
Compact Garbage Collection Tables

David Tarditi
Microsoft Research

Redmond, WA 98052, USA
dtarditi@microsoft.com

ABSTRACT
Garbage collection tables for finding pointers on the stack
can be represented in 20-25% of the space previously re-
ported. Live pointer information is often the same at many
call sites because there are few pointers live across most call
sites. This allows live pointer information to be represented
compactly by a small index into a table of descriptions of
pointer locations. The mapping from program counter val-
ues to those small indexes can be represented compactly
using several techniques. The techniques all assign num-
bers to call sites and use those numbers to index an array
of small indexes. One technique is to represent an array of
return addresses by using a two-level table with 16-bit off-
sets. Another technique is to use a sparse array of return
addresses and interpolate the exact number via disassembly
of the executable code.

1. INTRODUCTION
A copying garbage collector has to find all memory lo-

cations on the call stack that point to heap-allocated data.
One successful approach to this problem is for a compiler to
generate tables that the garbage collector uses to traverse
the call stack and find the locations. A drawback of the ap-
proach is that the tables can be large relative to executable
code size. Diwan et al. report tables that are 16% of VAX
code size [5] and Stichnoth et al. report tables that are 20%
of 80x86 code size [12]. When code size is important, the
large tables are a significant cost to pay for garbage collec-
tion support.
This paper describes a design for compact garbage collec-

tion tables that can be accessed and decoded quickly. The
tables are on average 3.6% of code size for programs com-
piled with an optimizing whole-program Java compiler for
the 80x86. The design is based on the empirical observa-
tion that live pointer information is often the same at many
call sites. This is because most call sites have few pointers
live across them. The live pointer information can be repre-
sented compactly using a small index into a table of pointer

location descriptions. Furthermore, the number of indexes
can be reduced by using compiler optimizations that pack
pointer-containing locations close together in stack frames.
The design also uses several techniques for compactly map-
ping program counter values to those small indexes. The
techniques all assign numbers to call sites and use those
numbers to index an array of small indexes. One technique
is to assign adjacent call sites that have the same live pointer
information the same number [5]. Another technique is to
represent an array of return addresses by using a two-level
table with 16-bit offsets. A final technique is to use a sparse
array of return addresses and interpolate the number by dis-
assembling the executable code.
The paper studies the properties of 20 benchmarks com-

piled using a whole-program Java compiler. The bench-
marks include the SPEC JVM98 benchmarks [4]. It also
uses those benchmarks to evaluate the design and compare
various techniques for mapping program counter values to
small indexes.
Diwan et. al [5] describe garbage collection tables for opti-

mized code. Their primary focus is not on building compact
tables, although they address the issue of building tables
with reasonable sizes. They describe how to support derived
interior pointers that are produced by optimizations such as
strength reduction and induction variable elimination. The
work described here focuses on building compact tables and
does not address support for derived interior pointers. It also
studies benchmarks that are one to four orders of magnitude
larger than the benchmarks studied by Diwan et. al. Em-
pirical observations of these larger benchmarks show effects
that cannot be observed with smaller benchmarks, such as
live pointer information being the same at many call sites.
Stichnoth et al. [12] describe tables that allow garbage

collection to begin at almost every instruction. For multi-
threaded programs, it reduces the potential start-up laten-
cies of garbage collection at the expense of larger tables. It
is unnecessary for single-threaded programs. In contrast,
the design described in this paper allows garbage collection
to begin only at specified program points. This produces
smaller tables, but it may increase the start-up latency of
garbage collection. The latency can be bounded by mak-
ing the beginnings of extended basic blocks [2] or the tops
of loops [5] garbage collection points. An explicit check
can be added or the language runtime system can insert
a breakpoint to halt thread execution when those points are
reached.
Stichnoth et al. also compress the binary representation

of their tables by using Huffman encoding. The design de-



scribed here relies on explicit sharing instead of a generic
compression algorithm.
The remainder of the paper is organized as follows. Sec-

tion 2 describes the basic structure of the tables, how the
runtime system interprets the tables, and how the tables are
generated. Section 3 describes how to reduce the size of the
mapping from program counter values to indexes. Section 4
describes the testbed used to evaluate the tables. Section 5
measures the size of the tables, the sharing that occurs, and
the effects of improvements.

