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Abstract. Partial redundancy elimination (PRE) is a program trans-
formation that identifies and eliminates expressions that are redundant
on at least one (but not necessarily all) execution paths. Global value
numbering (GVN) is a program analysis and transformation that iden-
tifies operations that compute the same value and eliminates operations
that are redundant. A weakness of PRE is that it traditionally consid-
ers only expressions that are lexically equivalent. A weakness of GVN
is that it traditionally considers only operations that are fully redun-
dant. In this paper, we examine the work that has been done on PRE
and GVN and present a hybrid algorithm that combines the strengths of
each. The contributions of this work are a framework for thinking about
expressions and values without source-level lexical constraints, a system
of data-flow equations for determining insertion points, and a practical
algorithm for extending a simple hash-based GVN for PRE. Our imple-
mentation subsumes GVN statically and, on most benchmarks, in terms
of performance.

1 Introduction

The goal of a compiler’s optimization phases is transforming the program to
make it more efficient. Accordingly, researchers have given much attention to
methods for eliminating redundant computations; both approaches and termi-
nology to describe them have proliferated. In the progeny of this research, two
primary genera can be identified (some cross-breeding not withstanding): Partial
Redundancy Elimination (PRE) and Global Value Numbering (GVN). The goal
of the present work is to present an algorithm for a hybrid subsuming these two
approaches synthesized from known techniques and tools.

1.1 Motivation

PRE considers the control flow of the program and identifies operations that are
redundant on some but not necessarily all traces of the program that include
that operation, and hence are partially redundant. It hoists operations to earlier
program points where originally the operation was unknown and removes opera-
tions that the hoisting has rendered fully redundant. In Figure 1(a), e← c+ b is
partially redundant because of d← c + b. By hoisting and preserving the result
of the operation in temporary variable t, PRE produces the program in Figure
1(b). Because of this hoisting, PRE is sometimes called (an instance of) code
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motion. GVN on the other hand considers the value produced by an operation
(in this paper, we always assume value to mean static value; operations in loop
bodies or otherwise reentrant code may result in different dynamic values at
different points in program execution). If a value has already been computed,
subsequent operations can be eliminated even though they may differ lexically.
Because of the move c← a in Figure 1(a), the operations c← b+a and d← c+b
compute the same value. Accordingly GVN preserves this value in a temporary
and eliminates the re-computation, as in Figure 1(c). As this example shows, in
their basic form, neither PRE nor GVN is strictly more powerful than the other
(see Muchnick p. 343 [25]).

c← a

d← c + b

e← c + b

c← 5

c← b + a

c← a

d← c + b

t← d

c← b + a

e← t

c← 5
t← c + b

c← a

d← t

c← b + a

t← c

c← 5

e← c + b

(a) (b) (c)

Fig. 1. Basic example

1.2 Our Result

Answering this challenge, we have found a technique, GVN-PRE, that subsumes
both and eliminates redundancies that would be undetected by either working in
isolation. We create a system of data flow equations that, using the infrastruc-
ture of a simple hash-based value numbering system, calculate insertion points
for partially redundant values rather than partially redundant expressions. We
present this in a framework that allows clear reasoning about expressions and
values and implement it with an algorithm that can easily be reproduced. Af-
ter exploring the background to this problem and related work, we explain the
framework, give the data flow equations and related algorithm, and explore an
implementation and its performance. Our implementation subsumes GVN.

1.3 Related Work

PRE. Partial Redundancy Elimination in general poses several challenges.
First, lexically identical expressions at different program points do not neces-
sarily compute the same result, since operands may be reassigned, so any PRE
algorithm must take into account assignments that kill an expression’s availabil-
ity. Furthermore, care must be taken that the hoisting would do no harm: if an
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operation is added at a program point, it must occur without reassignment to
its operands on all paths from that point to program exit (in the literature, they
say the operation must be downsafe or anticipated at that point). Otherwise the
hoisting will lengthen at least one trace of the program, defying optimality; even
worse, if the hoisted instruction throws an exception, the program’s semantics
change. Finally, PRE algorithms should resist the temptation to hoist operations
earlier in the program than necessary; while this may not do any harm in terms
of lengthening a trace of the program, it will make no improvement either, but
may increase register pressure by lengthening the live range of an assignment.

