A region-based memory manager for Prolog

Henning MakhoImJr
DIKU, University of Copenhagen
Universitetsparken 1
DK-2100 Kgbenhavn @, Denmark

henning@makholm.net

ABSTRACT

We extend Tofte and Talpin’s region-based model for mem-
ory management to support backtracking and cuts, which
makes it suitable for use with Prolog and other logic pro-
gramming languages. We describe how the extended model
can be implemented and report on the performance of a
prototype implementation. The prototype implementation
performs well when compared to a garbage-collecting Pro-
log implementation using comparable technology for non-
memory-management issues.

Categories and Subject Descriptors

D.1.6 [Programming Techniques]: Logic Programming;
D.3.2 [Programming Languages]: Language Classifica-
tions—constraint and logic languages; D.3.3 [Program-
ming Languages|: Language Constructs and Features—
dynamic storage management; D.3.4 [Programming Lan-
guages]: Processors—memory management, run-time en-
vironments

1. INTRODUCTION

The most important reason why real programmers like
declarative programming is probably that a declarative lan-
guage relieves the programmer of thinking about memory
management. This is not in conflict with the commonly-
seen slogan that declarative programming is about “what”
rather than “how”; memory management is simply one of
the major “how” problems that declarative languages allows
the programmer to forget.

Most contemporary implementations of declarative langua-
ges handle this by garbage collection. With garbage collec-
tion, the decisions about when and how to reuse some piece

*This is an extended and revised version of a paper that
appeared at the CL2000 Workshop on Memory Management
in Logic Programming Implementations, July 24th, London
JrSupported by the Danish National Science Research Coun-
cil via project PLT (Programming Language Technology)

of heap memory are made solely at run time. Thus the time
and effort spent by an imperative programmer to figure out
when what can be safely deallocated has been traded for
CPU cycles spent at run time. Present-day garbage collec-
tors are so efficient that their cost in terms of run-time CPU
cycles is quite small for most realistic programs, but it is still
an interesting question whether one can improve the imple-
mentation by instead trading programmer effort for CPU
cycles spent by the compiler.

Region-based memory management is one technique for
moving memory-management decisions into the compiler.
It was proposed by Tofte and Talpin [9, 10] for call-by-
value functional languages and implemented in the ML Kit
compiler [8] for Standard ML. One advantage of region-
based memory management is that it makes it easy to rea-
son about the space and time requirements of programs
and program fragments: With region-based memory man-
agement all memory-management operations take constant
time to complete, and a program is never interrupted by
a garbage collection of indeterminate (or at least hard-to-
predict) length; nevertheless, experience with the ML Kit
shows that the performance of region-based memory man-
agement can be comparable to stop-and-copy garbage col-
lection. Though there exist incremental garbage collection
techniques that also allow each memory-management op-
eration to complete in constant time, the overhead of these
methods tend to be much higher than for region-based mem-
ory management.

This paper reports on an attempt to apply region-based
memory management to logic programming languages in
general and Prolog with cut in particular. The part of this
experiment that required new innovations was adapting the
region-based run-time model to Prolog’s destructive back-
tracking; thus the paper has a strong implementation slant,
and most of the space is spent on describing the run-time
architecture.

The organisation of this paper is as follows. Section 2 in-
troduces the basic region-based model. Readers who are
familiar with the ML Kit’s representation of regions will not
find much new here, but should nevertheless skim the sec-
tions to learn about the abstraction and notation we use
afterwards. Section 3 describes how we adapted this model
to work well with Prolog. Section 4 introduces our proto-
type Prolog compiler which implements region-based mem-
ory management. Section 5 briefly discusses the region in-

ference process that prepares Prolog programs to use the
region-based memory manager. Section 6 reports on some
preliminary performance experiments, and Section 7 con-
cludes.

2. BASIC REGION-BASED
MEMORY MANAGEMENT

We introduce region-based memory management by com-
paring the interface between the (run-time) memory man-
ager and the client program (which we take to be the part
of the running program that is not the memory manager).

In imperative languages such as C(4++) or Pascal this inter-
face consists of two operations:

alloc: n: integer — «: pointer

free: a: pointer — (nothing)

which the client program can use for allocating a block con-
sisting of a specified amount of memory, and to deallocate
the block when it is not necessary anymore.

For garbage collection the interface is simpler:

alloc: n: integer — «: pointer

Here there is no free operation. Instead the garbage collector
observes which use the client program makes of the allocated
memory and may decide to deallocate a block once it can
be seen to be unused. (Because the client program needs
to adhere to certain conventions to make this observation
possible, the interface is really not as abstract and clear-cut
as it looks here; the point now is primarily that the client
program does not directly control deallocations.)

The overall goal of region-based memory management is to
let the compiler augment the original (declarative) program
such that it does control the deallocation times of the mem-
ory it allocates. Thus the compiled client program that
eventually runs behaves more like an imperative one with
respect to memory management. However, it would be very
difficult to arrange for every block of memory to be individ-
ually deallocated at the right time. The region model is
the fundamental trick that keeps the complexity of the task
under control: Instead of the simple two-operation interface
shown above, a region-enabled client program uses a richer
interface:

makeregion: (nothing) — p: REGION
alloc: p: REGION, n: integer — «: pointer
killregion: p: REGION — (nothing)

This interface introduces an abstract type called REGION.
In the alloc operation, a region functions as a “licence to al-
locate memory”. The client program can create and destroy
regions at will, but destroying a region (with the killregion
operation) has the important side effect that every memory
block that has been allocated using that particular region is
implicitly deallocated. Thus another way to look at a region
is as a way to collect allocations into groups for simultane-
ous deallocation. Figure 1 shows a graphical representation

time

Figure 1: Memory-block lifetimes in the region
model. Each horizontal line corresponds to the life-
time of one memory block. The triangular collec-
tions of blocks correspond to regions. The figure
shows that several regions can exist at the same
time, all growing; but a region can shrink only by
being completely deallocated.

of how the lifetimes of memory blocks in the region model
relate to each other.

