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ABSTRACT
Analytical modelsof memoryobjectlifetimesareappealingbecause
having themwouldenablemathematicalanalysisor fastsimulationof
thememorymanagementbehavior of programs.In this paper, we in-
vestigatemodelsfor objectlifetimesdrawn from programsin object-
orientedlanguagessuchas Java and Smalltalk. We presentcertain
postulatedanalyticalmodelsand comparethem with observed life-
timesfor 58programs.Wefind thatobservedlifetime distributionsdo
notmatchpreviouslyproposedobjectlifetime models,but doagreein
salientshapecharacteristicswith thegammadistribution family used
in statisticalsurvival analysisfor generalpopulations.

Categoriesand SubjectDescriptors
D.3.4[ProgrammingLanguages]: Processors—memorymanagement
(garbagecollection); G.3[Mathematicsof Computing]: Probability
andStatistics—survivalanalysis

GeneralTerms
Measurement

Keywords
Objectlifetimes,lifetime distributions,garbagecollectionmodelling

1. INTRODUCTION
If we candevelop accurateanalyticalmodelsfor object lifetimes in
object-orientedprograms,they will enablefasterandmorethorough
explorationof memorymanagementtechniques.For instance,given
amodelof objectlifetimes,wecouldcomputeanestimateof copying
costsof agenerationalor someothergarbagecollector. If distribution
modelsandgarbagecollectormodelsaresimpleenough,wemayeven
arriveatclosed-formanalyticaldescriptions;but evenif botharequite
complicated,wecanusethelifetime distributionsto drivesimulations
of a proposedgarbagecollectorscheme.

Lifetime modelsarenot sufficient for exploring garbagecollection,
becausethey do not accountfor heappointer structureeffects: the
directcostof pointermaintenance(includingwrite barriers),andthe
copying cost increaseowing to the excessretentionof objects,both

costsbeingpresentin generationalandotherheap-partitioningschemes.
Nevertheless,themodelscanbeusefulasa tool for preliminaryeval-
uation(andunderstanding)of collectorperformance.

Observed object lifetime behaviors areinherentlydiscrete;we mea-
surethe lifetime of eachobjectandarrive at a discretedistribution.
Mostperformance-relatedpropositionshavedealtwith mortality, which
is aderivativeform (in thesenseof thecalculusof functions

�����
);

sinceobtaininga derivative of a discreteobserved function involves
inherentlyarbitrarysmoothingdecisions,it hasbeendifficult to char-
acterizethemortalityof observeddistributions,let aloneto matchit to
ananalyticalmodel.Theextremelyfastdecayof objectsexacerbates
thesituation:mostmodelsdevelopedin otherdomainsarefor much
moreslowly decayingpopulations.

If we knew which distribution family describestypical objectbehav-
iors, we couldfit observedlifetimes to themodelof that family, and
find thebestmatchinginstance(i.e., its parameters).In fact,arunning
programcouldrecognizethelifetime distributionof objectsallocated
(overall,or ataparticularallocationsite)andadjustcollectionpolicies
accordingly. But it is not yetknown which family this maybe.

In thefollowing, we first briefly introducetermsandnotationrelated
to lifetime distributions(with moredetailsin theAppendix),thenre-
view what assumptionshave beenmadeimplicitly (or statedexplic-
itly) in pastresearchin garbagecollection.We developmodelsbased
on a plausiblequalitative characterizationof lifetimes; namely, that
pastlifetime is a strongpredictorof future lifetime. Lastly, we put
the modelsto the test of empirical evidenceagainstactual lifetime
distributionsfrom object-orientedprograms,usinga graphicaldevice
recommendedin statisticalsurvival analysis.

We shall find that theseparticularanalyticalmodelsarenot a good
matchfor actualdistributions. In searchof a good match,we ten-
tatively considerseveral well-known distributionsfamilies,but must
concludethatnoneis completelysatisfactory:objectsin programsare
a muchdifferentpopulationfrom thosestatisticianshave examined.
This indicateson theonehandtheneedfor furthermodellingeffort to
achieve goodmatchesthat canbe validatedagainstexperiment,and
on theother, theneedto derive suchmodelsfrom first principles,viz.
from programsemantics.