PRE was invented by Morel and Renoise [24]. The original formulation used
bit vectors to detect candidates for motion and elimination. Knoop, Rüthing, and
Steffen gave a complete, formal, and provably optimal version of PRE which
they called Lazy Code Motion (LCM) [19,20]; it was improved by Drechsler
and Stadel [13]. LCM used a myriad of predicates and equation systems to
determine the earliest and latest placement points for operations that should be
hoisted. Chow, Kennedy et al. produced a PRE algorithm for programs in static
single assignment form (SSA) [11], called SSAPRE [8,17]. SSA is an intermediate
representation property such that program variables and temporaries are divided
into different versions for each assignment so that each version of a variable is
assigned to exactly once in a static view of the program. If a variable exists
in different versions on incoming paths at a join point, they are merged into
a new version at the join. SSA makes it easy to identify the live ranges of
variable assignments and hence which lexically equivalent expressions are also
semantically equivalent. On the other hand, it complicates hoisting since any
operand defined by a merge of variable versions must have the earlier version
back-substituted. More recently, Dhamdhere has presented a simpler PRE that
examines specific paths from earlier to later occurrences of an operation [12].

A major handicap for these versions of PRE is that they are based on lexical
(or syntactic) equivalences. Although SSA provides the freedom to think outside
the lexical box because each assignment essentially becomes its own variable,
even SSAPRE does not take advantage of this but regards expressions in terms
of the source variables from which their operands come; in fact, it makes stronger
assumptions about the namespace than basic SSA [34]. The fact that many
redundant results in a program do not come from lexically identical expressions
(nor do all lexically identical expressions produce the same results) has motivated
research to make PRE more effective [5] and led Click to assert that “in practice,
GVN finds a larger set of congruences than PRE” [9].

GVN. Global Value Numbering partitions expressions and variables into classes
(or assigns them a unique value number) all of which have the same static value
(or are congruent). A well-known form having its origin in two papers simultane-
ously presented by Alpern, Rosen, Wegman, and Zadek [3,28], it uses algebraic
properties to associate expressions, such as assignments (a← b implies a and b
are in the same class), commutativity of certain operations (a + b is in the same
class as b+a), and facts about certain constants (a+0 is in the same class as a).
SSA is a major boon for GVN, since (SSA versions of) variables are always in the
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c1 ← a1 + b1 c2 ← a2 + b1

a3 ← φ(a1, a2)
c3 ← a3 + b1

c3, +

a3 b1
a1 a2

a3

(a) program (b) value classes as DAG (c) value flow graph

Fig. 2. Example showing weakness of traditional GVN and the use of a VFG

same class, and therefore so are expressions on those versions in the same class,
statically and globally. Congruences can be found by hashing [9,6] or by first
assuming all expressions to be equal and splitting classes when incongruences
are found [3,16,30]. Since identifying an operation as redundant depends on the
operation having the same global number as an earlier operation, in traditional
GVN such an earlier operation must dominate (i.e., occur on all paths to) the
later operation. However, if any given path is considered in isolation, some value
classes can be merged. In Figure 2(a), φ(a1, a2) merges the variables a1 and a2,
so if we consider the left path, a3 should be in the same class as a1, whereas on
the right path, a2 should be in the same class as a1. Yet the operation a3 + b1
will not be eliminated because nothing in its global class has been computed
earlier. Since traditional GVN does no motion, it does not eliminate some op-
erations that on any given trace of the program are fully redundant—let alone
operations that are partially redundant. (Another tradition of global value num-
bering has been worked on by Steffen et al [31,32,33,29,22]. Its various versions
have tended to be more general and theoretically complete but less amenable to
implementation than that of Rosen, Alpern, et al.)