It ought to be mentioned here that this interface does not
require region creation and deletion to follow a last-in-first-
out discipline. Such a discipline has been implicit in the
presentation of much of the earlier work on regions, but has
never actually been followed in implementations. Indeed,
the techniques for avoiding memory leaks in tail-recursive
programs we describe in Section 5.4 all depend on creating
client programs that use regions in a non-LIFO pattern.

2.1 Implementing the basic region model
The three-operation interface shown above is an abstract
interface and could in principle be implemented in any of
several ways. In practise, however, region-based memory
management is nearly always associated with the following
particular implementation in which each of the three opera-
tions can always be completed in constant time—even killre-
gion which may deallocate an arbitrary number of memory
blocks.

The heap is divided into fixed-size pages, and each region
consists of a linked list of these pages. In each page a single
word is used to point to the next page in the list, and the
entire rest of the page is available for the client program’s
allocations. Each alloc operation tries to allocate memory
for the newest page in the region; if there is not enough un-
allocated memory there a fresh page is added to the region,
and whatever small amount of memory might have been free
in the previously newest page is lost.

The killregion operation simply concatenates the region’s
page list onto a global list of free pages. That is a constant-
time operation if we can find both ends of the page list
quickly. Therefore, we implement the abstract type RE-

GION as a pointer to a management record which con-
tains pointers to either end of the page list as well as infor-
mation about how many of the newest page’s payload words
have been allocated yet. The management record itself is
allocated by makeregion in the first of the region’s pages.

While this scheme implements each of the three operations
in constant time, it rests on the assumption that each indi-
vidual allocation is small enough to fit in a single page. In
the Prolog subset we support in our prototype implementa-
tion, we do not support built-in predicates like =. ./2 which
allows construction of structures with arbitrary many mem-
bers, or built-in predicates to create atoms that do not occur
in the source program. Therefore, a constant bound on every
atomic allocation in a program can be determined statically.
For less constrained languages, we conjecture that alloca-
tions which may be arbitrarily big occur seldom enough to
permit special-case workarounds.

2.2 Space efficiency

If we assume that regions grow big and that the page size
is large compared to the size of individual allocations, the
region model has an excellent ratio of words used for memory
management per word used for the client program’s payload
data. On average, only a few words per page full of payload
data will be used for the link to the next page or wasted as
slack at the end of a page.

However, if a region does not grow big—that is, if only a
couple of words is ever allocated in it—the figure is not as
favourable because an entire page will be used to hold that
couple of words. This suggests that pages should not be too
big, and definitely should be smaller than the “pages” of
several hundred words each that are used for implementing
virtual memory. In the experiments we report on in Sec-
tion 6 we use a total page size of 16 words. This might
seem excessively small, but remember that the administra-
tive overhead per page is only one word.

3. EXTENSIONS TO THE REGION
MODEL FOR PROLOG

In this section we describe extensions to the region model
which are necessary to make it work well in a Prolog imple-
mentation, and sketch the implementation we have imple-
mented.

The extensions have to do with backtracking (Section 3.1),
cuts (Section 3.2), and logical variables (Section 3.3). In
Section 3.4 we briefly describe the running-time properties
of our implementation.

3.1 Backtracking

When a typical Prolog implementation backtracks, it simul-
taneously undoes every heap allocation that has been made
since the choice point was created. That is sound because
Prolog offers no way of communicating intermediate results
across backtracking (save for imperative features such as as-
sert/retract which are normally handled in special ways) so
the code that follows the backtracking cannot know any ref-
erences to these allocations. Some implementations use this
as their only kind of memory management, but even im-
plementations with garbage collectors usually make sure to

deallocate on backtracking, at least in the easy case where
no collection has occurred since the allocation.

If region-based memory management is to compete seriously
with traditional memory-management strategies for Prolog,
this deallocate-on-backtracking effect must be duplicated.
Thus, we add operations to the memory-manager interface
to tell the memory manager about backtracking:

makeregion: (nothing) — p: REGION
alloc: p: REGION, n: integer — «a: pointer
killregion: p: REGION — (nothing)
pushchoice: (nothing) — (nothing)
backtrack: (nothing) — (nothing)

For the moment, we assume that every choice point cre-
ated with the pushchoice operation is eventually used for
backtracking. In Section 3.2 we shall consider the situation
when cuts (either explicit cuts or “green” cuts inferred by
the compiler) are allowed.

The intended semantics of backtrack is to undo not just al-
locs but every memory-management operation since (and
including) the latest pushchoice operation. In particular,
backtrack may make a region reappear even if killregion has
been used on it while the choice point existed. This conven-
tion means that region inference basically does not have to
care about backtracking, so that we can use region inference
techniques developed for functional languages.

It might be argued that it would be a cleaner design to re-
quire the client program to keep track of backtracking itself
and use killregion only when it knows that the region will
not be needed by pending choice points. However, consider
a program fragment such as

makeX(X) :- ...

makeY (why) .

makeY (wye) .

computeZ(X,Y,Z) :- ...

check(Z) :- ...

foo :- makeX(X),
makeY (Y),
computeZ(X,Y,Z),
check(Z).