2. BACKGROUND MATERIAL
The lifetime of an objectis definedasthe amountof allocationthat
occursbetweentheallocationof theobjectandits demise.1 We view

1Theactualpoint of demisedependson theaccuracy of thememory
managementscheme.In theempiricaldatareportedhere,thatscheme
is anaccurate-rootsgarbagecollectorperformingfull-heapcollection



objectlifetime asa randomvariable. Futurestudiesmay look at ob-
ject lifetimes� asstochasticprocesses,andin this context, distinguish
eachallocationsiteasgeneratinga differentprocess.Here,we donot
attemptsuchfine distinctions.

Actual object lifetimes are naturalnumbers,thus discreteprobabil-
ity distributions are the obvious representation.However, continu-
ousmodelsareusedfor mathematicaleaseandconvenience.Below
we review somedefinitionsandsymbolsfrom probability theoryas
they applyto survival analysis;furtherdetailsappearin theAppendix
alongwith a summaryof propertiesof commonlyusedanalyticaldis-
tribution families. Although we shall write more formulaethanare
typically seenin garbagecollectionliterature,themathematicalappa-
ratusis elementary.

The survival function of a randomvariableL is sL
�
t ��� ℘	 L 
 t � .

For objectlifetimes, it expresseswhat fraction of original allocation
volumeis still liveataget. WeusuallydropthesubscriptL . Thesur-
vivor functionis amonotonenon-increasingfunction.Theprobability
densityfunctionfor objectlifetime is f

�
t ���� s� � t � . Occasionallywe

also usethe cumulativedistribution function F
�
t ��� 1  s

�
t � . The

mortality functionis m
�
t ��� f � t �

s� t � �� d
dt logs

�
t � , andit expressesthe

age-specificdeathrate.Mortality is alsoknown asthehazard function
(andwrittenh

�
t � ) in theliteratureon lifetime analysis[4].

3. STATEMENTS ABOUT DISTRIB UTIONS
Object lifetime distributionshave beenof interestto researchersof
garbagecollection,especiallygenerationalcollection:thesuccessof a
particulargarbagecollectororganizationor promotionpolicy depends
onhow well it is matchedto thebehavior of typicaluserprograms.In
fact,claimshavebeenmadeaboutlifetimes.

Hayesintroduceda distinctionbetweena “weak” anda “strong” gen-
erationalhypothesis[8]. Our understandingof his statementof the
weak generationalhypothesisis this: newly createdobjectshavea
much higher mortality than objectsthat are older. His statementof
thestronggenerationalhypothesis(whichhein factintroduces)is that
even if the objectsin questionare not newly created,the relatively
younger objectshavea highermortality thantherelativelyolder ob-
jects, or simply, thatm

�
t � is aneverywheredecreasingfunction.

Bakerclearlypointedout thatanexponentialdistributionof lifetimes,
with m

�
t � constant,cannotbefavorableto generationalcollection(as

opposedto whole-heapcollection),andthat insteadm
�
t � shouldbe

decreasing[1]. Nevertheless,theexponentialdistributionhasaunique
cachetamongsurvival distributions: its mathematicalsimplicity and
the propertyof “lack of memory”. In a garbagecollectorthis prop-
erty assuresthatanobjectjustdiscoveredliveby thecollectorhasthe
sameresiduallifetime asthelifetime of a newly allocatedobject,and
this greatlysimplifiestheanalysis.Thus,theexponentialdistribution
wasusedby Clinger andHansenin the analysis(andto inspire the
design)of a non-predictivecollector, outsidethe generationalrealm
[3]. In our examinationof a generalizedform of that collector[13],
we decidedto usenot only the exponentialdistribution s

�
t ��� e� ρt ,

but alsoavariationwith decreasingmortalitys
�
t ��� e��� ρt asbeingin

agreementwith thestronggenerationalhypothesis,aswell asavaria-
tion with increasingmortalitys

�
t ��� e� � ρt � 2 for control. In fact,these

threeare instancesof the Weibull distribution family s
�
t ��� e� � ρt � c

[14, 10].

at eachobjectallocation. Thus, demiseis detectedpreciselyat the
point whentheobjectbecomesunreachablefrom theglobalroots.