Hybrids. One of the original GVN papers [28] is remarkable because it not
only introduces GVN, SSA, and critical edge removal; it also does PRE on
values. However, the range of congruences it can identify is small, and subsequent
research seems to have ignored this as it wallowed in its lexical mire. The first
explicit study of the potential for PRE to work on values (or for GVN to consider
partial redundancies) is that of Knoop, Rüthing, and Steffen’s comparison of
code motion and code placement [21]. They distinguish syntactic (lexical) code
motion from semantic, which considers values. They note that the collection
of value classes can be modeled by a dag, since a value is represented by an
expression (a node) which has other values as operands (edges pointing to nodes).
The path-based connections among values is captured by what they call the value
flow graph (VFG). See Figure 2(b) and (c). Knoop et al. use these constructs
to sketch an algorithm for determining safe insertion points for code motion
(PRE), but distinguish it from a more powerful optimization which they call code
placement and for which determining insertion points traditionally considered
safe is not adequate for finding all insertion points necessary for optimality.

Bod́ık and Anik, independently of Knoop et al., developed an algorithm that
also addressed PRE on values [4]. Their work uses value numbering with back
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substitution to construct a value name graph (VNG) similar to Knoop et al’s
VFG. The VNG considers expressions to be names of values. If the program is not
in SSA, expressions represent different values at different program points, and
the nodes of the graph are expression / program-point pairs. The edges capture
the flow of values from one name to another according to program control flow.
Bod́ık et al. then use data flow analysis to identify optimal insertion points for
PRE, an algorithm they call VNGPRE.

1.4 Overview

In this paper, we present a new algorithm for PRE on values which subsumes
both traditional PRE and GVN. The contributions of our approach are as
follows. First, our analysis considers larger program chunks than Bod́ık (ba-
sic blocks instead of single instructions). Second, we present a framework for
expressions and values that takes full advantage of SSA, completely ignoring
source-level lexical constraints and thinking solely in terms of values and expres-
sions that represent them. Third, no graph is explicitly constructed nor is any
novel structure introduced. Instead, we achieve the same results by synthesizing
well-known tools (SSA, control flow graphs, value numbers) and techniques (flow
equations, liveness analysis, fixed-point iteration). In fact, our algorithm can be
viewed as an extension of a simple hash-based GVN. Finally, we report on an
efficient and easily-reproduced implementation for this algorithm. Our intention
here is not to make a head-on comparison with the approaches of Bod́ık et al.
or Knoop et al., but rather to present an approach that covers both traditional
PRE and GVN that is easily realized in implementation.

The rest of the paper is organized as follows: Section 2 gives preliminaries,
such as assumptions we make about the input program, precise definitions of
concepts we use for our analysis, and descriptions of global value numbering
infrastructure we assume already available. Section 3 contains the meat of the
paper, describing the various phases of the approach both formally and algo-
rithmically. Section 4 gives details on our implementation and its results. We
conclude by discussing future work in Section 5.

2 Framework

In this section, we present our framework in terms of program structure we
assume and the model of expressions and values we use.

2.1 Program Structure

We assume the input programs are in an intermediate representation that uses
a control flow graph (CFG) over basic blocks [1]. A basic block is a code segment
that has no unconditional jump or conditional branch statements except for pos-
sibly the last statement, and none of its statements, except for possibly the first,
is a target of any jump or branch statement. A CFG is a graph representation
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of a procedure that has basic blocks for nodes and whose edges represent the
possible execution paths determined by jump and branch statements. We define
succ(b) to be the set of successors to basic block b in the CFG, and similarly
pred(b) the set of predecessors. (When these sets contain only one element, we use
this notation to stand for that element for convenience.) We also define dom(b)
to be the dominator of b, the nearest block that dominates b. This relationship
can be modeled by a dominator tree, which we assume to be constructed [1].
We assume that all critical edges—edges from blocks with more than one suc-
cessor to blocks with more than one predecessor [28]—have been removed from
the CFG by inserting an empty block between the two blocks connected by the
critical edge.

We assume the following language to define the set of possible instructions
in the program (this excludes jumps and branches, which for our purposes are
modeled by the graph itself):

k ::= t | t op s Operations
p ::= φ(t∗) Phis
γ ::= k | p | • Right-hand terms
i ::= t← γ Instructions
b ::= i∗ Basic blocks

The symbol • stands for any operation which we are not considering for
this optimization; it is considered to be a black box which produces a result.
The meta-variable t ranges over (SSA) variables. We do not distinguish between
source-level variables and compiler-generated temporaries, nor are we concerned
with what source-level variable any SSA variable come from. Because of SSA
form, no variable is reassigned, and a variable’s scope is all program points
dominated by its definition. For simplicity, we do not include constants in the
grammar, though they appear in some examples; constants may be considered
globally-defined temporaries. We let op range over operators.