% deterministic

. % deterministic
% may fail

What should happen with the region that holds X?* It is
not needed after the call to computeZ/3, so when we let
the memory manager handle backtracking, we can safely
insert a killregion operation at a point between computeZ/3
and check/1. The first time around, there is still a choice
point left over from makeY/1, so the memory manager should
not really deallocate the region. The second time the same
killregion is executed there are no choice points left, so the
region can be deallocated.

If it were the client program’s responsibility to only execute
the second of the killregion operations, it would either have

LOf course, if X has a complex value, its components may be
distributed over several regions—but for the sake of example
we assume there is only one region involved here.

to contain two different copies of the code for the two last
calls, or to maintain and test flags that keep track of which
subgoals have choice points left. The former of these options
is impractical because it might well cause an explosion in
code size, and the latter means that the decision of whether
to deallocate the region between computeZ/3 and check/1 is
made at run time anyway. And if this decision must be made
at run time, we think it is cleaner to let it be made by the
memory manager, which already needs to track the relation
between choice points and regions in order to reclaim partial
regions at backtracking.

Now, how can we implement the 5-operation memory-man-
ager interface above? The difference from traditional region-
based memory management is that we must find ways for
each memory-management operation to save enough infor-
mation to allow itself to be undone at the right point in
time.

3.1.1 How to undarioc operations

When a backtrack operation is executed, some regions may
have grown since the pushchoice; we must then shrink these
regions accordingly. This means that we need to remem-
ber which size the regions had at the time of pushchoice.
A choice point® must contain a (pointer to a) list of little
structures that we call snapshots. Each snapshot contains
enough information to restore one region to the state it had
when it was created. That means that a snapshot contains a
pointer to the region and a copy (a “snapshot”) of the entire
management record at the time the snapshot was created.

If would be inefficient to create snapshots for all existing
regions each time pushchoice is executed. In general only a
few of the (arbitrarily many) existing regions will be used for
allocations before the next pushchoice operation; creating
(and eventually removing) snapshots for the other regions
would be a profound waste of space and time. Instead we
create shapshots on an as-needed basis: pushchoice creates
none, but each time an alloc is executed it checks whether
the newest choice point has a snapshot for the region and
creates one if it hasn’t.

Now, backtrack can undo the relevant alloc operations by
traversing the choice point’s snapshot list and shrink each
mentioned region to the size saved in the snapshot.

Shrinking a region entails restoring the management record
with the data stored in the snapshot, and perhaps cutting
one or more pages out of the page list at the newer end of
the region, contributing them to the free-pages list. With
carefully chosen structure of the page lists, the latter task
can be done in constant time.

3.1.2 How to undanakeregion operations
Now let us consider what should happen if a makeregion
primitive is executed between pushchoice and backtrack.

?Ideally, we can imagine that the memory manager maintain
its own stack of memory-management data related to the
choice points. In a practical implementation, of course, it
is more efficient to allow the memory manager to store its
private data in the same choice point structures that the
client program uses to keep track of its backtracking issues.

In this case, the backtrack will be backtracking to a point in
time where the region did not exist at all. This means that
backtrack must deallocate the region exactly as the killregion
operation does it in the basic region model. So backtrack
must be able to find the region. We store in the choice point
a list of regions that should be deallocated at backtracking
to that choice-point. We call this list the termination list.

Intuitively, the fact that a region is mentioned in a termi-
nation list serves the same purpose as a snapshot: it tells
something about the region’s state at the time the choice
point was created. Only in the case of a termination list
entry the saved state is not “so-and-so big” but “not there
at all”.

It is straightforward to extend makeregion to insert the new
region in the termination list, and backtrack to traverse the
termination list and deallocate regions. We should also make
sure that alloc operations immediately after the makeregion
do not create snapshots, because it would be a waste of
time for backtrack to meticulously shrink the region, only to
deallocate it totally just thereafter.

3.1.3 How to undailiregion operations
If a killregion occurs between pushchoice and backtrack, there
are two different cases to consider. The first is

pushchoice ... makeregion ... killregion ... backtrack

which is not difficult. Backtracking does not interfere with
the region’s life at all, and killregion can do just what it
did in Section 2—except that the region should be removed
from the choice point’s termination list lest it be deallocated
twice.

The difficult case is
makeregion ... pushchoice ... (alloc?) ... killregion ... backtrack.

Here the semantics of our backtracking region model is that
killregion should make the region disappear, and backtrack
should make it reappear in the same place. The only practi-
cal way to implement this is of course to make sure that the
region is never deallocated at all. A first approximation to
an implementation would be to have killregion do nothing at
all in this case. Then it would be right there for backtrack
to restore to its saved condition.

A unsatisfactory side of this approach shows if we imagine
that alloc operations added a lot of pages to the region be-
tween pushchoice and killregion. The only thing backtrack
does to these pages is to shrink them away immediately. It
would be better to add them to the free-list as soon as the
killregion call happens. Thus when killregion can’t entirely
deallocate the region, it instead shrinks it to the size it would
assume anyway at the next backtrack.

3.2 Cuts

Now we consider how the model must be further extended
to support cuts. We add a cut operation to the memory
manager interface:

makeregion: (nothing) — p: REGION
alloc: p: REGION, n: integer — «: pointer
killregion: p: REGION — (nothing)
pushchoice: (nothing) — (nothing)
backtrack: (nothing) — (nothing)

cut: (nothing) — (nothing)

The cut operation pops away a single choice point® from the
choice point stack, but without restoring the heap state to
the one that existed at pushchoice time.

