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ABSTRACT

Analytical modelsof memoryobijectlifetimesareappealingbecause
having themwould enablemathematica&nalysisor fastsimulationof
the memorymanagemeribehaior of programs.In this paperwe in-
vestigatemodelsfor objectlifetimesdravn from programsn object-
orientedlanguagesuchas Java and Smalltalk. We presentcertain
postulatedanalyticalmodelsand comparethem with obsened life-
timesfor 58 programs We find thatobsenedlifetime distributionsdo
notmatchpreviously proposedbjectlifetime modelsbut doagreein
salientshapecharacteristicsvith the gammadistribution family used
in statisticalsurvival analysisfor generabopulations.

Categoriesand Subject Descriptors
D.3.4[Programming Languageg: Processors-memorynanagement
(garbage collection) G.3[Mathematics of Computing]: Probability
andStatistics—survivalanalysis

General Terms
Measurement

Keywords
Objectlifetimes, lifetime distributions,garbagecollectionmodelling

1. INTRODUCTION

If we candevelop accurateanalyticalmodelsfor objectlifetimesin

object-orientecprogramsthey will enablefasterandmorethorough
explorationof memorymanagementiechniques.For instance given
amodelof objectlifetimes,we could computeanestimateof copying

costsof agenerationabr someothergarbagecollector If distribution

modelsandgarbagesollectormodelsaresimpleenoughwe mayeven
arrive atclosed-formanalyticaldescriptionsbut evenif botharequite
complicatedwe canusethelifetime distributionsto drive simulations
of aproposedjarbagecollectorscheme.

Lifetime modelsare not suficient for exploring garbagecollection,
becausehey do not accountfor heappointer structureeffects: the
directcostof pointermaintenancgincluding write barriers),andthe
copying costincreaseowing to the excessretentionof objects,both
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costsbeingpresentn generationahndotherheap-partitioningchemes.
Neverthelessthe modelscanbe usefulasatool for preliminaryeval-
uation(andunderstandingdf collectorperformance.

Obsened objectlifetime behaiors areinherentlydiscrete;we mea-
surethe lifetime of eachobjectandarrive at a discretedistribution.
Mostperformance-relategroposition$have dealtwith mortality, which
is aderwative form (in the senseof the calculusof functionsR — R);
sinceobtaininga derivative of a discreteobsered function involves
inherentlyarbitrarysmoothingdecisionsjt hasbeendifficult to char
acterizethemortality of obsereddistributions,let aloneto matchit to
ananalyticalmodel. The extremelyfastdecayof objectsexacerbates
the situation: mostmodelsdevelopedin otherdomainsarefor much
moreslowly decayingpopulations.

If we knew which distribution family describegypical objectbeha-

iors, we couldfit obsered lifetimesto the modelof thatfamily, and
find thebestmatchinginstancd(i.e., its parameters)in fact,arunning
programcouldrecognizehelifetime distribution of objectsallocated
(overall,or ataparticularallocationsite)andadjustcollectionpolicies
accordingly But it is notyetknown which family this maybe.

In the following, we first briefly introducetermsandnotationrelated
to lifetime distributions(with moredetailsin the Appendix),thenre-

view whatassumptionfiave beenmadeimplicitly (or statedexplic-

itly) in pastresearchn garbagecollection.We develop modelsbased
on a plausiblequalitatve characterizatiorof lifetimes; namely that
pastlifetime is a strongpredictorof future lifetime. Lastly, we put

the modelsto the testof empirical evidenceagainstactuallifetime

distributionsfrom object-orientegprogramsusingagraphicaldevice

recommendeth statisticalsurvival analysis.

We shall find that theseparticularanalyticalmodelsare not a good
matchfor actualdistributions. In searchof a good match,we ten-
tatively considerseveral well-known distributionsfamilies, but must
concludethatnoneis completelysatishctory: objectsin programsare
a muchdifferentpopulationfrom thosestatisticianshave examined.
Thisindicateson theonehandthe needfor furthermodellingeffort to

achiere good matcheghat canbe validatedagainstexperiment,and
ontheother, the needto derive suchmodelsfrom first principles,viz.

from programsemantics.

2. BACKGROUND MATERIAL

The lifetime of an objectis definedasthe amountof allocationthat
occursbetweertheallocationof the objectandits demise! We view

1The actualpoint of demisedependon the accurag of the memory
managemergchemeln theempiricaldatareportechere thatscheme
is anaccurate-rootgarbagecollectorperformingfull-heapcollection



objectlifetime asarandomvariable. Futurestudiesmay look at ob-
ject lifetimes asstochastiqrocessesandin this contet, distinguish
eachallocationsiteasgenerating differentprocessHere,we do not
attemptsuchfine distinctions.