A phi contains the same number of operands as there are predecessors to its
block, and each operand is associated with a distinct predecessor. Semantically,
the phi selects the operand associated with the predecessor that precedes the
block on a given trace and returns that operand as its result. Phis precede all
non-phis in a block.

2.2 Values and Value-Numbering

A value is a set of expressions. v ranges over values. An expression is similar
to an operation except that if an expression involves an operator, its operands
are given in terms of values rather than subexpressions. This way we can think
of expressions more generally. If t1 and t3 are members of value v1, and t2 is a
member of v2, we need not think of t1 + t2 and t3 + t2 as separate expressions;
instead, we think only of the expression v1 + v2.



Value-Based Partial Redundancy Elimination 173

e ::= s | v op v Expressions

Our goal in value numbering is to obtain three pieces of information: value
numbers, available expressions, and anticipated expressions. Traditional value
numbering requires only the first two. First, we partition all expressions in the
program into values. We represent this partition with a map (or value table)
on which we can add and lookup the values for expressions. We treat the value
table as a black box, but assume it to be used for a simple hashing value number
scheme, recognizing expressions by their structure and, if smart enough, algebraic
properties, associating them with values. It is worth noting that there is no limit
on how smart the function lookup is engineered to be. For example, if v1 contains
1, v2 contains 2, v4 contains v3 + v1 for some v3, and v5 contains v4 + v1, then
v5 also should contain v3 + v2. To enumerate all such cases would be infinite.

Figure 3(a) displays a running example we will refer to throughout this and
the next section. Since it is large, we will often discuss only part of it at a time.
For the present, consider block 4. The table in Figure 3(b) displays the values
referenced in the block and the expressions they contain. For clarity, we assign
a value the same subscript as one of its temporaries wherever possible. Values
v1, v2, and v3 are defined in blocks that dominate block 4, so they are in scope
here. The instruction t4 ← t2 + t3 leads us to discover expressions v2 + v3 and t4
as elements of the same value, which we call v4. Because of the move t5 ← t4, t5
is also in v4. Finally, v1 + v5 and t6 are in a value we call v6. Recall that these
values are global, so we are showing only part of the value table for the entire
program (in fact, values v3 and v4 have more members, discovered in other parts
of the program).

The second piece of information is what expressions are available to represent
the values; or, put differently, what values are already computed and stored in
temporaries at a given program point. If more than one temporary of the same
value is live at a point, we want to pick one as the leader, which will be used as
the source of the value to replace an operation of that value with a move. To be
unambiguous, the leader should be the “earliest” temporary available; that is,
the temporary whose defining instruction dominates the defining instructions of
all other temporaries of that value live at that point. We define the leader set to
be the set of leaders representing available values at a program point. Although
technically there is a leader set for any program point, for our purposes we will
be interested only in the sets at the end of a basic block, AVAIL OUT. The leaders
available out of block 4 are those expressions listed first for each value in Figure
3(b). (This notion of availability is sometimes called upsafety [21].)

Finally, we want to know what values are anticipated at a program point;
that is, it will be computed or used on all paths from that point to program
exit. (This notion of anticipation—sometimes called anticability— is essentially
the same as that of downsafety.) Just as we want appropriate temporaries to
represent values in the leader set, so we want appropriate expressions to represent
anticipated values—that is, anticipated values should also have a reverse-flow
leader or antileader. An antileader can be a live temporary or a non-simple



174 T. VanDrunen and A.L. Hosking

(a) Program CFG (b) Values, temporaries, and
expressions of block 4

(c) Anticipated expressions at block 6, (d) Actual anticipated expressions
not considering the kill of t11 at block 6

Fig. 3. Running example
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expression whose operands are represented in the antileader set. This is so that
the expression could become available by an insertion at that point, or several
insertions if it is a nested expression. Conversely from the leader set, we are
interested only in the antileader sets at the beginning of basic blocks, ANTIC IN.