Call the choice point to be cut away Co and the second-
newest one C. The task is then to reset the memory man-
ager’s administative data structures to the state they would
have had if Cy had never been created.

First Cp’s termination list is concatenated onto C:’s termi-
nation list. Then each of the snapshots in Cy’s snapshot list
is inspected; one of the following three cases apply for each
of them:

a) The region has neither a snapshot nor a termination
list entry for C;. The snapshot for Cy should be moved
to C1’s snapshot list.

b) The region has a snapshot or a termination list entry
for C1, and has not been killed. The snapshot for Cp
is obsolete and should simply be removed.

c) The region has a snapshot or a termination list entry
for C, and it has been killed. After removing the
Cp snapshot, cut should try to restart the suspended
killregion operation (which means that the region is
either shrunk or deallocated).

3.3 Logical variables

Backtracking in Prolog must undo variable instantiations
that happened after the choice point was created. This is
usually implemented by recording the addresses of variable
instantiations in a global trail that is consulted at back-
tracking time.

There is a problem here, however, because a global trail
might grow without bounds if the program never actually
backtracks. Traditionally, this is solved by tidying the
trail when some of its entries might become obsolete—for
example during cut operations. In the region-based imple-
mentation this strategy means that each time region pages
are freed, the trail should be tidied of entries to variables in
those region pages. That is not easy, however. The problem
is how to find out whether a particular trail entry should
be tidied away. In traditional memory models this can be
accomplished by a few pointer comparisons, but a region-
page list that is deallocated can contain pages with wildly
different addresses in the heap.

3For expositional reasons we ignore the fact that Prolog’s
cut operation can cut away multiple choice points. Though
the effects of a multi-level cut should be identical to per-
forming cut operation described here multiple times, our
implementation uses an integrated multi-level cut that con-
siders the fate of each snapshot in light of the knowledge
that an entire range of choice points are about to disappear.

The solution we select is to give each region its own trail.
Rather than an array of variable addresses, we maintain the
region-local trail as a (chronologically ordered) linked list of
the instantiated variables. This means that it is unnecessary
to set aside a separate area of memory for trail data; but on
the other hand it is necessary to unwind the trail everytime
the region is shrunk, lest the region ends up with some of
its trail list in freed pages.

During the revision of this paper we bacame aware that a
global trail could still be used with region-based memory
management, if each trailed variable had attached a ref-
erence to the region it is allocated in, and an allocation-
sequence number that can be compared to sequence num-
bers stored within the snapshots. This solution would
consume more memory (each instantiated variable would
need 4 words: value, trail entry, region reference, sequence
number—as opposed to 2 in our current solution) but it is
possible that its time efficiency would be better than the
per-region trail strategy. Regrettably, we have not yet had
time to test out this idea in practise.

3.4 Time complexity

As described in the technical report [5] it is possible to main-
tain enough redundant summary information in the snap-
shots and management records that every memory manage-
ment operation can locate any snapshot it needs to inspect
in constant time. Therefore, most memory-management op-
erations take constant time. The exceptions are:

e backtrack takes time proportional to the number of re-
gions to be deallocated or shrunk. This extra time can
be amortized over the makeregion and alloc operations
done since the choice point was created. Additionally,
of course, it uses time proportional to the necessary
amount of untrailing.

This is still more predictable than garbage collection,
but is not completely satisfactory, as it breaks our abil-
ity to reason about how long it might take for a pro-
gram to get from any point A to any point B. It now
holds only when the execution path that contains point
A has not yet failed when point B is reached.

We argue, however, that these situations still account
for most of the cases where one would want to reason
about running times. The time to get from A to B is
really interesting only when A and B represent inter-
action with the program’s environment. And Prolog
programs rarely interact with their environment in ex-
ecution paths that might fail and backtrack, at least
not readable and maintainable Prolog programs.

e cut takes time proportional to the number of snapshots
in the cut-away choice point’s snapshot list. This extra
time cannot in general be amortized, because a snap-
shot may, in general need to be moved an unbounded
number of times. In fact, it is possible to construct se-
quences of memory-management operations such that
the total number of times a snapshot needs to be
moved grows quadratically in the number of opera-
tions. We conjecture, however (based on our inability
to construct a counterexample) that if we restrict our
attention to client programs produced by our region

inference algorithm, the time spent by cut is amortiz-
able.

e cut and killregion may shrink regions and thus use time
proportional to the amount of untrailing this shrinking
necessiates.

This extra cost is especially unsettling for killregion
because we feel that the pure region-based operations
ought to be constant-time operations. It would be
possible to avoid this by letting killregion refrain from
shrinking the region if there is untrailing to be done,
but we are not sure how that would affect the pre-
dictability of the program’s space needs.

4. A PROTOTYPE IMPLEMENTATION

We have implemented the region-based memory manager
described in the previous section, and used it as the run-
time module of a prototype region-based Prolog compiler
that compiles Prolog to machine code using C as “portable
assembly languaget”.

The subset of Prolog supported by this prototype consists
of pure Prolog with cuts and a very limited set of built-in
predicates for arithmetic and primitive character-based I/O.

Except for memory management, the implementation uses
very simple and straight-forward techniques. For example,
predicate calls follow a uniform scheme and always involce
creating a choice point. In order to be able to stress the
memory manager more, the implementation treats numbers
and atoms as boxed values which must be allocated on the
heap.