2. USING SMALL INDEXESTO REPRESENT
LIVE POINTER INFORMATION

This section describes how the garbage collection tables
use small indexes to represent the descriptions of pointer lo-
cations and how the tables are interpreted and generated. It
also describes compiler optimizations that reduce the num-
ber of indexes and the format of the descriptions of pointer
locations for the 80x86.
Garbage collection is assumed to occur only upon a call

from a thread into the runtime system, that is, at defined
program points. For single-threaded programs those points
are allocation sites. For multi-threaded programs, those
points are allocation sites or system calls that cause a thread
to suspend its execution. The problem of finding pointer lo-
cations becomes the problem of mapping the return address
for each call back to a description of the locations of pointers
that are live when the call was made.

2.1 Table organization
Figure 1 shows the organization of the tables. The call site

table and the descriptor index table map program counter
values to small indexes. More compact representations of
the call site table are discussed in Section 3. The call site ta-
ble is a sorted array of 32-bit return addresses that maps call
sites to their numbers. The descriptor index table maps call
site numbers to indexes; it is an array of indexes. The de-
scriptor table contains descriptions of the locations of point-
ers.
Descriptors have two forms. The compact form encodes

the pointer locations into a 32-bit word. The escape form is
a pointer to a variable-length record that describes pointer
locations. The least-significant bit of a descriptor is used to
distinguish between the the two forms. The details of the
formats are described in Section 2.5.

2.2 Table interpretation
Figure 2 show pseudo-code for walking the stack and pro-

cessing stack frames. The walkStack function takes the
frame pointer for the youngest Java stack frame and the re-
turn address where execution will resume using that frame.
It then walks the stack frames until it finds a non-Java stack
frame. For each stack frame, it uses a binary search of the
call site table to find the call site number. It then uses
the call site number to look up the descriptor index in the
descriptorIndexTable and uses the descriptor index to look
up the actual descriptor. The function processFrame (not
shown) decodes the descriptor and forwards live heap point-
ers for the call.

2.3 Table construction
Table construction starts with a list of all call sites where

garbage collection may occur. The list is ordered by call site

addresses. For each call site, the return address where exe-
cution will resume and live pointer information is recorded.
Live pointer information includes the set of stack locations
and callee-save registers that contain pointers live across the
call site and the set of callee-saved registers that are un-
changed on all paths to the call site.
First, the set of descriptors is computed. The list of call

sites is copied and sorted lexicographically using the live
pointer information. The sorted list is scanned and every
time the live pointer information changes, a new index is
assigned and the live pointer information is added to the
list of descriptors. The descriptor index is recorded for the
run of call sites with the same information.
Finally, the three tables are generated. The call site table

is formed by creating an array from the return addresses
stored in the list of call sites The descriptor index table
is formed by creating an array from the descriptor indices
stored in the list of call site sets. The descriptor table is
created by converting the list of descriptors to an array of
32-bit integers encoding the descriptors.

2.4 Compiler optimizations to reduce the num-
ber of indexes

The number of distinct descriptions of pointer locations
(and thus indexes) can be reduced by improving the spatial
locality of pointers on the stack. First, the stack frame is
divided into pointer-containing and non-pointer containing
sections. The pointers are placed in the stack slots closest
to the beginning of the local variable area. Second, stack
slots are colored so that they are reused for variables with
disjoint lifetimes. This is important for large functions that
have many live variables.

2.5 Describing pointer locations for the 80x86
The descriptor formats depend on the register usage, the

calling convention, and the stack layout. The 80x86 has
8 general-purpose registers, two of which are used as the
stack pointer and frame pointer. The remaining registers are
divided into three callee-save registers and three caller-save
registers. Arguments are passed in the caller-save registers
and on the stack. The formats currently assume that all
functions use frame pointers.
Figure 3 shows the layout of a stack frame. The stack

grows downward toward lower addresses. The frame pointer
points to the saved frame pointer of the caller. Argument
values are at positive offsets from the frame pointer and
local variables are at negative offsets. Callee-save registers
are saved in the memory locations immediately below the
old value of the frame pointer.
Figure 4 shows the format of a compact descriptor. Each

compact descriptor has five bitfields. The first 3-bit field
describes what callee-save registers were saved on the stack
at function entry. The second 6-bit field describes the usage
of the callee-save registers across a call. The third 4-bit field
describes the highest 32-bit word that contains a live pointer
in the argument section of the stack. The bitfield is zero
if there are no live pointer arguments. The fourth bitfield
is a bitmask that indicates what argument stack locations
contain live pointers. Its length is variable and determined
by the third bitfield. The fifth bitfield is a bitmask that uses
the remaining bits and indicates what local variable stack
locations contain pointers.
Escape descriptor records have three variants that de-



