Cycles to Recycle: Garbage Collection on the IA-64

J. Eliot B. Moss
Dept. of Computer Science
Univ. of Massachusetts
Amherst, MA 01003-4610

moss@cs.umass.edu

Richard L. Hudson
Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95052-8119

Rick.Hudson@intel.com

ABSTRACT

ThelA-64, Intel's 64-bit instructionsetarchitecturegxhibits a num-
ber of interestingarchitecturafeatures.Herewe considerthosefea-
turesasthey relateto supportinggarbagecollection (GC). We aim
to assistGC andcompilerimplementorsy describinghow onemay
exploit featuresof the IA-64. Along the way, we recordsomeprevi-

ously unpublishedobject scanningtechniquesand offer novel ones
for objectallocation(suggestingsomesimple operatingsystemsup-
port that would simplify it) andthe Java “j sr problem”. We also
discussorderingof memoryaccesseandhow the IA-64 canachieve
publicationsafetyefficiently. While our focusis not on ary partic-
ular GC implementatioror programminganguagewe drav on our
experiencedesigningandimplementingGC for the Intel Java Virtual

Machinefor the lA-64.

1. INTRODUCTION

Intel's new 64-bit instructionsetarchitecturgISA), the IA-64, intro-
ducesanumberof interestingarchitecturafeatures We have beenin-
volvedin designingandimplementingthe memorymanagemerénd
garbagecollection (GC) portionsof Intel's Java (TM)® Virtual Ma-
chine (JVM) for the 1A-64, and have therebygainedexperiencein
how the IA-64's featuresrelateto GC. We hopethis paperwill help
other GC implementorsas they tackle designing,implementing,or
portingfor thelA-64. We haveimplementedn earlyengineeringand
sampleversionsof the Itanium (TM)?2 processothardware most of
the techniquesve describeandthe currentsystemrunswell-knowvn
benchmarkspnesmodelingsenersaswell asclients.

We proceedby first describingthe featuresof the 1A-64 that we
believe to berelevantfor GC andmemorymanagementNotethatfor
the mostpartwe keepthe discussioratthelevel of theinstructionset
architectureratherthanconsideringary particularimplementatiorof
it, suchasthe Itanium processar We next point out the few 1A-64
featureshatappearo be mostsignificantwith respecto GC. Given
the backgroundof 1A-64 features,we considera numberof topics
relatedto GC andmemorymanagementndfor eachtopic consider

1Javais atrademartof SunMicrosystems|nc.
2|taniumis atrademarlof Intel Corporation.

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistritute to lists, requiresprior specific
permissiorand/orafee.

ISMM 2000Minneapolis MN USA

Copyright 2000ACM 0-89791-88-6/97/05$5.00

Weldon Washburn
Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95052-8119

Weldon.Washburn@intel.com

Sreenivas Subramoney
Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95052-8119

Sreenivas.Subramoney@intel.com

implicationsof the IA-64 featuresetfor the implementationof that
topic. We closewith furtherdiscussiorof themostsignificantfeatures
in light of the moredetailedGC implementatiortopics.

2. FEATURES OF THE |A-64 ISA

Hereis a descriptionof the aspectf the |A-64 relevantto memory
managementA referencework is availablefor the interestedreader
[9].

Data types: The lA-64 directly manipulates, 16, 32, and 64 bit
signedandunsignednteger quantities aswell asfloating pointnum-
bers,etc.

Generalregisters(GR): Thereare128generapurposes4-bitreg-
isters.GROis hard-wiredto thevalueO. Thereis aseparatdile of 128
floating pointregisters,andupto 128 morespecialpurposg“applica-
tion”) registers.

Predicateregisters(PR): Ratherthanhaving a singlesetof “con-
dition code”registersthe IA-64 has64 1-bit predicateregisters;PRO
is hard-wiredto 1 (true). Comparisongindothertestsgenerallypro-
duceresultsinto two namedpredicateregisters.Every instructionhas
a6-bit predicatefield, andis executedonly if thecorrespondingred-
icate register contains1.3 This is called predication andit allows
shortif-then andif-then-elsesequence® executeefficiently without
conditionalbranches.

