code. All bugs we found in the BDW collector were
of the second kind.

How did our experiments help us in finding leaks in the BDW collector? We ex-
perimented with awide range of variationsin the BDW collector, some of which minor
(such asintraprocedural liveness of local scalar variables) and some of which significant
(such asonesinvolvinginterprocedural analysis). We discovered the leaks when we saw
behavior in one of our variations that did not make sense. For instance, in one case we
found that incorporating intraprocedural liveness of global and local variables found
many more dead objects than intraprocedural livenessfor just local variables. When we
tried to imagine how such a situation could happen we ended up with contrived exam-
ples which seemed unlikely to appear in real programs. Thus, we investigated further
and found the source of the problem: the BDW collector was mistakenly using some of
its own global variables as roots. When we provided liveness information for globals
to the BDW collector it circumvented BDW's mechanism for finding roots in global
variables and thus avoided this problem.

204 Martin Hirzel, Amer Diwan, and Antony Hosking

To summarize, garbage collectors and leak detectors are notoriously hard to write
and debug. Our experimental methodology provides implementors of these tools with
an additional mechanism for identifying potential performance problems.

8 FutureWork

Our work demonstrates that while liveness is useful for both garbage collection and
leak detection our method is not practical for real-world applications since it requires
two identical runs. To remedy this we are working on a compiler support for computing
liveness information that obviates the need for two runs at the loss of some precision.
We expect that this will not only result in a reachability traversal that users can use
for leak detection or garbage collection but it will also allow us to run much larger
experiments with liveness. The results in this paper will guide us in determining what
kinds of compiler analysesto build in order to improve the effectiveness of reachability
traversals.

A limitation of our current infrastructure is that it can handle only C programs or
programs that can be converted into C. Given that Java is the current mainstream lan-
guage that uses garbage collection it would be worthwhile to repeat a similar set of
experiments for Java programs. Java programs may behave quite differently from C or
Eiffel programs and thus the results may be different for Java programs. We tried using
Toba [22] to trandate Java programs to C and then use them as benchmarks for this
study. Unfortunately the C code that Toba generates even for tiny applications is too
large for our infrastructure (since it includes not just the user program but also the Java
standard libraries). We are now moving our analysisinfrastructure to the Jalapefio VM
[2] which will alow usto experiment with Java programs.

9 Conclusions

We describe a detailed investigation of the impact of liveness and type accuracy on the
effectivenessof garbage collectorsand leak detectors. By separating the two dimensions
of accuracy—type accuracynd liveness accuracy-we are able to identify interesting
new accuracy schemes that have not been investigated in the literature. We use a novel
methodology that uses a trace-based analysis to enable us to easily experiment with a
wide range of liveness schemes.

Our experiments reveal that liveness can have a significant impact on the ability
of a garbage collector or leak detector in identifying dead objects. However, we show
that the simple liveness schemes are largely ineffective: we need to use an aggressive
liveness schemethat incorporatesinterprocedural analysis of global variablesbeforewe
see a significant benefit. Our aggressive liveness schemes are a so able to find memory
leaksin our suite of well-studied benchmarks.

On the Usefulness of Liveness for Garbage Collection and Leak Detection 205

Acknowledgements

We thank the anonymous reviewers for their helpful comments and suggestions. We
also thank Michael Hind and Urs Hoelzle for comments on a draft of this paper, and
John DeTrevillefor fruitful discussions about our methodology and results.

References

[1] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection and local variable
type-precision and liveness in Java virtual machines. In ACM conference on programming
language design and implementatj@ages 269-279, Montreal, Canada, June 1998.

[2] Bowen Alpern et al. The Jalapefio virtual machine. IBM Systems JournaB9(1):211-238,
February 2000.

[3] Andrew W. Appel. A Runtime System. Lisp and Symbolic ComputatipB(4):343-380,
November 1990.

[4] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Technical Report
88/2, DEC Western Research Laboratory, Palo Alto, CA, February 1988. Also in Lisp
Pointers1(6):2-12, April-June 1988.

[5] Joel F. Bartlett. Mostly-copying garbage collection picks up generations and C++. Techni-
cal report, DEC Western Research Laboratory, Palo Alto, CA, October 1989.

[6] Hans Boehm, Alan Demers, and Scott Shenker. Mostly parallel garbage collection. In
ACM conference on programming language design and implementatges 157164,
Minneapolis, MN, November 1991.

[7] Hans Boehm, Alan Demers, and Mark Weiser. A garbage collector for C and C++.
http: /7 ww. hpl . hp. coni per sonal / Hans Boehni gc/|.

[8] Hans Boehm and Zhong Shao. Inferring type maps during garbage collection. In OOPSLA
'93 Workshop on Memory Management and Garbage Collec8gptember 1993.

[9] Hans Boehm and Mark Weiser. Garbage collection in an uncooperative environment.
Software—Practice and experienpages 807-820, September 1988.