Actual object lifetimes are naturalnumbers,thus discreteprobabil-
ity distributions are the obvious representation.However, continu-
ousmodelsare usedfor mathematicakaseand corvenience.Below

we review somedefinitionsand symbolsfrom probability theory as
they applyto survival analysis furtherdetailsappeain the Appendix
alongwith a summaryof propertiesof commonlyusedanalyticaldis-
tribution families. Although we shall write more formulaethanare
typically seenin garbagecollectionliterature themathematicaappa-
ratusis elementary

The survival function of a randomvariableL is s (t) =O{L > t}.
For objectlifetimes, it expressesvhatfraction of original allocation
volumeis still live ataget. We usuallydropthesubscriptL. Thesur
vivor functionis amonotonenon-increasindunction. The probability
densityfunctionfor objectlifetime is f(t) = —s/(t). Occasionallywe
also usethe cumulativedistribution function F(t) = 1 —s(t). The
mortality functionis m(t) = f(—tt)) = —gf logs(t), andit expresseshe
age-specifideathrate. Mortality is alsoknown asthehazad function
(andwritten h(t)) in theliteratureon lifetime analysig4].

3. STATEMENTS ABOUT DISTRIBUTIONS

Objectlifetime distributions have beenof interestto researchersf
garbageollection,especiallygenerationatollection:thesuccessf a
particulargarbagecollectororganizationor promotionpolicy depends
onhow well it is matchedo the behaior of typical userprogramsin
fact,claimshave beenmadeaboutlifetimes.

Hayesintroduceda distinctionbetweera “weak” anda “strong” gen-
erationalhypothesig8]. Our understandingf his statemenbf the
weak generationahypothesiss this: newly createdobjectshavea
mud higher mortality than objectsthat are older. His statemenbf
thestronggenerationahypothesigwhich hein factintroduces)s that
evenif the objectsin questionare not newly created,the relatively
younger objectshavea higher mortality thantherelativelyolder ob-
jects or simply, thatm(t) is aneverywheredecreasingunction.

Baker clearly pointedout thatanexponentialdistribution of lifetimes,
with m(t) constantcannotbe favorableto generationatollection(as
opposedo whole-heapcollection), and that insteadm(t) shouldbe
decreasingfl]. Neverthelesstheexponentiadistributionhasaunique
cachetamongsurvival distributions: its mathematicakimplicity and
the propertyof “lack of memory”. In a garbagecollectorthis prop-
erty assureshatanobjectjustdiscoveredlive by the collectorhasthe
sameresiduallifetime asthelifetime of anewly allocatedobject,and
this greatlysimplifiesthe analysis.Thus,the exponentialdistribution

was usedby Clinger and Hansenin the analysis(andto inspirethe
design)of a non-pedictivecollectot outsidethe generationatealm
[3]. In our examinationof a generalizedorm of that collector[13],

we decidedto usenot only the exponentialdistribution s(t) = e,

but alsoavariationwith decreasingnortality s(t) = e~VP asbeingin

agreementvith the stronggenerationahypothesisaswell asavaria-
tion with increasingmortality S(t) = e (P’ for control. In fact, these
threeare instancesf the Weibull distribution family s(t) = e~ (P)°

[14,10].

at eachobjectallocation. Thus, demiseis detectedpreciselyat the
pointwhenthe objectbecomesainreachablérom the globalroots.

4. “PAST-IS-FUTURE” MODELS

A multitude of modelscan be developedthat have decreasingnor-
tality. But developingthemex vacuq just for the simplicity of their
mathematicaformulation (or their usein otherdomains)is not sat-
isfactory We canbasemodelson a broadexperimentalstudy and
in Section5 we make a first attemptat that. But, our understanding
would beaidedmoreif distributionmodelscouldbederivedfrom cer
tain principlesthatwe expectto be naturallyassociatedvith program
behaior. In this spirit, Appel suggestedin a personalcommunica-
tion to us) that plausibleobjectlifetime distributions shouldsatisfy
thefollowing property:

(1) An objects future expectedlifetime is proportional
to its currentage.

Thus, pastlifetime is a strongpredictorof the future (residual)life-
time. This standsn starkcontrasto the exponentialdistribution.