4. “PAST-IS-FUTURE” MODELS
A multitudeof modelscanbe developedthat have decreasingmor-
tality. But developingthemex vacuo, just for the simplicity of their
mathematicalformulation(or their usein otherdomains)is not sat-
isfactory. We can basemodelson a broadexperimentalstudy, and
in Section5 we make a first attemptat that. But, our understanding
wouldbeaidedmoreif distributionmodelscouldbederivedfrom cer-
tain principlesthatwe expectto benaturallyassociatedwith program
behavior. In this spirit, Appel suggested(in a personalcommunica-
tion to us) that plausibleobject lifetime distributionsshouldsatisfy
thefollowing property:

(1) An object’s future expectedlifetime is proportional
to its currentage.

Thus,pastlifetime is a strongpredictorof the future (residual)life-
time. This standsin starkcontrastto theexponentialdistribution.

An object’s future expectedlifetimeC
�
x� is thedifferencebetweenits

expectedlifetime andits currentage.Theexpectedlifetime (oncewe
know the currentage)is the conditionalexpectedvalue [12] of the
lifetime randomvariableL , E � L � L 
 x� , wherex is thecurrentage.
It is calculatedas:

E � L � L 
 x��� � ∞

0
t f
�
t � t 
 x� dt� � ∞

x t f
�
t � dt� ∞

x f
�
t � dt� � ∞

x t f
�
t � dt

s
�
x�  

ThusC
�
x��� E � L � L 
 x�! x, andstatement(1) is:�#"

ψ $ 0� �&% x 
 0� C � x��� ψx '
with ψ a proportionalityconstantbetweenthe currentagex andthe
future expectedlifetime C

�
x� . Unfortunately, with x � 0, we have

E � L �(� E � L � L 
 0�)� C
�
0��� ψ * 0 � 0 for any ψ. We look at two

ways out of the quandary:first, by letting proportionality (1) hold
only in the limit asx

�
∞; andsecond,by restrictingthedomainof

definitionof thedistributionto aninterval � x0 ' ∞ � .
Weshallfindusefor analternativeform of (1): LetG

�
x�)� � ∞

x t f
�
t � dt;

thenE � L � L 
 x�(� G � x�
s� x� . Let Λ

�
x�+� G � x�

xs� x� � E , L - L . x/
x � C � x�10 x

x �
C � x�

x 2 1 .

Thenstatement(1) is�#"
ψ � $ 1� �1% x 
 0� Λ � x�3� ψ � '

with ψ �4� ψ 2 1.

4.1 Past-is-future in the limit
Letusweakenthestatement(1) sothattheproportionalityholdsasymp-
totically, for largevaluesof x. (A similaranalysiswasoutlinedprevi-
ouslyby Pearlmutterin comp.lang.scheme , October1995.)We
look for a distributionsuchthat lim

x5 ∞
Λ
�
x� existsandis strictly greater

than1. Hereis onesuchdistribution.

Let

f
�
t ��� β�

t 2 τ � λ '



sothat

s
�
t �3� β

λ  1

�
t 2 τ � 1 � λ '

whereλ $ 2. Normalization:

1 � s
�
0�3� β

λ  1
τ1 � λ

gives

τ �76 λ  1

β 8 19:� 1 � λ �  
We find

G
�
x�3� β

1

λ  2

�
x 2 τ � 2 � λ  τβ

1

λ  1

�
x 2 τ � 1 � λ  

Expectedvalue

E � L �4� G
�
0��� β

1�
λ  2� � λ  1� 6 λ  1

β 8 2 ; λ
1 ; λ  

If we take this valueasa freeparameterE � L �)� V (asit is necessary
to do in order to generatea tracefor simulation,wherewe want to
controltheheapsizein equilibrium),we have

β � �
λ  1� � V � λ  2�<� λ � 1  

We canthensimplify:

τ � V
�
λ  2�  

Theratio

Λ
�
x�3� G

�
x�

xs
�
x� � λ  1

λ  2 2 1

λ  2

τ
x
� λ  1

λ  2 2 V
x
'

hence

lim
x5 ∞

Λ
�
x�3� λ  1

λ  2
$ 1 '

as required. Varying λ changesthe valueΛ
�
x� uniformly for all x;

lower valuesof λ producedistributionswith heavier tails.