Call site
table

return
address

call site
number Descriptor

index table

descriptor
index Descriptor

table

descriptor

Maps program counter to index

Figure 1: Table organization

// , fp = frame pointer, ra = current return address
walkStack(char *fp, char *ra) {

while (ra is for a Java function) {
find the call site number n of ra using binary search
index = descriptorIndexTable[n]
descriptor = descriptorTable[index]
processFrame(descriptor,fp);
a = *(fp+4)
fp = *(fp)

}
}

Figure 2: Pseudo-code for walking the stack

Higher addresses

Lower addresses

Arguments to function

Return address

Previous frame
pointer value

Frame pointer

Callee-save
register values

 Local variables
of function

Stack pointer

Stack growth

Figure 3: The layout of a stack frame.

 Descriptor type

Callee-save
registers saved

on entryCallee-save
register usage

across call

Highest pointer-
containing

argument slot

n

3 091313+n

Bitmask for
arguments

31

Bitmask for local
variables

Figure 4: The format of a compact descriptor



scribe 8, 16, and 32-bit offsets respectively. The first field
describes the variant type and also includes the bitfields for
the callee-save registers. The second field describes the num-
ber of pointers on the stack and the rest of the record con-
tains the frame pointer offsets of the pointer locations. All
pointers are aligned, so the offsets are in units of 4 bytes.

3. COMPACT MAPPINGS FROM PROGRAM
COUNTER VALUES TO INDEXES

The call site table described in the previous section was
an array of 4-byte return addresses. This section describes
three techniques for reducing the size of the call site table.

3.1 Grouping adjacent call sites into sets
Diwan et al. [5] observe that adjacent call sites often

have the same live pointer information. These adjacent call
sites, along with call sites that cannot garbage collect, can
be grouped into sets. The call site table no longer maps
individual return addresses to call site numbers. Instead,
it maps ranges of program counter values to call site set
numbers.

3.2 Using a 2-level table with 16-bit offsets
The call site table can be implemented as a 2-level table

with 16-bit offsets. Each 64K segment of the instruction
address space has its own table that keeps the offsets of call
sites within the segment. The starting call site number is
also recorded for each segment.
If call sites are reasonably dense, this technique roughly

halves the call site table size, replacing 32 bits of information
with 16 bits of information. A drawback of the technique is
that the compiler must know the offset of each label from the
base of the code segment to calculate the 64K segment for
the label and the 16-bit offset within that segment. For the
80x86, which has variable length instructions, the Marmot
compiler uses it own assembler and generates object files
directly when using a 2-level call site table.

3.3 Using a sparse table and interpolating via
disassembly

Another approach to reducing the call site table size is
based on the observation that executable code itself con-
tains some of the information in the table. Specifically, the
number of a call site can be calculated by disassembling the
executable code from the start of the code to the current
return address, assuming that no data has been intermixed
with the code. From this perspective, tables accelerate the
disassembly process and allow the disassembly process to
skip data that is intermixed with code. The tables also sup-
port grouping call sites into sets as described in Section 3.1.
Three tables can be used to interpolate call site set num-

bers by disassembling the executable code. The first table
is a sparse call site table that has a subset of the entries in
the original table. For example, the sparse table could have
1/n of the entries of the original table, where n is a compiler
parameter. The second table is a back-mapping table that
maps each sparse entry to its call site number and a call
site set number. The third table is a bitmask that indicates
which call sites are the beginnings of call site sets.
The calculation of the call site set number for a given

return address proceeds in two steps. First, the sparse call
site table is searched to find the entry that is closest to the