An objects future expectedifetime C(x) is the differencebetweerits
expectedifetime andits currentage. The expectedifetime (oncewe
know the currentage)is the conditionalexpectedvalue [12] of the
lifetime randomvariableL, E[L | L > x], whereX is the currentage.
It is calculatedas:

E[L|L>X / ER(t [t > x)dt
0

J2tf()dt
J f(t)dt
SRt (t)dt

s(¥)

ThusC(x) = E[L | L > X] — X, andstatementl) is:
(3> 0)(Vx > O)C(x) = Y,

with Y a proportionalityconstantbetweenthe currentagex andthe
future expectedlifetime C(x). Unfortunately with x = 0, we have
E[L]=E[L |L > 0] =C(0) =y-0= 0 for ary . We look at two
ways out of the quandary:first, by letting proportionality (1) hold
only in thelimit asx — o; andsecondby restrictingthe domainof
definitionof the distributionto aninterval [Xg, ).

Weshallfind usefor analternatveformof (1): Let G(x) = [t f (t)dt;

thenE[L [L >x] = X LetA(x) = 24 = ELL2A _ COox
C(x)

T‘Fl.

Thenstatemen(l) is
@Y > 1)(vx 0AX) =,
with ¢/ =P+ 1.

4.1 Past-is-futurein the limit
Letuswealenthestatemenfl) sothattheproportionalityholdsasymp-
totically, for largevaluesof x. (A similaranalysiswasoutlinedprevi-
ously by Pearlmuttein comp.lang.scheme , October1995.) We
look for adistribution suchthat)(li_r)nw/\(x) existsandis strictly greater

thanl. Hereis onesuchdistribution.

Let
__B
o= t+or



sothat
s(t) = i(t +1)tA
A—1 ’
whereA > 2. Normalization:
o B
1=90) = o1 lr
gives
A 1) 1/(1-2)
T= -
(%5
We find
G(X) = L(XH)H—rBL(xH)H.
A=2 A—1
Expectedvalue
1 A1\
E[L] = G(0) = )
L1=60 b5y (7 )

If we take this valueasa free parameteE[L] =V (asit is necessary
to doin orderto generatea tracefor simulation,wherewe want to
controlthe heapsizein equilibrium),we have

B=(A—DVA-2) L

We canthensimplify:

T=V(A-2).
Theratio
A(X)_G(x)_)\—1+ 1 I_)‘_1+\l
Txgx)  A—2 A-2x A-2 X’
hence
. A—1
Xl[}noo/\(x):m>1,

asrequired. Varying A changeghe value A(x) uniformly for all x;
lower valuesof A producedistributionswith heavier tails.

4.2 Past-is-futurerestrictedto x> x
We malke condition(1) strictly hold for x > xg, wherexg > 0, andwe
definethe distribution (functionsF, f, s, andm) in thatinterval, but
we setF =0, f =0,s=1,andm= 0 in theintenal [0,Xp]. This
formulationis intuitively appealingsincelifetimesin practicetake on
discretevaluesin N, andhencesettingxp = 1 is quite natural.
Condition(1):

B > (V= x)AX) =,
thatis,

G(x) = W'xs(x),

givestheintegral equation,
/ tf(t)dt = lIJ'X/ F(t)dt.
X X
It is easyto obtainthe correspondinglifferentialequation:

1 — Y(A=F(X)
TS e

Thesolution,with theboundaryalueF (xg) = 0, is

!

F(x):l—(ﬁ)%,

:
=2 (2)%,
0-(3)%
= 2

Themortality is indeedaneverywheredecreasindgunction.

W\ 71
G@:W(%) ,

G(x0) = ¥'Xo.
Theexpectedive amountin the heapis:

1

W\ v-1
vw=wm—wtn<“) -

X

Let us examinethis family of distributionsqualitatvely. The steady-
stateheapvolumeV = )!in V(X) equalgheexpectedvalueof L, which

is U'Xp. What are reasonablegparametenvalues? Supposethat we

wish to setV = 500002 Supposelsothatwe wantxg to be1. Then
Y =V /% = 50000. However, the live volumein the heap,v(x),

approachedgs limit valueV at the rate of decayof the secondterm,

thatis, asthe 49999-throot of x. With sucha slow approachthat
is, with sucha heavy tail in the distributions,onemustallow a time

3.67- 1099997 to passheforethe heapis within 1% of equilibrium;un-

til the heapis in equilibrium, the distribution of objectsin it doesnot

reflectthe heavy tail of the sourcedistribution. Simulatingthatmary

objectsis somevhatimpractical. Moreover, canactualprogramsex-

hibit suchextremely slov heapgrowth aswith /' = 50000? Sup-
posethat a programdoes. We canonly obsene executionsof much
shorterdurationthan10°9997, say up to10%; but thenwe cannotem-
pirically distinguishthe postulated))’ = 50000 past-is-futuredistri-

bution from anotherdistribution that agreeswith it up to t = 1010,

but lacksthe heavy tail beyondthatage. Alternatively, to allow 99%
of the steady-stateolumeto be reachedwith 10’ objectssimulated,
onemusthave ' < 2.5 (approximately)put thenxg > 20000. Thus,
beyondthe constructiorof an elegantanalyticalmodelof objectlife-

times,we mustkeepin mind the needto be ableto validateit against
realdata. This exampleshaws thatsometimesalidationmay be dif-

ficult to achieve.