4.2 Past-is-future restricted to x $ x0

We make condition(1) strictly hold for x $ x0, wherex0 $ 0, andwe
definethedistribution (functionsF , f , s, andm) in that interval, but
we setF � 0, f � 0, s � 1, andm � 0 in the interval � 0 ' x0 � . This
formulationis intuitively appealing,sincelifetimesin practicetakeon
discretevaluesin = , andhencesettingx0 � 1 is quitenatural.

Condition(1): �#"
ψ � $ 1� �&% x 
 x0 � Λ � x�3� ψ � '

thatis,

G
�
x��� ψ � xs

�
x�>'

givestheintegralequation,� ∞

x
t f
�
t � dt � ψ � x � ∞

x
f
�
t � dt  

It is easyto obtainthecorrespondingdifferentialequation:

F � � x�3� ψ � � 1  F
�
x�?��

ψ �  1� x  

Thesolution,with theboundaryvalueF
�
x0 �3� 0, is

F
�
x�3� 1 A@ x0

x B ψ C
ψ C ; 1 '

f
�
x�3� 1

x0

ψ �
ψ �  1

@ x0

x B 2ψ C ; 1
ψ C ; 1 '

s
�
x�3�D@ x0

x B ψ C
ψ C ; 1 '

m
�
x�3� ψ �

ψ �  1

1

x  
Themortality is indeedaneverywheredecreasingfunction.

G
�
x�3� ψ ��E xψ C

0

x F 1
ψ C ; 1 '

G
�
x0 ��� ψ � x0  

Theexpectedlive amountin theheapis:

v
�
x�3� ψ � x0  � ψ �  1� E xψ C

0

x F 1
ψ C ; 1  

Let usexaminethis family of distributionsqualitatively. Thesteady-
stateheapvolumeV � lim

x5 ∞
v
�
x� equalstheexpectedvalueof L , which

is ψ � x0. What are reasonableparametervalues? Supposethat we
wish to setV � 50000.2 Supposealsothatwe wantx0 to be1. Then
ψ � � V G x0 � 50000. However, the live volume in the heap,v

�
x� ,

approachesits limit valueV at the rateof decayof the secondterm,
that is, as the 49999-th root of x. With sucha slow approach,that
is, with sucha heavy tail in the distributions,onemustallow a time
3  67 * 1099997 to passbeforetheheapis within 1%of equilibrium;un-
til theheapis in equilibrium,thedistribution of objectsin it doesnot
reflecttheheavy tail of thesourcedistribution. Simulatingthatmany
objectsis somewhat impractical.Moreover, canactualprogramsex-
hibit suchextremely slow heapgrowth as with ψ � � 50000? Sup-
posethat a programdoes.We canonly observe executionsof much
shorterdurationthan1099997, say, up to1010; but thenwe cannotem-
pirically distinguishthe postulatedψ � � 50000 past-is-futuredistri-
bution from anotherdistribution that agreeswith it up to t � 1010,
but lackstheheavy tail beyondthatage.Alternatively, to allow 99%
of thesteady-statevolumeto bereachedwith 107 objectssimulated,
onemusthaveψ �IH 2  5 (approximately),but thenx0 $ 20000.Thus,
beyondtheconstructionof anelegantanalyticalmodelof objectlife-
times,we mustkeepin mind theneedto beableto validateit against
realdata.This exampleshows thatsometimesvalidationmaybedif-
ficult to achieve.

5. MODELS VS. EMPIRICAL EVIDENCE
In validatinglifetime models,weapplythetoolsof statisticalanalysis
of survival datato the distributionsof object lifetimes, to the extent
that they areapplicableto our problem. (The populationstradition-
ally studiedin statisticalanalysesarequitedifferentfrom programs’

2This numberis sufficiently largeso that in simulation,evenwhena
heapis divided into J 100regions,eachonecontainsat least J 100
objects,whichallowsusto varytheheapconfigurationwidely without
incurringsignificantfragmentationeffects.
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Figure1: Coefficientof skewness,γ3, versuscoefficientof variation for several analytical distrib ution families and for empirically observed
object lifetime distrib utions. Top: linear scale;bottom: logarithmic scale.(Seethe appendix for definitions.)



objects.Moreover, therelevant literatureconcentratesmostlyon sta-
tisticalK confirmationof explanatoryvariables(e.g.,in clinical trials),
which is differentfrom ourgoal: finding distributions.)