return address and that precedes it. Second, the exact call
site set number is determined by interpolation. The code is
disassembled from the entry address to the return address
and the number of call site sets between the two points is
counted. The call site number of the sparse entry is used to
index into the call site bitmask to figure out what call sites
to count. The number of call site sets is then added to the
call site set number of the sparse entry.
The back-mapping table is broken into segments that map

sparse call entries to 16-bit offsets for call site and call site
set numbers. The offsets are added to base call site and call
site set numbers for the segment. On average, each sparse
entry needs only 4 bytes of information in the table.
The disassembler only needs to recognize call instructions

and calculate instruction lengths. The runtime system code
to do this for the 80x86 consists of 120 lines of table-driven
C code and 300 lines of table initialization code, even though
the 80x86 has a highly irregular instruction format with vari-
able length instructions. The disassembler would be simpler
for a RISC architecture where all instructions are the same
length.
The cost of disassembling code can be significant on the

80x86 because the irregular instruction format means that
code must be examined one byte at a time. A 16-element
LRU cache is used to amortize the cost of disassembling
code; the cache maps return addresses to their call site set
numbers.
An advantage of the sparse call site table over the 2-level

table is that the compiler no longer needs to include an as-
sembler because it does not need to calculate precise offsets.
A disadvantage of the sparse call site table is that a debug-
ger may confuse the disassembly process when it inserts a
breakpoint instruction. The breakpoint instruction may re-
place a call instruction or, on a machine like the 80x86 with
variable length instructions, overwrite part of an instruction.
To avoid confusing the disassembler, the debugger must in-
form the disassembler about any changes that it makes to
the executable code.

4. EXPERIMENTAL TESTBED
This section describes the experimental testbed. It con-

sists of an optimizing compiler, a set of benchmarks, and
the machine used for timing measurements.

4.1 The Marmot optimizing compiler for Java
Marmot [6] is a whole-program, optimizing Java com-

piler that was developed as a research platform. It pro-
duces 80x86 executables and includes standard scalar op-
timizations such as constant and copy propagation, com-
mon subexpression elimination, dead-assignment elimina-
tion, loop invariant code motion, induction variable elim-
ination, strength reduction, and inlining of small, statically
called functions. It also includes basic object-oriented opti-
mizations such as virtual call rebinding based on class hier-
archy analysis, null check elimination, type test elimination,
and removal of uninvoked methods and advanced optimiza-
tions such as stack allocation of objects [7], array bounds
check elimination, and the elimination of unnecessary syn-
chronization operations [11].
All programs were compiled using a generational garbage

collector with a write barrier. A card-marking write barrier
was used by default because a sequential store buffer (SSB)
write barrier may increase the size of tables (see Section 5.8).



4.2 The benchmarks
Table 1 lists the benchmarks. The benchmarks are divided

into three groups. The SPEC JVM98 group includes the
programs from the SPEC JVM98 benchmark suite [4]. The
MiscJava group includes various Java programs. It includes
the Marmot compiler, which is the largest program used
in this study. The IMPACT group includes C programs
translated to Java by the IMPACT/NET project [9]. Several
of the original C programs came from the SPEC95 suite [3].
Section 5 focuses on four benchmarks that illustrate a

range of results: 201 compress, 202 jess, wc, and Marmot.
201 compress and 202 jess are typical of the SPEC JVM98
and Misc programs. Wc is typical for the IMPACT pro-
grams. Marmot has the largest table size relative to code
size of all the benchmarks.

4.3 Hardware platform
Benchmarks were run on an otherwise unloaded 300 MHz

dual Pentium II (x86 Family 6 Model 5) processor Gateway
2000 E-5000 running Windows NT 2000. The machine was
disconnected from the local area network. High-resolution
on-chip cycle counters were used to measure the time spent
garbage collecting; entry cycle counts were subtracted from
exit cycle counts. The benchmarks were run repeatedly until
standard deviations were nominal.

5. EMPIRICAL EVALUATION
In this section, the size of the tables, the sharing that oc-

curs and the effects of table improvements on size are evalu-
ated using the experimental testbed described in Section 4.