The prototype implementation is available electronically at
(http://www.diku.dk/students/makholm/rpsys.tar.gz). This
also contains the reference implementations we used for the
comparisons in Section 6.

5. REGION INFERENCE

In this section we briefly sketch the region inference pro-
cess that transforms a Prolog source program to a client pro-
gram which uses the region-based memory manager. There
is not much novel and innovative here, but we include it
nevertheless because many readers of earlier drafts asked
for information about this. Due to space constraints we can
only give a rough sketch here; for details we refer to the
technical report [5].

The run-time properties we require of the client program
are, in order of importance:

Soundness: No region is ever killed before the last use of
any memory block that has been allocated in it.

Precision: A memory block should be allocated in a region
that is killed reasonably soon after the last use of the
block.

Economy: The client program should use as little time as
possible on creating regions, passing around REGION
handles, etc.

Soundness is of course an essential property that must not
be compromised; but with precision we necessarily have to
settle for approximations. The precision of region inference
depends on the source program as well as the strength of
inference methods used. Because region inference is a static
analysis whereas garbage collection occurs at run-time, it
may end up with better or worse precision than garbage
collection, depending on the program. For example, region
inference can sometimes discover that it is safe to create
dangling pointers by killing a region while there are still live
pointers to it (something a garbage collector would never
do)—but conversely it is also possible for region inference
to be forced to let a short-lived memory block be allocated
in a very long-lived region.

5.1 Type system

One of the keys to succesful region inference is to allow the
different parts of a compound values (for example the ele-
ments of a list versus the cons cells of the list structure) to
be allocated in different regions. This means that the re-
gion inference has to be able to reason about which parts
a value might consist of. Like the existing region inference
techniques, ours use types to structure this reasoning.

Now, Prolog is an untyped language, and no matter which
implementation techniques we use, it ought to remain un-
typed as far as the programmer is concerned—or it would
not be Prolog. We therefore use a “soft” type system that
allows any syntactically correct program to be typed and
automatically adjusts itself to be as precise as the program
allows.

Our type system is similar in spirit to that of Mycroft and
O’Keefe [6], but has the special feature that the type checker
automatically derives a set of appropriate recursive datatype
definitions for the program. Our prototype implementation
does not support polymorphism (because polymorphic type
checking with unlimited mutual recursion between predi-
cates is undecidable without programmer-supplied type an-
notations). However, as evidenced by the large body of work
on region inference for Standard ML, polymorphism does
not conflict at all with region inference, and any practical
heuristic for adding polymorphism to the type checker would
blend nicely into the region inference and help to increase
its precision.

5.2 Taming unification

A unique property of logic programming is that every com-
putation step the program executes is expressed as a vari-
ant of a universal construct: unification. Thus, a unification
such as “X = f(Y)” can be used for quite diverse purposes,
depending on the instantiation states of X and Y. If X is
free, the unification constructs an f structure. If YV is free
and X is bound to some non-veriable, the unification in-
spects an existing structure. If X and Y are both bound,
the unification is a proper unification which compares struc-
tures to an arbitrary depth and possibly instantiates vari-
ables found inside either value.

Finding out which purposes each unification serves is impor-
tant for the region inference. The most prominent difference
is that between a proper unification and a mere construc-
tion or inspection. Because a proper unification may need

to compare arbitrarily deep pieces of the terms, the region
inference must make sure that neither of the values contain
dangling pointers. However, in the case of a mere construc-
tion or inspection, it does not hurt if there is a dangling
pointer somewhere inside the operand of the f functor. (In
fact, the operand itself could be a dangling pointer, if no
other piece of the program needed to follow it). Thus it will
improve the precision of the region inference to know which
unifications can never be proper.

It is also of some interest to be able to distinguish con-
structions from inspections. Though this does not improve
the precision of the region inference (in both cases the re-
gion that contains—or will contain—the f functor must be
alive), it can improve the economy of the client program,
because the REGION handle is necessary for constructions,
which allocate memory, but not for mere inspections. For
example, a procedure that traverses a (known and closed)
list does not need to know which region the cons cells lie
in, as long as the region inference guarantees that what-
ever region it is will always be alive when the procedure is
called. On the other hand, a procedure that creates a list
may need to be passed a REGION handle as parameter, so
it can allocate the cons cells in the region expected by the
caller.

To approximate the instantiation states of the values manip-
ulated by a logic program—and, by extension, to classify the
roles of its unification—is the job of a mode analysis. Sev-
eral mode analyses are described in the literature; the one
we use in our prototype implementation is a rather naive
type-based one which has been designed purely to be easy
to implement while not producing too conservative results
for our example programs. A more advanced mode analysis
could readily be substituted, and would enhance the pre-
cision and economy of the region inference in addition to
the other well-known but not memory-related optimizations
made possible by mode information.

Our prototype program uses the mode information to trans-
late the Prolog program into an intermediate form where
different instructions are used for structure creation, inspec-
tion, and proper unification.

5.3 Identifying regions

After these preliminary exercises, it is time to actually assign
regions the program’s data. At this point, the mode-based
translation to intermediate code has broken most unifica-
tions down to simpler steps. Also, our decision to make
the memory-manager’s backtrack operation able to undo any
memory-management operation means that the region infer-
ence needs not be concerned about backtracking at all—we
can simply pretend that at each predicate call a clause to
execute is selected at random, and that failure stops the pro-
gram. With unification and backtracking thus taken care of,
the remaining problem can be handled with the same meth-
ods as used for functional languages. For the purpose of
region inference, logical variables can be handled as special
cases of Standard ML’s reference types.