Onerecommendedtestfor comparingfamiliesof distributionsis based
on the graphof momentratios: the coefficient of skewnessγ3 vs.
the coefficient of variation γ. Thesemomentratios are dimension-
lessquantitiesindependentof time-scale[4, p.24–28]thatreflectonly
theshapeof thedistribution. Thecoefficientof variationis a measure
of the spreadof the distribution aroundits mean;the coefficient of
skewnessis a measureof theasymmetryof thedistribution,andlarge
positivevaluesindicateheavy tails. Eachdistributioncorrespondsto a
singlepoint

�
γ ' γ3 � ; a single-parameterfamily of distributionsdefines

a parametriccurve in the γ–γ3 plane. (SeeAppendix for definition
of γ andγ3.) Threefamiliesof distributionscommonlyusedin sur-
vival analysis(log-normal(SectionA.4.3), Weibull (SectionA.4.2),
and gamma(SectionA.4.1)), are plotted in the γ–γ3 plane in Fig-
ure1. Note that theWeibull andgammacurvesintersectat thepoint�
1 ' 2� ; at thispointeachhasdegeneratedinto theexponentialdistribu-

tion. Thetwo familiesintroducedherearealsoshown (past-is-future
in the limit (Section4.1) andpast-is-futurerestricted(Section4.2)).
Finally, the figure containsscatterpoints

�
γ ' γ3 � of object lifetime

distributionsobtainedempirically, anda line of least-squaresfit for
thesepoints. Theseempiricaldistributionscomefrom 58 Smalltalk
and Java programs. (Completeobject-level tracesare available at
http://ali-www.cs.umass.edu/˜stefanov /
ISMM2000objecttraces-README.html .)

The scatterpoints of empirical distributions show a trend of corre-
lation betweenγ and γ3. This trend is somewhat surprising,since
thereis no a priori reasonto expect it from a haphazardcollection
of benchmarkprograms.Perhapsthepresenceof this trendpointsto
fundamentalpropertiesof programbehavior, andit certainlyoughtto
bestudiedfurther.

The scatterpoints lie for the most part well to the right and below
thecommonanalyticaldistributionfamilies.Theoneexceptionis the
gammafamily: in fact,eventhoughmostscatterpointsareto theright
andbelow thegammacurve, they arequitecloseto it.

To our chagrin,thetwo past-is-futurefamiliesbothhave muchlower
coefficient of variationandmuchhighercoefficient of skewnessthan
the empiricaldistributions. Therefore,however intuitively plausible
they are,they shouldnot beemployed to modelobjectlifetimes. In-
deed,we mustconcentratethe searchfor analyticaldistributionson
those—notin standardliterature—with much higher coefficient of
variation; in the meantime,the gammafamily is to be favoredasa
candidate.

We seethat theγ–γ3 diagramusefullysummarizestheshapeproper-
tiesof distributionsandallows usto excludecertainanalyticaldistri-
bution familiesasmodelsfor a setof observed distributions. Note,
however, that the two momentsdisplayeddo not completelycapture
the shapeof a distribution. For positive matchingfurther statistical
testsarenecessary.

6. SUMMARY
Analytical modellingof object lifetimes is desirablefor the design,
analysis,andsimulationof dynamicmemorymanagementsystems,
but it remainsadifficult problem.Weexaminedcertainqualitativecri-
teriathatmaybeimposedon lifetime distributions,anddemonstrated
the useof a simplegraphicaltechniquefor (in)validatingpostulated
distributionmodelsagainstempiricalevidence.
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APPENDIX
A. ABOUT LIFETIME DISTRIB UTIONS
A.1 Basicdefinitions
The survival function of a randomvariableL is sL

�
t ��� ℘	 L 
 t � .

For objectlifetimes, it expresseswhat fraction of original allocation
volume is still live at aget. We usuallydrop the subscriptL . The
survivor functionis a monotonenon-increasingfunction.