5. MODELS VS.EMPIRICAL EVIDENCE

In validatinglifetime modelswe applythetoolsof statisticalanalysis
of survival datato the distributions of objectlifetimes, to the extent
thatthey are applicableto our problem. (The populationstradition-
ally studiedin statisticalanalysesare quite differentfrom programs’

2This numberis sufficiently large sothatin simulation,evenwhena
heapis dividedinto ~ 100regions,eachonecontainsat least~ 100
objectswhichallows usto varytheheapconfigurationwidely without
incurringsignificantfragmentatioreffects.
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Figure1: Coefficientof skewnessys, versuscoefficientof variation for several analytical distrib ution families and for empirically obsewed
object lifetime distrib utions. Top: linear scale;bottom: logarithmic scale.(Seethe appendix for definitions.)



objects.Moreover, the relevantliteratureconcentratesnostly on sta-
tistical confirmationof explanatoryvariables(e.qg.,in clinical trials),
whichis differentfrom our goal: finding distributions.)

Onerecommendetestfor comparingamiliesof distributionsis based
on the graphof momentratios: the coeficient of skewnessys vs.
the coeficient of variationy. Thesemomentratios are dimension-
lessquantitiesndependensf time-scald4, p.24—28lthatreflectonly
the shapeof thedistribution. The coeficient of variationis ameasure
of the spreadof the distribution aroundits mean;the coeficient of
skewnessis ameasuref theasymmetryof thedistribution, andlarge
positive valuesindicateheavy tails. Eachdistribution correspondso a
singlepoint (Y, y3); asingle-parametefiamily of distributionsdefines
a parametriccurve in the y—y3 plane. (SeeAppendixfor definition
of y andys.) Threefamiliesof distributionscommonlyusedin sur
vival analysis(log-normal(SectionA.4.3), Weibull (SectionA.4.2),
and gamma(SectionA.4.1)), are plotted in the y—y3 planein Fig-
ure 1. Notethatthe Weibull andgammacunesintersectat the point
(1,2); atthis pointeachhasdegeneratedhto the exponentialdistribu-
tion. Thetwo familiesintroducedherearealsoshovn (past-is-future
in the limit (Section4.1) and past-is-futurerestricted(Section4.2)).
Finally, the figure containsscatterpoints (y,ys) of object lifetime
distributions obtainedempirically, and a line of least-squarefit for
thesepoints. Theseempirical distributionscomefrom 58 Smalltalk
and Java programs. (Completeobject-level tracesare available at
http://ali-www.cs.umass.edu/ stefanov /
ISMM20000bjecttraces-README.html )

The scatterpoints of empirical distributions shav a trend of corre-
lation betweeny andys. This trend is someavhat surprising,since
thereis no a priori reasonto expectit from a haphazardollection
of benchmarlprograms.Perhapghe presencef this trendpointsto
fundamentapropertiesof programbehavior, andit certainlyoughtto
be studiedfurther.

The scatterpointslie for the mostpart well to the right and belov
thecommonanalyticaldistribution families. The oneexceptionis the
gammaamily: in fact,eventhoughmostscattempointsareto theright
andbelov thegammeacurve, they arequitecloseto it.

To our chagrin,the two past-is-futuramiliesboth have muchlower
coeficient of variationandmuchhighercoeficient of skewnessthan
the empirical distributions. Therefore however intuitively plausible
they are,they shouldnot be employed to modelobjectlifetimes. In-
deed,we mustconcentrateghe searchfor analyticaldistributionson
those—notin standardliterature—with much higher coeficient of
variation; in the meantime the gammafamily is to be favoredasa
candidate.