[10] Dominique Colnet, Philippe Coucaud, and Olivier Zendra. Compiler support to customize
the mark and sweep algorithm. In Proceedings of the International Symposium on Memory
Managementpages 154-165, Vancouver, October 1998.

[11] Jeremy Dion and Louis Monier. Third degree.
http://research. conpaq. comw | /projects/omthird. htm]

[12] Amer Diwan, J. Eliot B. Moss, and Richard L. Hudson. Compiler support for garbage
collection in a statically typed language. In ACM conference on programming language
design and implementatippages 273-282, San Francisco, CA, July 1992.

[13] Great Circle — Rea-time error detection and code diagnosis for developers.
http://ww. geodesi c. cont products/greatcircle. htm|

[14] JamesGodling, Bill Joy, and Guy Steele. The Java language specificatiohddison-Wesl ey,
1996.

[15] Reed Hastings and Bob Joyce. Fast detection of memory leaks and access errors. In
Proceedings of the Winter '92 USENIX confereruages 125-136, 1992.

[16] Michael Hicks, Jonathan Moore, and Scott Nettles. The measured cost of copying garbage
collection mechanisms. In Functional Programmingpages 292-305, June 1997.

[17] Martin Hirzel and Amer Diwan. On thetype accuracy of garbage collection. In Proceedings
of the International Symposium on Memory Managemaates 1-12, Minneapolis, MN,
October 2000.

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://research.compaq.com/wrl/projects/om/third.html
http://www.geodesic.com/products/greatcircle.html

206

(18]

(19]
[20]
(21]

(22]

(23]

(24]

(29]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

Martin Hirzel, Amer Diwan, and Antony Hosking

Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and Christopher F. Weight. A language-
independent garbage collector toolkit. Technical Report 91-47, University of Massachusetts

at Amherst, September 1991.

Richard Jones and Rafael Lins. Garbage collection: algorithms for automatic dynamic
memory managemeniohn Wiley & Sons, 1st edition, 1997.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard MLMIT Press,
Cambridge, Massachusetts, 1990.

Greg Nelson, editor. Systems Programming with Modula-Prentice Hall, New Jersey,
1991.

Todd Proebsting, Gregg Townsend, Patrick Bridges, John Hartman, Tim Newsham, and
Scott Watterson. Toba: Java for applications — a way ahead of time (WAT) compiler. In
USENIX COOT Spages 41-53, June 1997.

Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. On the effectiveness of GC in Java

In Proceedings of the International Symposium on Memory Manageipages 12-17,
Minneapolis, MN, October 2000.

Frederick Smith and Greg Morrisett. Comparing mostly-copying and mark-sweep conser-
vative collection. In Proceedings of the International Symposium on Memory Management
pages 68-78, October 1998.

James Stichnoth, Guei-Yuan Lueh, and Michaet Cierniak. Support for garbage collection at
every instruction in a Java compiler. In ACM conference on programming language design
and implementatiarpages 118-127, May 1999.

Stanford University SUIF Research Group. Suif compiler system version 1.x.
http://suif.stanford. edu/suif/suifl/index.htm|

David Tarditi, Greg Morrisett, P. Cheng, C. Stone, Robert Harper, and Peter Lee. TIL: A
type-directed optimizing compiler for ML. In ACM conference on programming language
design and implementatippages 181-192, May 1996.

David Ungar. Generation scavenging: A non-disruptive high performance storage recla-
mation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environmpades 157—167, 1984.

Paul R. Wilson, Michadl S. Lam, and Thomas G. Moher. Caching considerations for gener-
ational garbage collection. In 1992 ACM Conference on Lisp and Functional Programming
pages 32-42, San Francisco, California, June 1992.

Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe,
Jennifer-Ann M. Anderson, Steven W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng,
Mary W. Hall, Monica S. Lam, and John L. Hennessy. SUIF: An infrastructure for re-
search on parallelizing and optimizing compilers. ACM SIGPLAN Notice29(12):31-37,
December 1984.

Benjamin Zorn. The effect of garbage collection on cache performance. Technical Report
CU-CS-528-91, University of Colorado at Boulder, May 1991.

Benjamin Zorn. The measured cost of conservative garbage collection. In Software—
Practice and Experien¢@ages 733756, July 1993.

http://suif.stanford.edu/suif/suif1/index.html

	Introduction
	1 Introduction
	Background

	2 Background
	Motivation

	3 Motivation
	Related Work

	4 Related Work
	Methodology
	5 Methodology
	Approach for Type Accuracy

	Approach for Liveness
	Accuracy Levels in This Paper
	Measurement Methodology
	Limitations
	Benchmarks

	Results
	6 Results
	Usefulness of Liveness

	Liveness versus Type Accuracy
	Strength of Liveness Analysis
	Effectiveness in Finding Leaks
	Validation of Our Methodology
	Implications for Leak Detection and GC
	Summary of Results

	Experiences
	7 Experiences
	Future Work

	8 Future Work
	Conclusions

	9 Conclusions
	Acknowledge
	References