In brief, the standard methods employed here consists of:

1. Type check the program and annotate each expression

and each procedure parameter with its type tree (or
type graph, when recursive types are involved).

2. Decorate each node of the type trees (graphs) with
a fresh region name. Some of these region names
eventually become client-program variables that con-
tain REGION handles; the annotation on a type node
tells where to find the handle of the region where a
structure described by the type node should live.

3. Unify region names with each other, as required by the
region type system used. The region type system
makes sure that the region-annotated types’ claims
about where the data can be found will actually be
true at run time.

4. Based on the region-annotated types, decide when
each region should be created and killed. The rules
for this decision is also part of the region type system.

The region type system is responsible for the soundness of
the results, and the fact that all region names start out dif-
ferent and are unified only as required by the region type
system helps extract the maximal amount of precision from
the region type system. The property we call economy has
not received much attention in the literature. The “removal
of get-regions” described by Birkedal et al. [3] is one opti-
mization that aims at economy; our prototype implementa-
tion does this, together with a “region merge” optimizations
that merges regions if they are scheduled to be killed at the
same time (in which case there is no point in keeping them
separate).

5.4 Region type systems

The original region type system by Tofte and Talpin is found
in [9, 10], which also give a proof of its soundness. A detailed
inference algorithm is constructed by Tofte and Birkedal [7].
Most of the complications there have to do with support-
ing higher-order types which do not occur in our setting,

so region inference for Prolog is actually simpler than for
Standard ML.

The main problem with the Tofte-Talpin region type system
is that it is very imprecise when applied to iterative (i.e.,
tail-recursive) computations. This is because it insists that
the lifetimes of different regions follow a stack discipline in
unison with the expression structure of the source program.
Therefore, anything that goes into a tail call must live in
regions that can only be killed after the tail call returns.

Different strategies for alleviating this problem have been
proposed. The one used by the ML Kit adds a “storage
mode analysis” [3] which runs after the region inference and
identifies places where it should be safe to reset a region,
which means to deallocate all data within the region but
not kill the region itself. With this strategy tail-recursive
programs can run in constant space, but the tail recursion
is programmed in special ways which are not always intuitive
[8]. No proof of the soundness of resetting has appeared in
print.

Another strategy was proposed by Aiken, Fahndrich, and
Levien [1] who extend the Tofte-Taplin system to allow a

region to be killed before control leaves its lexical scope.
For example, a region that holds a parameter of a tail call
(and whose lexical scope therefore must include the entire
call) is allowed to be killed by the called procedure. This al-
lows good region annotations of iterative programs with less
rewriting than the ML Kit solution requires. Additionally,
this system allows dangling pointers in more places than the
Tofte-Talpin system (which let pointers dangle only within
function closures). A soundness proof is sketched in [1].

Crary, Walker, and Morrisett [4] recently described a yet
stronger region type system and prove its correctness, but
did not investigate how region inference could be automated.

Developing region type systems that gives good results for a
wide range of programming styles with a minimum of rewrit-
ing is still an open research area. Future improvements are
likely to be applicable to Prolog, too.

In our prototype implementation we use a very simple re-
gion type system most akin to the original Tofte-Talpin one.
Therefore our prototype does not perform well on iterative
programs.

5.5 Multiplicity analysis

Recall from Section 2.2 that region-based memory manage-
ment can waste a lot of space in regions where only a few
words are ever allocated. The ML Kit addresses this prob-
lem with a multiplicity analysis [3] which runs after region
inference and idenfifies regions that are provably only used
for a single allocation operation each. These “finite” regions
are then not handled by the normal region-based memory
manager; instead the appropriate amount of memory is re-
served on the call stack. That avoids rounding the gross
memory usage for the allocation up to the region-page size.

Experiments with the ML Kit has shown that this optimiza-
tion not only improves the space efficiency of the program,
but also results in a significant speed-up because allocating
memory on the call stack is quicker than initializing a region.

Our prototype implementation does not include a multiplic-
ity analysis. We expect that it would be possible to allocate
finite regions directly on Prolog’s local stack, but the details
of the interaction with backtracking have yet to be worked
out

6. EXPERIMENTAL RESULTS

As can be seen from Section 3, the memory-management
operations must do significant (if mostly bounded) work in
order to maintain the administrative data that allows back-
tracking at the region level. It might therefore be feared
that backtracking-aware region-based memory management
is inherently so slow that it is unusable in practise. We have
done a short series of practical experiments to investigate
whether such fear is justified.

The experiments compare the running times for a prototype
region-based compiler for a subset of Prolog with the run-
ning times for a garbage-collecting reference compiler which
has been derived from our region-based prototype such that
the only difference between the two implementations is the
memory-management strategy. The garbage collector is a

simple nongenerational copying garbage collector and does
not implement variable shunting or early reset (see [2]).

Our experiments do not aim at being the definitive compari-
son between region-based memory management and garbage
collection. As noted in the previous section, most parts of
our prototype’s region inference are significantly cruder than
the state of the art; we have deliberately selected example
programs that are known to work well togeter with the pro-
totype region inference. On the other hand, the garbage
collector used in the experiments is not representative of
the state of the art in garbage collection for logic program-
ming languages. Still, the experiments ought to tell some-
thing about whether the costs of region-based memory man-
agement versus garbage collection are of the same order of
magnitude at all.