We seethatthe y-y3 diagramusefully summarizeshe shapeproper

ties of distributionsandallows usto excludecertainanalyticaldistri-

bution families asmodelsfor a setof obsered distributions. Note,

however, thatthe two momentsdisplayeddo not completelycapture
the shapeof a distribution. For positive matchingfurther statistical
testsarenecessary

6. SUMMARY

Analytical modelling of objectlifetimesis desirablefor the design,
analysis,and simulationof dynamicmemorymanagemensystems,
but it remainsadifficult problem.We examinedcertainqualitative cri-
teriathatmaybeimposedon lifetime distributions,anddemonstrated
the useof a simple graphicaltechniquefor (in)validating postulated
distribution modelsagainstmpiricalevidence.
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APPENDIX
A. ABOUT LIFETIME DISTRIBUTIONS

A.1 Basicdefinitions

The survival function of a randomvariableL is s (t) =0{L > t}.
For objectlifetimes, it expressesvhatfraction of original allocation
volumeis still live at aget. We usually drop the subscriptL. The
survivor functionis a monotonenon-increasingunction.

The probability densityfunctionis f(t) = —g(t). Occasionallywe
also usethe cumulativedistribution function F(t) = 1 —s(t). The

mortality functionis m(t) = % = —% logs(t), andit expresseshe
age-specifideathrate. Mortality is alsoknown asthe hazad func-
tion (andwritten h(t)) in theliteratureon lifetime analysis.Occasion-
ally we alsousetheintegratedmortality: M(t) = fé m(u)du. Certain

propertiesalwayshold: s(0) = 1; tlﬂp s(t) = 0; f5 f(t)dt =1 (nor
malizationof density);s(t) = e MU [4, p.14].

A.2 Moments

The momentsof a distribution of randomvariableL are definedas
my = E[LX] = [5°tKf (t)dt. Thecentral momentsredefinedaspy =

E[(L—m)X = - my)Kdt. Heremy is the mean,or expected
value, and my is the variance,or dispersion;a commonnotationis

0% = W2, wherea is calledstandad deviation. In calculationwe usu-
ally first find momentsm, mp, andmg, by integrationin the caseof

analyticaldefinitions,or by summationover obsered discretepoints
in empirical distributions, and then computecentralmomentsusing
theformulaep, = mp — Mg andpig = Mg — 3Mymy + 2.

Thecoeficientof variationis y = % . Thestandadizedthird moment

or coeficientof skewnesss yz = %; it is alsowrittenns or 1/P1.

A.3 Finitenessof expectedvalue

It is a simple exerciseto shav that the expectedvalue of the live
amountin the heapattime x (thatis, afteranamountx hasbeenallo-
cated)is v(X) = [5's(t)dt, andthat

V = lim v(x) =/Ooos(t)dt:/0wtf(t)dt=E[L],

X—00

whenthey exist.

We mayimposeon the objectlifetime distribution anadditionalprop-
erty of finitenesgexistence)of expectedvalue,to ensurethata heap
equilibrium is reachedn the limit. (Heapequilibrium hasbeenthe
underlyingassumptionin somecomparatie analyseof garbagecol-
lection costs[3, 13]. A relative heapsize parametelis usedasthe
basisfor comparisorof two collectionalgorithms:heapsizeis afixed
multiple of a steady-statéive dataamount.)How essentials this re-
quirement,andcould we alsoconsiderdistributionswith unbounded
expectedvalue? On the onehand,the runningtime of real programs
is finite, andthus f is finally-zero,henceE|[L] is finite.

On the otherhand.,it is theoreticallyplausiblethat we are observing
initial sgmentof potentiallyinfinite computationsandsoit is useful
to investigateheapsthat gron without bound. From a purist stand-
point, mary realisticprogramghatrun indefinitely do useincreasing
amountsof spacejfor instance countingrequireslogarithmicallyin-
creasingspace.

If thelive dataamountdoesnotstabilize but rathergrowsindefinitely,
then the available heapsize oughtto grow in equal proportion—if
one desiresmeasurementi termsof the relatve heapsize param-
eter This propertymust be ensuredwith due carein analysisand
simulation.

A.4 Distrib ution families of Figure 1
Basicdefinitionsof distributionfamilies,compiledfrom textbooks[2,
5,6,7,9,11,12].

A4.1l gamma
f(t) = rrmtoe @

mg= (b+1)(b+2)-- (b+k)c*

o =5
o = 285+
_ 1
V= vb+1

Y3 = 2
37T Vbil

Thereforeys = 2y is astraightline in Figurel.

A.4.2 Weihull
f(t)=ctc et

rs)

mp=r(1+2)

ol

m =

ms = F(L+2)

Thecurve y-ys is plottedparametricallywith respecto c in Figure1.
A.4.3 LOQ-HOrma|

() = gume (ogt_22

It can be shavn that, with abbreviation w = e52, y=+vw—1and
y3 = (w+ 2)v/w— 1, thereforeys = 3y+y° in Figure1.