The probability densityfunction is f
�
t ���L s� � t � . Occasionallywe

also usethe cumulativedistribution function F
�
t ��� 1  s

�
t � . The

mortality functionis m
�
t ��� f � t �

s� t � �� d
dt logs

�
t � , andit expressesthe

age-specificdeathrate. Mortality is alsoknown asthe hazard func-
tion (andwrittenh

�
t � ) in theliteratureon lifetime analysis.Occasion-

ally we alsousetheintegratedmortality: M
�
t �3� � t

0 m
�
u� du. Certain

propertiesalwayshold: s
�
0��� 1; lim

t 5 ∞
s
�
t �+� 0; � ∞

0 f
�
t � dt � 1 (nor-

malizationof density);s
�
t �3� e� M � t � [4, p.14].

A.2 Moments
The momentsof a distribution of randomvariableL are definedas
mk � E � Lk �I� � ∞

0 tk f
�
t � dt. Thecentral momentsaredefinedasµk �

E � � L  m1 � k ��� � ∞
0
�
t  m1 � kdt. Herem1 is the mean,or expected

value, and m2 is the variance,or dispersion;a commonnotationis
σ2 � µ2, whereσ is calledstandard deviation. In calculation,weusu-
ally first find momentsm1, m2, andm3, by integrationin thecaseof
analyticaldefinitions,or by summationover observeddiscretepoints
in empiricaldistributions,and thencomputecentralmomentsusing
theformulaeµ2 � m2  m2

1 andµ3 � m3  3m1m2 2 2m3
1.

Thecoefficientof variation is γ � σ
m1

. Thestandardizedthird moment

or coefficientof skewnessis γ3 � µ3
σ3 ; it is alsowrittenη3 or M β1.

A.3 Finitenessof expectedvalue
It is a simple exerciseto show that the expectedvalue of the live
amountin theheapat time x (thatis, afteranamountx hasbeenallo-
cated)is v

�
x��� � x

0 s
�
t � dt, andthat

V � lim
x5 ∞

v
�
x�3� � ∞

0
s
�
t � dt � � ∞

0
t f
�
t � dt � E � L �N'

whenthey exist.

Wemayimposeon theobjectlifetime distributionanadditionalprop-
erty of finiteness(existence)of expectedvalue,to ensurethata heap
equilibrium is reachedin the limit. (Heapequilibrium hasbeenthe
underlyingassumptionin somecomparative analysesof garbagecol-
lection costs[3, 13]. A relative heapsize parameteris usedas the
basisfor comparisonof two collectionalgorithms:heapsizeis afixed
multiple of a steady-statelive dataamount.)How essentialis this re-
quirement,andcouldwe alsoconsiderdistributionswith unbounded
expectedvalue?On theonehand,therunningtime of realprograms
is finite, andthus f is finally-zero,henceE � L � is finite.

On the otherhand,it is theoreticallyplausiblethat we areobserving
initial segmentsof potentiallyinfinite computations,andsoit is useful
to investigateheapsthat grow without bound. From a purist stand-
point, many realisticprogramsthat run indefinitelydo useincreasing
amountsof space;for instance,countingrequireslogarithmicallyin-
creasingspace.

If thelivedataamountdoesnotstabilize,but rathergrowsindefinitely,
then the available heapsize ought to grow in equalproportion—if
onedesiresmeasurementsin termsof the relative heapsizeparam-
eter. This propertymust be ensuredwith due carein analysisand
simulation.

A.4 Distrib ution families of Figure 1
Basicdefinitionsof distributionfamilies,compiledfrom textbooks[2,
5, 6, 7, 9, 11,12].

A.4.1 Gamma
f
�
t ��� cbO 1

Γ � b0 1� tbe� ct

mk � �
b 2 1� � b 2 2�P*Q*Q* � b 2 k� c� k

µ2 � b0 1
c2

µ3 � 2b0 1
c3

γ � 1� b0 1

γ3 � 2� b0 1

Thereforeγ3 � 2γ is a straightline in Figure1.
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Thecurveγ–γ3 is plottedparametricallywith respectto c in Figure1.

A.4.3 Log-normal

f
�
t ��� 1

tδ � 2π
e�SR logt ; ζ T 2

2δ2

It can be shown that, with abbreviation ω � eδ2
, γ �LU ω  1 and

γ3 � �
ω 2 2� U ω  1, thereforeγ3 � 3γ 2 γ3 in Figure1.