For an antileader set, it does not matter which expression represents a value,
so long as that value is live. A temporary potentially in ANTIC IN becomes
dead if it is assigned to. If the assignment is from something we can make an
expression for (as opposed to •), that expression replaces the temporary as the
antileader. If the assignment is from •, then the value is no longer represented
at all. Furthermore, any other expression that has that (no longer represented)
value as an operand also becomes dead. Therefore antileaders and the values they
represent are killed by definitions of temporaries in the block. An antileader set
can be pictured as a dag. Consider basic block 6 in Figure 3(a), alternately
with and without the instruction t4 ← •. In the case where we exclude that
instruction, assume t4 to be global. Without the definition of t4, ANTIC IN can
be represented by the dag in Figure 3(c). The nodes of the dag are pairs of values
and the antileaders representing them; edges are determined by the operands
of the antileader. If we suppose the block contains t6 ← • as it does in the
program, then v4 : t4 is killed, along with all expressions that depend on v4 also,
in cascading effect. See Figure 3(d).

To calculate these sets, we use two other pieces of information: the tempo-
raries generated by a set, meaning those that are defined; and the expressions
generated by a set, meaning those that occur as operations, operands to opera-
tions, or sources of moves. We say that the set “generates” these because they
are used as “gen” sets for the flow equations we define in the next section for
the leader and antileader sets. These are given for block 4 in Figure 3(b).

3 GVN-PRE

The GVN-PRE algorithm has three steps: BuildSets, Insert, and Eliminate.
BuildSets, which we describe formally and algorithmically, populates the value
table and the leader and antileader sets. Insert places new instructions in the pro-
gram to make partially available instructions fully available. Eliminate removes
computations whose values are already available in temporaries or as constants.

3.1 BuildSets

Flow equations. To compute AVAIL IN and AVAIL OUT for a block, we must
consider not only the contents of the block itself, but also expressions inher-
ited from predecessors (for AVAIL OUT) and anti-inherited from successors (for
ANTIC IN). For this we use a system of flow equations. As is common for flow
equations, we also define the sets AVAIL IN and ANTIC OUT, although only
AVAIL OUT and ANTIC IN are used later in the optimization. We have three
gen sets, EXP GEN(b) for expressions (temporaries and non-simple) that appear
in the right hand side of an instruction in b; PHI GEN(b) for temporaries that
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are defined by a phi in b; and TMP GEN(b) for temporaries that are defined
by non-phi instructions in b. There are no kill sets for calculating AVAIL OUT,
since SSA form implies no temporary is ever killed. For ANTIC IN, TMP GEN
acts as a kill set. Since an available expression must be defined in an instruction
that dominates the program point in question, so in calculating AVAIL OUT, we
consider inherited expressions only from the block’s dominator. In terms of flow
equations,

AVAIL IN[b] = AVAIL OUT[dom(b)] (1)
AVAIL OUT[b] = canon(AVAIL IN[b] ∪ PHI GEN(b) (2)

∪TMP GEN(b))

where canon is a procedure that, given a set of temporaries, partitions that
set into subsets which all have the same value and chooses a leader from each.
Of course canon would be inconvenient and inefficient to implement; instead,
AVAIL OUT[b] can be calculated easily and efficiently at the same time as the
gen sets, as we will show later.

For ANTIC IN, handling successors is more complicated. If there is only one
successor, we add all its antileaders to AVAIL OUT of the current block; how-
ever, we must translate some temporaries based on the phis at the successor.
For example, if t1 is anticipated by block b, and block b has a phi which defines
t1 and has t2 as an operand from block c, then t2, rather than t1, is anticipated
at the end of block c, and it has a different value. For this we assume a function
phi translate which takes a successor block, a predecessor block (i.e., there is an
edge from the second block to the first), and a temporary; if the temporary is
defined by a phi at the successor, it returns the operand to that phi correspond-
ing to the predecessor, otherwise returning the temporary. If there are multiple
successors, then there can be no phis (because of critical edge removal), but
only values anticipated by all of the successors can be anticipated by the current
block. This assures that all anticipated expressions are downsafe—they can be
inserted with assurance that they will be used on all paths to program exit.