5.1 Size of tables
Figure 5 shows the size of garbage collection tables as a

fraction of code size using the best configuration (call sites
grouped into sets, a sparse call site table, and a divided stack
with stack slots reused for variables with disjoint lifetimes)
Code size is the size of generated Java code; code for the
runtime system is excluded. The average table size for all
20 benchmarks is 3.6% of code size.
Each bar shows the contribution of various tables. The

call site table is the sparse version of the call site table. It
includes only every tenth entry in the original table. The
auxiliary tables include the back-mapping table and the call
site bitmask. Only two programs need escape descriptors:
Marmot and impgo. All call sites in the remaining programs
can be described with compact descriptors.
There is considerable variation in the size of the descriptor

index tables. In part, this is because only 8-bit and 16-bit
indexes are supported currently. This causes table sizes to
abruptly double when the number of indexes exceeds 256.
With more implementation work, indexes whose sizes are
not byte multiples could be used.

5.2 The number of indexes is small
The number of indexes relative to the number of call sites

is small. Table 2 shows some basic statistics for 201 compress,
202 jess, Marmot, and wc. The first column shows the dif-
ferent sizes of the programs; it gives the executable code
size for the Java code. The second column shows the num-
ber of call sites. The third column shows the number of
indexes. The fourth column shows the number of indexes as
a percentage of call sites.

In practice, call sites are grouped into call site sets (see
Section 3.1). Even compared to the number of call site sets,
the number of indexes is small. The fifth column of Table 2
shows the number of call site sets and the sixth column
shows the number of indexes as a percentage of call site
sets.

5.3 Most indexes fit into 9 bits
The number of indexes is small enough that for most pro-

grams they fit into 8 or 9 bits. Table 2 illustrates this.
In fact, of the 20 benchmarks, 13 need 8-bit indexes and
5 need 9-bit indexes. Only two programs need more than
9 bits: 213 javac needs 10-bit indexes and Marmot needs
13-bit indexes.

5.4 Most call sites have few pointers live across
them

The number of indexes is small relative to the number of
call sites because most call sites have few pointers live across
them. These call sites need inordinately few indexes.
The following charts use call site sets to exclude call sites

where garbage collection cannot occur. Most call site sets
have few pointers live across them. Figure 7 graphs the cu-
mulative distribution of call site sets as a function of the
number of pointers live across those sets. There are 3 or
fewer pointers live across 90% of the call sites sets for wc,
201 compress, and 202 jess. For Marmot, which is an ex-
treme case, there are 7 or fewer pointers live across 90% of
its call site sets. On average, most benchmarks have 4 or
fewer pointers live across 90% of their call site sets.
The reuse of indexes is very high for call site sets with

only a few pointers live across them. Figure 8 shows the
ratio of indexes to call site sets. A low ratio indicates high
reuse. As program sizes increase, the reuse improves.

5.5 Call site sets reduce program counter map-
pings by more than half

Call site sets substantially reduce the size of the mapping
from program counter values to descriptor indexes. Table 2
also shows that grouping call sites into sets typically halves
the amount of data that must be recorded, reducing both
the size of the call site table and the descriptor index table.

5.6 Sparse call site tables use the least amount
of space and negligibly increase execution
times

Figure 6 compares three different call site table imple-
mentations: the original implementation that uses 4-byte
entries, the two-level table implementation, and the sparse
call site table. As expected, the two-level implementation is
roughly half the size of the the original implementation and
the sparse call site tables are even better than the two-level
implementation. In all cases, call sites are grouped into sets.
Compressing the call site table is important for producing

compact tables. A comparison with Figure 5 shows that the
original call site table is usually larger than the entire size
of the garbage collection tables in the best configuration.
Using a sparse call site table instead of the original call

site table negligibly increases overall benchmark execution
times. It also has a small effect on garbage collection time
unless garbage collection time is very small. Table 3 shows
the percentage of running time spent garbage collecting for
selected benchmarks when using the original call site table.