Addr essspace: Addressesre 64 bits andcanaddressndividual
8-bit bytes,aswell as16,32,and64 bit integerquantitiesandseveral
floatingpointsizesupto 128bits. Accesseshouldbealignedfor best
performance The |IA-64 supportsa comprehensie variety of paging
and protectionfeatures,ncluding multiple pagessizesfrom 4Kb to
256Mh

Registerstack: Thegeneraregistersaredividedinto a static sub-
set(GRs0-31)anda stadked subset32—-127).The stacled registers
operatesuchthat eachstackframein a programs call stackhasup
to 96 GRs. A frameallocationinstruction,generallyexecutednear
the beginning of eachprocedurejndicatesthe numberof registersto
usefor the procedures local variablesandfor its argumentso proce-
duresit calls. This s similar to the “registerwindon” mechanisnof
someotherprocessorshut operateswith finer granularity Theload-
ing/storingof overflowing/underflaving registersis normally carried
out by ahardwareRegisterStackEngineratherthantrapsto software
faulthandlers Only the GRsarestacled (notthe PRs,etc.),andonly
the first 32 GRs are static, so only they can be usedfor dedicated
purposes.

Addr essingmodes: Computatiornon the IA-64 is mostly register
to-register and one usesexplicit loadsandstoresto accessnemory
(but with automatedtoringandloadingof someregistersvia thereg-
isterstackmechanism)Theonly memoryaddressingnodeis register

SActually, a few instructionscannotbe predicatedi.e., executionof
thoseinstructionsgnoresthe predicateregistersvalue.

indirect thereis nobaseregisterplusoffsetor baseregisterplusindex
registerform, andall addressrithmeticis explicit.* Thearchitecture
hastheability to adda 14-bitimmediatevalue,to adda 22-bitimmedi-
atevalue(with restrictionsonthe sourceregister),andto loada 64-bit
immediate(usingtwo instructionslots),with a singleinstruction.

Register conventions: Software corventionsfurther restrict the
numberof registersavailable for dedicateduse. The available gen-
eralregistersare GR4-GR7(presered,i.e., callee-sae) andGR14—
GR31(scratchj.e., callersare). Of the predicateregisters PR1-PR5
are presered and PR6—PR15are scratch. Branchregister BRO re-
ceiesreturnaddressesn calls, while BR1-BR5are presered and
BR6-BR7arescratch.

Instruction format: Instructionsaregroupedinto bundles Each
128-bit bundle contains3 41-bit instructionslots plus 5 bits of for-
mat information giving the bundle’s template namelywhat kind of
instructionis in eachslot. Not all combinationsof instructionsare
allowedin asinglebundle(giving riseto someinterestinginstruction
schedulingssues).The templatebits alsoindicateinstructiongroup
boundariesvherea laterinstructionmay have aresourcedependence
on anearlierinstruction(e.g.,consumats result). Instructiongroups
may be arbitrarily long, crossingbundle boundariespr as shortas
oneinstruction. The essencef the modelis thatinstructionsin the
samegroup might executeconcurrently exploiting whatever degree
of instruction-level parallelismis offeredby the processoimplemen-
tation. Branchesarealwaysto thefirst instructionof a bundle,but a
taken branchdoesnot executethe remaininginstructionsof its own
bundle.

Integer instructions available: Integer/logicalregisterto register
instructionsinclude: add,subtractand,andwith complementor, ex-
clusive or, shift left andshift right (by fixed or variablecount,signed
or unsignedfor shift right), shift left (by 1, 2, 3, or 4 bits) andadd,
compare(lessthan,lessthanunsigned equal,not equalj3 with vari-
ouswaysof combiningtheresultinto two predicateregisters testbit
(fixed bit position), shift right pair by a fixed count (which canim-
plementrotation),bit field extractionandinsertion(fixed positionand
size), populationcount(numberof 1 bits in a register),andcompute
zeroindex (the position of the first all 0 8-bit byte or 16-bit word,
from eithertheleft or theright endof a 64-bitregister). Thefloating
pointunitimplementdixed point multiply andreciprocalapproxima-
tion (i.e., the integer unit doesnot supportmultiply or divide). The
architecturesupports/ariousmovesbetweerregistersof thedifferent
kinds, etc.

Memory—Contr ol speculation: Control speculatioris the spec-
ulative executionof instructionsthat may not be reachedn the true
flow of control (e.g., hoisting codeup out of an if-then-else). The
IA-64 supportsspeculativdoads which do not causea fault if they
encounternproblem.Rathertheregistertargetof theloadis specially
marked. GRsaremarkedwith a65thbit calledtheNaT (Not a Thing)
bit, andFRswith a speciallEEE floating point value,NaTVal. Most
computationainstructionssetthe NaT bit of their target registersif
the NaT of ary input registeris 1. If aninstructionsetssomething
otherthana GR or FRandhasaNaT input, thentheinstructionfaults.
Generally onechecksfor NaTsexplicitly with a specialconditional
branchinstruction. It would normally branchto codethatwould ex-
ecutethe load(s)and following computation,but non-speculatiely.
The register stackmechanismandregister spill/fill instructionshan-
dlesNaTsnaturally