The flow equations for calculating the antileader sets are

ANTIC OUT[b] =






{e|e ∈ ANTIC IN[succ0(b)]∧
∀ b′ ∈ succ(b),∃e′ ∈ ANTIC IN[b′]|
lookup(e) = lookup(e′)} if |succ(b)| > 1

phi translate(A[succ(b)], b, succ(b)) if |succ(b)| = 1

(3)

ANTIC IN[b] = clean(canone(ANTIC OUT[b] ∪ EXP GEN[b] (4)
−TMP GEN(b)))

When phi translate translates expressions through phis, it may involve creating
expressions that have not been assigned values yet and therefore require new
values to be created. Consider calculating ANTIC OUT[B5] in our example. Value
v10 is represented by v4 + v8, which is translated through the phi to v4 + v7.
However, that expression does not exist in the program—it needs a new value.
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Thus sometimes the value table will need to be modified while calculating these
sets.

canone generalizes canon for expressions. For ANTIC IN, we do not care what
expression represents a value as long as it is live, so canone can make any choice
as long as it is consistent. This essentially makes the union in the formula for
ANTIC IN to be “value-wise”, meaning that given two sets of expressions rep-
resenting values, we want every value in each set represented, but by only one
expression each. Similarly, the formula for ANTIC OUT when there are multiple
successors performs a “value-wise” intersection—only values that are represented
in all successors should be represented here, but which expression represents it
does not matter. clean kills expressions that depend on values that have been
(or should be) killed. Because information will also flow across back edges in the
graph, these sets must be calculated using a fixed-point iteration.

Algorithm. Calculating BuildSets consists of two parts. The first is a top-
down traversal of the dominator tree. At each block, we iterate forward over the
instructions, making sure each expression has a value assigned to it. We also
build EXP GEN, PHI GEN, and TMP GEN for that block.

Computing canon directly is inconvenient and costly. We avoid computing it
by maintaining an invariant on the relevant sets, that they never contain more
than one expression for any value. Since the value leader set for the dominator
will have already been determined, we can conveniently build the leader set for
the current block by initializing it to the leader set of the dominator and, for each
instruction, adding the target to the leader set only if its value is not already
represented. This way, we never add a temporary to an AVAIL OUT set unless
its value is not yet represented. Similarly, we need only one representative in
EXP GEN for each value, so we do not add an expression for a value that has
already appeared (this way EXP GEN contains only the first appearance of a
value, appropriate for an antileader). We do not calculate AVAIL IN sets since it
is trivial.

The second part calculates flow sets to determine the antileader sets and
conducts the fixed-point iteration. Until we conduct a pass on which no ANTIC IN
set changes, we perform top-down traversals of the postdominator tree. This
helps fast convergence since information flows backward over the CFG. To keep
ANTIC IN canonical, we remove the killed temporaries from ANTIC OUT and
EXP GEN separately, and then do what amounts to a value-wise union.

Both phi translate and clean process elements in such a way that other set
elements that they depend on must be processed first. The key to doing this
efficiently is to maintain all sets as topological sorts of the dags they model,
which can be done by implementing the sets as linked lists. Figure 4 shows a
round of this process on block 5, including ANTIC IN[B5] before and after the
insertions from S. Notice that the net effect is to replace v7 : t7 in ANTIC OUT
with v7 : v3 +v100, and that although the order has changed, it is still a topolog-
ical sort. For this to be efficient, the fixed point iteration must converge quickly;
convergence depends primarily on CFG structure. In our benchmarks, the max-
imum number of iterations needed for any method being compiled was 55; that,
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however, appears to represent an extreme outlier, as the second highest was 18.
When measuring the maximum number of rounds needed for convergence of any
method, 15 of our 20 benchmarks had a maximum less than 10, and we found
that if we set 10 as the limit, there was no decrease in the number of operations
eliminated in the elimination phase, implying that the extra rounds needed in
extreme cases produce no useful data.