Name Lines Description
of code

The SPECJVM98 group
201 compress 927 Compression program compressing and decompressing files
202 jess 11K Java Expert Shell System solving set of puzzles
209 db 1028 An in-memory database program performing a sequence of operations
213 javac unknown Java bytecode compiler
222 mpegaudio unknown MPEG audio program decompressing audio files in MPEG Layer-3 format
227 mtrt 3753 Multi-threaded ray tracer
228 jack unknown Java parser generator generating its own parser

The Misc Java group
marmot 127K Marmot compiling 213 javac
cn2 578 CN2 induction algorithm
javacup 8760 JavaCup generating a Java parser
jlex100 14K JLex generating a lexer for sample.lex, run 100 times.
plasma 648 A constrained plasma field simulation/visualization
slice 989 Viewer for 2D slices of 3D radiology data
SVD 1359 Singular-Value Decomposition (100x600 matrices)

The IMPACT group
impdes 561 The IMPACT benchmark DES encoding a large file
impgo 32K The IMPACT transcription of the SPEC95 go.099 benchmark
impgrep 551 The IMPACT transcription of the UNIX grep utility on a large file
impijpeg 8446 The IMPACT transcription of the SPEC95 ijpeg.132 benchmark
docli 8864 The IMPACT transcription of the SPEC95 li.130 benchmark, modified

to use the system garbage collector.
impwc 148 The IMPACT transcription of the UNIX wc utility on a large file

Table 1: The Java benchmark programs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

201_compress 202_jess Marmot wc

F
ra

ct
io

n
 o

f 
co

d
e 

si
ze

Escape descriptors

Descriptor table

Descriptor index
table
Auxiliary tables

Call site table

Figure 5: GC table sizes as fractions of code size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

201_compress 202_jess Marmot wc

F
ra

ct
io

n
 o

f 
co

d
e 

si
ze

Original

Two-level

Sparse

Figure 6: Comparison of call site tables

Program Code size Call Indexes Index/CS Call site Indexes/CSS
sites sets

(bytes) (%) (%)
201 compress 64,240 1,845 115 6.2 554 20.8
202 jess 199,056 5,520 351 6.4 2,873 12.1
Marmot 2,049,920 61,609 4,972 8.1 34,477 14.5
wc 37,008 941 105 11.1 404 26.3

Table 2: The number of indexes is much smaller than the number of call sites



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19+

Number of live pointers

C
u

m
u

la
ti

ve
 f

ra
ct

io
n

 o
f 

ca
ll 

si
te

 s
et

s

Marmot

202_jess

201_compress

wc

Figure 7: Most call site sets have few pointers live
across them

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

Number of live pointers

In
d

ex
es

 a
s 

a 
fr

ac
ti

o
n

 o
f 

ca
ll 

si
te

 s
et

s

Marmot

202_jess

average

201_compress

wc

Figure 8: The ratio of indexes to call site sets

It also shows the percentage decrease in the speed of the
garbage collector due to the use of sparse call site tables.
The decrease in GC speed for docli is large because stack

walking represents a large fraction of the (small) GC time.
Docli allocates a large amount of data that dies quickly.
There are many collections of the younger generation, each
of which includes a stack walk, but very little data survives
each collection, so GC time is small.

5.7 Reusing stack slots is important for larger
programs

Reusing stack slots for variables with disjoint lifetimes is
important for reducing the size of the tables for larger pro-
grams. Figure 9 shows the effect of disabling the reuse of
stack slots for variables with disjoint lifetimes. The size of
tables for Marmot increases by 21%. Other benchmarks af-
fected by this include 213 javac (9%), java cup (16%), and
impgo (35%). The primary cause of the increase is an in-
crease in the size of escape descriptors. A secondary cause
is an increase in the number of descriptors, which increases
the size of the descriptor table.

5.8 Effect of using an SSB write barrier
A generational collector uses a write barrier to track point-

ers from older generations to younger generations. This al-
lows younger generations to be collected independently from
older generations. A check is placed at each store of a pointer
into a heap object. A sequential store buffer (SSB) write
barrier appends the locations of cross-generational pointers
to a buffer [1, 10, 8]. A garbage collection may be triggered
when the buffer overflows.
Thus, using an SSB write barrier introduces additional

garbage collection points at pointer stores into heap objects.
This increases the size of the tables. Figure 10 shows the
effect of this increase. It is primarily due to an increase in
the number of call site sets. This increases the size of the
tables that map program counter values to indexes.