The timing experiments were made on a HP Apollo 9000/
735 workstation with a 99 MHz PA-RISC1.1 processor, run-
ning HP-UX 10.20. To give an idea of the general perfor-
mance of our prototype implementations, we measured the
running time of our 10queens.pro and ack.pro example
programs with SICStus Prolog 3.8.3 in compiled mode on
the same machine. Our implementations run both of these
programs in between 18.3 and 20.0 seconds; SICStus uses
16.4 seconds for 10queens. pro and 11.9 seconds for ack. pro.
It should be noted that whereas (as far as we understand)
SICStus “compiles” to bytecode which is subsequently inter-
preted by the runtime system, our implementations compile
to machine code.

Table 1 shows results for two example programs that back-
track so often that the garbage-collecting implementation
does all of its memory management by backtracking and
never gets to start a collection at all.

10queens.pro finds all solutions to the 8-queens problem
(extended to 10 queens and a 10 x 10 chessboard to increase
the running time). puzzle.pro solves a series of cryptoarith-
metic puzzles of the “SEND+MORE=MONEY” variety using brute
force and partially instantiated data structures.

For these programs we also added a second reference imple-
mentation (labeled “WAM” in the table—which does not
mean that it is a strictly WAM-based implementation, only
that the memory management is WAM-like) which relies
purely on backtracking for memory management and is seen
to be a little faster than the garbage-collecting one. This
difference is caused by time spent by the garbage-collecting
implementation on checking for heap overflow and excluding
the random values in allocated-but-not-yet-used local-stack
words from the root set. (For the 10queens.pro example,
all local-stack words happen to be filled with meaningful
data as soon as they are allocated, so the only possible ex-
planation for the time difference here is the heap-overflow
check).

We can see that the region-based implementation is 5-10%
slower than the two reference implementations. This is not
unexpected—the region-based memory manager does a lot
of work that eventually turns out to be unused—but the dif-
ference is also not so big that we think it ought to disqualify
region-based memory management in general.

Table 1: Running times from the the first set of experiments. The “net heap size” is the number of machine
words actually allocated by the client program, whereas the “gross heap size” includes management data and

unused areas of region pages.

10queens.pro puzzle.pro
GC WAM regions | GC WAM regions
Running time (s) 19.0 18.3 200 | 7.1 6.1 7.3
Max net heap size 347 162 20103 3903
Max gross heap size 347 368 20103 4512
Max regions alive 12 13

Table 2: Running times from the second set of experiments. The size of the garbage-collected heap is the
sum of the sizes of the semispaces.

ack.pro quick.pro filerev.pro
GC reg GC reg GC reg
Running time (s) 19.2 18.3 5.7 5.7 3.0 1.3
Max net heap size 2054 287686 94120
Max gross heap size | 65427 32736 | 615168 307584 | 217856 108928
Max live data 7 80007 89871
Max regions alive 2046 56 726

Table 2 shows results for three example programs that run
for long enough without backtracking to need real mem-
ory management. We have generously allowed the garbage-
collecting implementation to use twice as much heap as the
region-based one needs, because the garbage collector di-
vides the available memory into two semispaces and only
uses one at the time. The figure also shows the maximal
amount of live data in any collection; this number can be
used to judge how our heap allotment would compare to a
garbage collector which sizes its heap adaptively.

ack.pro computes a value of Ackermann’s function with in-
put (3, 8). It was selected for being extremely friendly to the
copying garbage collector due to the low amount of live data
at any point in the computation. Furthermore, the program
uses the region model rather inefficiently (it only allocates 2
words in each region on average), yet the region-based im-
plementation happens to outperform the garbage-collecting
one. We suppose this is because the region-based mem-
ory manager uses a LIFO memory reuse strategy and thus
has better locality of reference than the inherently FIFO
garbage collector. It does not better the running time with
the garbage collector to decrease the heap size (the more
frequent collections begin to dominate) but a generational
collector may score better.

quick.pro is a classic benchmark for region-based memory
management. It sorts a list of 20000 pseudorandom number
using a list-processing Quicksort. Here—although that is
not shown in the table—the garbage collector can be made
to outperform the region model slightly by increasing heap
size.

filerev.pro was selected to be very hostile to the garbage
collector—it keeps a lot of data live while only working on
a small subset of them. As expected, the region-based im-
plementation wins this race easily.

7. CONCLUSION

We have described how a region-based memory manager can
be extended to support backtracking.

The predictive timing properties that make region-based
memory management attractive for functional languages do
not completely carry over to our variant for Prolog, but we
still think that our extended region model provides better
control over the time used for memory management than
garbage collection.

Experiments with a prototype implementation show that it
is likely that region-based memory management for Prolog
can compete with and in some cases outperform memory
management by garbage collection.