5

t7 ← t3 + 1

TMP GEN[5] : v7 : t7
EXP GEN[5] : v3 : t3, v100 : 1, v7 : v3 + v100

ANTIC OUT : v2 : t2, v3 : t3, v4 : v2 + v3, v7 : t7,
v101 : v4 + v7

S : v2 : t2, v3 : t3, v4 : v2 + v3, v101 : v4 + v7

ANTIC IN[5]orig : v3 : t3, v100 : 1, v7 : v3 + v100

ANTIC IN[5] : v3 : t3, v100 : 1, v7 : v3 + v100, v2 : t2,
v4 : v2 + v3, v101 : v4 + v7

Fig. 4. Example for the second phase of BuildSets

3.2 Insert

Insert is concerned with hoisting expressions to earlier program points. If this
phase were skipped, we would be left with a traditional global value numbering
scheme. Insertions happen only at merge points. This phase iterates over blocks
that have more than one predecessor and inspects all expressions anticipated
there. For a non-simple expression, we consider the equivalent expressions in the
predecessors. This requires some translation because of the phis at the block, for
which we use phi translate. We look up the value for this equivalent expression
and find the leader. If there is a leader, then it is available. If the expression is
available in at least one predecessor, then we insert it in predecessors where it is
not available. Generating fresh temporaries, we perform the necessary insertions
and create a phi to merge the predecessors’ leaders.

We can see the results of Insert in Figure 5 at the join point of block 6.
The anticipated expressions v2 + v3 and v4 + v8 are available from block 4, so
t16 ← t2 + t3 and t18 ← t16 + t7 are hoisted to block 5. Here the topological
sort of ANTIC IN[B6] comes in handy again, since these expressions are nested
and v2 + v3 must be inserted first. Note that thus our algorithm handles second
order effects without assigning ranks to expressions (compare Rosen et al. [28]).
Appropriate phis are also inserted.

The hoisted operations and newly created phis imply new leaders for their
values in the blocks where they are placed, and these leaders must be propagated
to dominated blocks. This could be done by re-running BuildSets, but that
is unnecessary and costly. Instead, we assume a map which associates blocks
with sets of expressions which have been added to the value leader sets during
Insert. Whenever we create a new computation or phi, we possibly make a new
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value, and we at least create a new leader for that value in the given block. We
update that block’s leader set and its new set. Since this information should be
propagated to other blocks which the new temporaries reach, for each block we
also add all the expressions in its dominator’s new set into the block’s own leader
set and new set. This also requires us to make Insert a top-down traversal of the
dominator tree, so that a block’s dominator is processed before the block itself.

What we have said so far, however, is not completely safe in the sense that it
in some cases it will lengthen a computational path by inserting an instruction
without allowing one to be eliminated by the next phase. Since v3 + v100 is
also anticipated in at block 6, being anti-inherited from t3 ← t2 + 1 in block
2, we insert t14 ← t3 + 1 in block 4. This does not allow any eliminations, but
only lengthens any trace through block 4. The value is still not available at the
instruction that triggered this in block 1 because block 1 was visited first, at
which time it was available on no predecessors and therefore not hoisted. To fix
this, we repeat the process until we make a pass where nothing new is added
to any new set. On the next pass, v7 : t15 is available in block 6, so we hoist
t1 + 1 to block 1. In practice, Insert converges quickly. We have seen only one
case where it required 3 rounds. On most benchmarks, the maximum number
of required rounds for any method was 2, and on average it took only a single
round. Note that we do not need predicates for determining latest and earliest
insertion points, since insertions naturally float to the right place. Insertions
made too late in the program will themselves become redundant and eliminated
in the next phase.

3.3 Eliminate

Eliminate is straightforward. For any instruction, find the leader of the target’s
value. If it differs from that target, then there is a constant or an earlier-defined
temporary with the same value. The current instruction can be replaced by a
move from the leader to the target. The order in which we process this does not
matter. The optimized program is shown in Figure 5.

Corner cases. Certain extensions must be made to this algorithm for theoret-
ical optimality (such as code placement in Knoop et al [21]). In practice, we have
found them to yield no benefit, but they are described in a technical report [35].