Memory—Data speculation: A compiler cannotalways prove

4The registerindirect form supportsoptional post-incrementationf
the baseregister by eithera signed9-bit immediateconstantor (for
loadsonly) the contentsof anotheiGR.
5Comparisonproduceresultsinto two predicateregisters,sooneob-
tainsthe oppositesenseby switchingthetwo registers.

thata given load and storeaccesdlifferentmemorylocations,yet it
may be always, or almostalways, true that a later load doesnot ac-
cessthesamedocationasanearlierstore.Dataspeculatiorconsistan
moving suchaloadinstructionearlierthanthestore(perhapgo reduce
stallswhile waiting for theload’s resultsfrom memory) but somehav
checkingthatthe storedid notin factupdatethe locationreadby the
advancedoad. The lA-64 supportsdataspeculatiorwith adwanced
loadinstructions,an AdvancedLoad AddressTable (ALAT), andad-
vancedload checks. The adwancedload instruction entersits load
addressnto the ALAT, which hassomesmall fixed size. All stores
checkthe ALAT, andif they find a matchingentry; they invalidateit.
Theadwancedoadcheck,whichis generallyinsertedvheretheorigi-
nalloadinstructionwas(i.e., beforeit wasadwanced)yerifiesthatthe
adwancedoad’s entryis still in the ALAT. Onekind of checksimply
re-executegheloadif thereis no matchingALAT entry;anotherkind
branchego recovery code,and canre-loadandre-doary additional
calculationgddependingn theloadedvalue.

One may combinecontrol and dataspeculatiorusing speculatie
adwancedoadinstructions.

Memory—Hierar chy Control: In the IA-64 therearethreeways
to controlmemoryhierarchyactions:locality hints,explicit prefetch-
ing, andimplicit prefetching.Locality hintsindicatewhetheraload,
store,or line fetch instructions datais (a) temporallylocal (keepin
level 1 cache),(b) non-temporaht level 1 (but keepin level 2), (c)
non-temporahtlevel 2 (andnon-temporaht level 1, sokeepin level
3), or (d) non-temporaht all cachelevels. Theline fetchinstruction
hasfaultingandnon-faultingversionsandwith thehintscanloaddata
into specificlevels of cache.Thereis a separatéiint to indicatethat
a loadedvalueis likely to be updated(i.e., in a multiprocessoone
shouldacquireexclusive accesgo the cachdline, etc.).

Memory—Atomic Update: ThelA-64 supportshreeatomicread-
update-writememory operations:exchange ,compare-andy&hange
(sometimegalledcompare-and-sap),andfetch-and-add.

Memory—AccessOrdering: While a processos own dataref-
erencenbey read-afteiwrite, write-afterread,and write-afterwrite
orderingswith respectto the order of instructionsin the instruction
streamreadsandwritesmay be perceved by otherprocessor dif-
ferentorders. Whererelative orderingof accesseto differentloca-
tionsis important,loads,stores,and atomic updateinstructionsmay
specifyadditionalorderingrestrictions.In particular the I1A-64 sup-
portsacquire/releaseorderingsemantic$5] with optionalacquirese-
manticson loads,releasesemanticon stores,andacquireor release
onatomicupdatesit alsooffersamemoryfenceinstruction.

3. MOST RELEVANT FEATURES

We identify four featuresof the |A-64 of greatestelevanceto GC:
Many generalregisters: Thereare enoughgeneralpurposereg-
istersthatit is reasonableat leastmore so thanon mary otherpro-
cessorsto dedicateseveral to specialpurposesfor GC, suchasan
allocationpointer We will seeseveralinstancesvherewe adwcate
dedicatinggeneraburposeor predicateregistersto specificfunctions.
Predication: Predicationrmakesit easyto conditionalizea group
of instructionswithout branching. We canexploit it to build atomic
instructionsequencem waysnot possiblewithout predication.
Acquir e/releasememory ordering: Somearchitecturessuchas
the SunSRARC (runningwith Total StoreOrder),orderall storeson
multiprocessorsptherssuchasthe CompagAlpha, allow muchre-
orderingof loadsandstores,andoffer only a strict memoryfenceto
force orderingwhenit is required.The IA-64’s acquire/releaseffers
the bestof both models: it allows muchreorderingfor efficiency in
multiprocessomemoryhardwarewhile imposinglessoverheadhan
fenceswhen somedegree of orderingis necessary We exploit the
acquire/releasenodel in implementingJava synchronizatiorandin

add rba =8, ro /1l ro = obj base, rba gets bounds address
add rfe = 16, ro // rfe = address of first el enent
1d8 rb = [rba] /1 rb gets bound
shladd ra =ri, 3, rfe /1l ra (elenent address) gets (ri << 3) + rfe
cnp.ltu pt, pf =ri, rb // conpare index ri against bound
/1 the |l ess-than-unsigned test checks whether 0 <= ri <rb
[l pt == 1 iff the test is true, and pf == pt
(pt) 1d8 res = [ra] /1 load the 8-byte element (if pt is true)
(pf) br throwexception /1 throw out-of-bounds exception (if pf is true)