7.1 Further work

These results are encouraging, but cannot guarantee that
region-based memory management performs well in larger
and more realistic contexts than our small example pro-
grams. Eventually, the only real test would be to add region-
based memory management to an existing Prolog implemen-
tation and compare its performance with the same imple-
mentation using garbage collection. This is not something
that can be done immediately, however; the following is a
nonexhaustive list of problems that must be solved before
region-based memory management can be used for full Pro-
log:

e The built-in predicates functor/3, arg/3, and =../2
which allow constructing and analysing structures us-
ing a dynamically-determined atom as the functor and
a dynamically-determined number of arguments. It
should not be too difficult to mix these with regions at
runtime. However, they are fundamentally hostile to a
type-based region inference, and while a well thought-

8

out type system might be able to resolve some cases to
more benign constructs, it would still need to have a
conservative fall-back option, which in turn could have
devastating effects on the region inference’s precision.

call/1 is necessarily hard to reason about statically
and hard to implement in a compiler. Advanced type
and mode analysis techniques might be able to con-
vert some cases of call/l to more benign primitive
constructs, but a region-based compiler will probably
always need a very conservative (and inefficient) fall-
back option to duplicate the intended interpretative
semantics.

assert/1 and retract/1. Allowing arbitrary run-
time changes to the program can of course disrupt
any kind of static reasoning. If database operations
are restricted to simple facts, however, they could not
only be tolerated but actually aided by region-based
memory management: Implementations often need to
copy asserted facts to a separate “persistent heap” lest
they get deallocated by backtracking before a database
query that retrieves them. In a region-based imple-
mentation the region inference may arrange for every
value that might end up being used in an asserted fact
to be allocated on the persistent heap from the begin-
ning, modeled by a special pseudo-region. That way
time-consuming copying of asserted facts can be re-
duced.

findall/3 and similar predicates that communicate
data across backtracking in structured ways. Again,
region-based memory management may optimize the
implementation of these if the mode analysis discov-
ers that the results do not contain uninstantiated or
trailed variables. Conventional implementations have
to copy each result out of the heap so that it will
not be destroyed by the backtracking that follows. A
region-based implementation may simply (with some
cooperation from the memory manager) exempt the
region(s) containing the result from shrinking in that
backtracking operation, thus still deallocating inter-
mediate results that the computation may have left in
other regions.

Constraints would present difficulties for the region
inference. A powerful mode analysis might be able
to find a point where a constraint is sure to have
been executed, so that the regions needed by it can
be killed, but if the mode analysis gives up, each con-
straint would become a space leak. It is possible that
there is a way around this, but more work it necessary
to investigate it.

REFERENCES

[1] Alexander Aiken, Manuel Fahndrich, and Raph

Levien. Better static memory management: Improving
region-based analysis of higher-order languages
(extended abstract). In Programming Language
Design and Implementation (ACM SIGPLAN
Conference, PLDI ’95, 18-21 June 1995, La Jolla,
CA, USA), special issue of ACM SIGPLAN Notices,
30(6):174-185.

(http://http.cs.berkeley.edu/ aiken/ftp/region.ps).

2]

[10]

Yves Bekkers, Olivier Ridoux, and L. Ungaro.
Dynamic memory management for sequential logic
programming languages. In Yves Bekkers and

J. Cohen (eds), Memory Management (International
Workshop, IWMM 92, 16-18 September 1992, St.
Malo, France), volume 637 of Lecture Notes in
Computer Science, pages 82—-102. Springer-Verlag,
Heidelberg, Germany, ISBN 3-540-55940-X.

Lars Birkedal, Mads Tofte, and Magnus Vejlstrup.
From region inference to von Neumann machines via
region representation inference. In Principles of
Programming Languages (23rd ACM
SIGPLAN-SIGACT Symposium, POPL ’96, 21-24
January 1996, St. Petersburg Beach, FL, USA), pages
171-183. ACM Press, New York, NY, USA, ISBN
0-89791-769-3.
(http://www.diku.dk/users/tofte/publ/popl96.ps.gz).

Karl Crary, David Walker, and Greg Morrisett. Typed
memory management in a calculus of capabilities. In
Principles of Programming Languages (26th ACM
SIGPLAN-SIGACT Symposium, POPL 99, 20-22
January 1999, San Antonio, Texas, US), pages
262-275. ACM Press, New York, NY, USA, ISBN
1-58113-095-3. (http://simon.cs.cornell.edu/home/
jgm/papers/capabilities.ps).

Henning Makholm. Region-Based Memory
Management in Prolog. Master’s thesis, Department of
Computer Science, University of Copenhagen, 2000.
(ftp://ftp.diku.dk/diku/semantics/papers/
D-421.ps.gz).

Alan Mycroft and Richard A. O’Keefe. A polymorphic
type system for PROLOG. Articificial Intelligence,
23(3):295-307, August 1984.

Mads Tofte and Lars Birkedal. A region inference
algorithm. ACM Transactions on Programming
Languages and Systems, 20(4):724-767, July 1998.
(http://www.itu.dk/research/mlkit/kit_general/
toplas98.ps.gz).

Mads Tofte, Lars Birkedal, Martin Elsman, Niels
Hallenberg, Tommy Hjfeld Olesen, Peter Sestoft, and
Peter Bertelsen. Programming with regions in the ML
Kit. Technical Report DIKU-TR-97/12, Department
of Computer Science, University of Copenhagen, April
1997. (http://www.diku.dk/research-groups/topps/
activities/kit2/diku97-12.a4.ps.gz).

Mads Tofte and Jean-Pierre Talpin. Implementation of
the typed call-by-value A-calculus using a stack of
regions. In Principles of Programming Languages (21st
ACM SIGPLAN-SIGACT Symposium, POPL ’9/,
Portland, OR, USA), pages 188-201. ACM Press, New
York, NY, USA, 1994, ISBN 0-89791-636-0. (ftp://
ftp.diku.dk/diku/semantics/papers/D-235.dvi.gz).

Mads Tofte and Jean-Pierre Talpin. Region-based
memory management. Information and Computation,
132(2):109-176, February 1997. (http://www.itu.dk/
research/mlkit/kit2/infocomp97.ps).