4 Implementation and Results

We have proven the concept of this approach by implementing it in an open-
source compiler; our implementation is not compared against other hybrid ap-
proaches which are difficult to implement, but is shown to subsume GVN. Our
experiments use Jikes RVM [2,7,27], a virtual machine that executes Java class-
files. We have implemented the algorithm described here as a compiler phase
for the optimizing compiler and configured Jikes RVM version 2.3.0 to use the
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6

t3 ← t21

t4 ← t2 + t3
t5 ← t4
t6 ← t1 + t5

t7 ← t3 + 1

t8 ← φ(t1, t7)

t13 ← t12 + t3

t9 ← t17
t10 ← t19
t11 ← •
t12 ← t9 + t11

t20 ← t1 + 1

t21 ← φ(t20, t15)

t14 ← t3 + 1
t16 ← t2 + t3
t18 ← t16 + t7

t15 ← φ(t14, t7)
t17 ← φ(t4, t18)
t19 ← φ(t6, t8)

5

t1 ← •

t2 ← φ(t1, t3)

1

2

3

4

Fig. 5. The optimized program

optimizing compiler only and a copy mark-sweep garbage collector. The opti-
mizing compiler performs a series of code transformations on both SSA and
non-SSA representations. It already has loop-invariant code motion (LICM) and
global common subexpression elimination (GCSE) phases in SSA, which rely
on GVN. Placing our phase before these two shows that GVN-PRE completely
subsumes GCSE in practice. LICM is not completely subsumed because Jikes
RVM’s LICM performs unsafe speculative motion which GVN-PRE does not.
GCSE is equivalent to GVN as it is presented in this paper.

Figure 6 shows static eliminations performed by each optimization level. The
left column in each set represents the number of intermediate representation op-
erations eliminated by GCSE, and the second those eliminated by GVN-PRE.
In each case, GVN-PRE eliminates more, sometimes twice as much, although
the optimization also inserts operations and in some cases may later eliminate
an operation it has inserted. The third bar shows the number GVN-PRE elim-
inations plus the number of operations GCSE can eliminate after GVN-PRE
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has run. After GVN-PRE, GCSE finds zero in all but four cases, and never
more than 6, compared to hundreds or thousands eliminated otherwise. Thus
our optimization subsumes GCSE. All these are normalized to the first bar.

Our performance results are in Figure 7. These were obtained on a 1600MHz
Intel Pentium 4 with 512 MB of RAM and 256 KB cache, running Red Hat Linux
3.2.2-5. We used three optimization levels: the pre-defined O2 with GCSE and
GVN-PRE turned off, O2 with GCSE on but GVN-PRE off, and O2 with GCSE
off but GVN-PRE on. In all cases, LICM and load elimination were turned off to
isolate the impact of GCSE and GVN-PRE. We used twenty benchmarks in total,
eight from the SPECjvm98 suite [10] and twelve from the sequential benchmarks
of the Java Grande Forum [14]. For each benchmark at each optimization level
we ran the program eleven times in the same invocation of the VM and timed
the last nine runs using Java’s System.currentTimeMillis() method. This
way we did not incorporate compilation time in the measurements. We also
subtracted garbage collection time. The graph shows the best running time of
GCSE and GVN-PRE (out of the nine timed runs) normalized by the best
running time of running with neither optimization. In only a few benchmarks
is there significant performance gain, and sometimes these optimizations do no
pay off. Studies have shown that in an environment like Jikes RVM, in order
for an instruction elimination optimization to make a significant impact, it must
address the removal of redundant loads and stores for objects and arrays [23],
and we plan to extend our algorithm to incorporate those.

5 Conclusions and Future Work

We have presented an algorithm in which PRE and GVN are extended into a new
approach that subsumes both, describing it formally as a dataflow problem and
commenting on a practical implementation. This demonstrates that performing
PRE as an extension of GVN can be done simply from a software engineering
standpoint, and that it is feasible as a phase of an optimizing compiler. For
future work, we plan to produce a version that will deliver real performance
gains. Studies have shown that in an environment like Jikes RVM, in order for
an instruction elimination optimization to make a significant impact, it must
address the removal of redundant loads and stores for objects and arrays [23].
Accordingly, work to extend this algorithm for load and store instructions using
Array SSA form [18,15] is underway.
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program representation for optimal program transformations. In Proceedings of
the European Conference on Programming (ESOP), pages 389–405, 1990. LNCS
432.

33. Bernhard Steffen, Jens Knoop, and Oliver Rüthing. Efficient code motion and an
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