6. SUMMARY
This paper describes how to produce compact garbage col-

lection tables that are 20-25% of the size of tables produced

using previous techniques. The tables share descriptions of
pointer locations at many garbage collection points. The
sharing is possible because there are relatively few pointers
live across most garbage collection points. The size of the
descriptions of pointer locations is typically less than 1% of
executable code size.
The mapping from program counter values to indexes is

represented compactly using several techniques. First, adja-
cent call sites that have the same live pointer information or
cannot garbage collect are grouped into sets. This roughly
halves the number of garbage collection points. Second, the
table of return addresses is represented as a two-level table
with 16-bit offsets or sparsely. The two-level table works
well because there are usually many return addresses within
a 64K segment of code. The sparse table uses the fact that
the executable code contains most of the information in the
table. By disassembling the executable code, the exact call
site number can be interpolated.

7. REFERENCES
[1] Andrew W. Appel. Simple generational garbage

collection and fast allocation. Software: Practice and
Experience, 19(2):171–183, February 1989.

[2] Andrew W. Appel. Compiling with Continuations.
Cambridge University Press, 1992.

[3] Standard Performance Evaluation Corporation. SPEC
CPU 95 benchmarks. Online version at
http://www.spec.org/osg/cpu95, 1995.

[4] Standard Performance Evaluation Corporation. SPEC
JVM98 benchmarks. Online version at
http://www.spec.org/osg/jvm98, 1998.

[5] Amer Diwan, J. Eliot B. Moss, and Richard L.
Hudson. Compiler support for garbage collection in a
statically typed language. In Proceedings of the
SIGPLAN ’92 Conference on Programming Language
Design and Implementation, pages 273–282, San
Francisco, California, June 1992. SIGPLAN, ACM
Press.

[6] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf,
Bjarne Steensgaard, and David Tarditi. Marmot: An



Program GC time with Decrease in GC speed
original table with sparse table

(% of running time) (%)
213 javac 17 0.2
227 mtrt 3 1.3
228 jack 3 2.0
cn2 20 0.2
javacup 13 0.2
docli 0.5 18.9

Table 3: Decrease in garbage collector speed from using a sparse call site set table

0%

5%

10%

15%

20%

25%

201_compress 202_jess Marmot wc

In
cr

ea
se

 in
 s

iz
e 

o
f 

ta
b

le
s

Figure 9: Effect of disabling the reuse of stack slots
for variables with disjoint lifetimes on the size of
tables

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

201_compress 202_jess Marmot wc

In
cr

ea
se

 in
 s

iz
e 

o
f 

ta
b

le
s

Figure 10: Effect of using an SSB write barrier on
the size of tables



optimizing compiler for Java. Software: Practice and
Experience, 30(3):199–232, March 2000.

[7] David Gay and Bjarne Steensgaard. Fast escape
analysis and stack allocation for object-based
programs. In 9th International Conference on
Compiler Construction (CC’2000), Lecture Notes in
Computer Science. Springer-Verlag, March 2000. to
appear.

[8] Antony L. Hosking, J. Eliot B. Moss, and Darko
Stefanovic̀. A comparative performance evaluation of
write barrier implementations. In Proceedings of the
ACM ’92 Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA),
pages 92–109, Vancouver, British Columbia, October
1992. ACM Press.

[9] C.-H. A. Hsieh, J. C. Gyllenhaal, and W. W. Hwu.
Java bytecode to native code translation: the Caffeine
prototype and preliminary results. In IEEE, editor,
Proceedings of the 29th annual IEEE/ACM
International Symposium on Microarchitecture,
December 2–4, 1996, Paris, France, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA,
1996. IEEE Computer Society Press.

[10] Richard L. Hudson, J. Eliot B. Moss, Amer Diwan,
and Christopher F. Weight. A language-independent
garbage collector toolkit. COINS Technical Report
91-47, University of Massachusetts, Amherst, June
1991.

[11] Erik Ruf. Removing synchronization operations from
Java. In Proceedings of the ACM SIGPLAN ’00
Conference on Programming Language Design and
Implementation, Vancouver, Canada, June 2000. ACM
Press. to appear.

[12] James M. Stichnoth, Guei-Yuan Lueh, and Michal
Cierniak. Support for garbage collection at every
instruction in a java compiler. In Proceedings of the
SIGPLAN ’99 Conference on Programming Language
Design and Implementation, pages 118–127, May 1999.