Figure 1: Example codefor array indexing

add rfa = 20, ro /1 ro = obj base, rfa gets field address
1d4 rf = [rfa] /1l load a 4-byte field, offset 20
sxt4 rf =rf /1 sign extend from4 to 8 bytes

Figure 2: Example codefor object field access

achieving publicationsafety

Exploiting instruction level parallelism (ILP): This concernis
commonalsoto VLIW andsuperscalamachinesput is nevertheless
deservingof discussionFor example,a GC implementomight hope
thatsomeoperationssuchasGC write barriersmight have smallin-
crementaloverheadn thatthey fill otherwise‘empty” pipelineslots.
Wewill reconsidethisissueafterwe have presentedxampleinstruc-
tion sequences.

4. SUPPORTING GC ACTIONS

We begin with a seriesof topicsdirectly relatedto GC and memory
managementnd later cover the memoryacces®orderingfeaturesof
the 1A-64 relevant to memory semanticsssuessuchas publication
safety locking, andvol at i | e variables.A pointwe do no discuss
furtheris thatonemay moreeasilymanagea 64-bit addresspacen
creatize waysthanonecana 32-bitaddresspace.

4.1 AccessingFields and Dispatching

The mainthing to notehereis that, giventhe |A-64’s singleregister
indirect memoryaddressingnode,objectreferenceshouldpoint to
the most commonly accessedvord of an object. This mostlikely
is the virtual function table pointer Other fields may be accessed
equally corveniently at positive and negative offsetsfrom the object
base exceptarraysarebestlaid out at positive offsets. The shift-left-
and-addnstructionis cornvenientfor arrayaccesses theelemensize
is 2, 4, 8, or 16 bytes. Figure 1 givesan exampleJava array access
codesequenceywe malke no claim of optimality! Note that someof
thevalues,suchastheboundr b andthe addres®f thefirst element
r f e, might be keptin registersfor repeatedise;it is goodthatthe
1A-64 offersplenty of registers!

The first columnindicatesthe predicateregisterusedto predicate
executionof an instruction; if thereis no register mentioned,then
it meansto use PRO, which is always 1 (true). Ratherthan condi-
tionalizing the load of the element,one could usean unconditional
speculatie load, which would allow the load to be placedbefore the
boundscheck,which might improve instructionschedulingdepend-
ing onthesurroundingcode. In eithercasean|A-64 feature(predica-
tion or speculation)s useful. Clearly therearemary possiblevaria-
tions,andobtaininggoodscheduleslepend®n specificsof processor
implementatioraswell assurroundingcode.

A 4-bytesignedinteger field accessmight look asin Figure2. It
could be helpful to managean “interior” pointer adjustingit at each
field load, using the base-rgisterupdateaddressingnode, so asto
pointto thenext field needed.

A significantimplication for GC is thatit is desirableto support
interior pointers(pointersthat do not point directly to the baseof
anobject). Diwan, et al., exploredissuesin supportingsuchderived
pointers[4]. A derivedpointeris a function of somenumberof base
pointersand a fixed or variableinteger offset, suchthat one canre-
covertheoffsetgiventhedervedpointerandall thebasepointers.An
interior pointerpointsto afield within anobject,andis aspecialcase
of aderived pointerconstructedrom a singlebasepointerby adding
theoffset.

A GC stratgyy Diwan, et al., proposeds: beforeGC, corvert de-
rivedpointersto offsetsfrom correspondindpasepointersduringGC,
relocatethe basepointersasnecessaryafter GC, convert the offsets
backto possiblyrelocatedierivedpointers.A niceeffect of this strat-
egy is thatit shieldsthe majority of the GC codefrom interior point-
ers. Thestratgy requireshateachderivedpointerhave anassociated
basepointer which the compilermustkeepavailable someavherefor
the GC. Given the numberof registerson the I1A-64, the occasional
retentionof additionalbasepointervaluesis lessof a problemthanit
mightbeon otherarchitectures.

Summary: Field accesssequencesvill typically be quite short,
with minimum possiblememoryaccessesThe absencef aregister
offsetaddressingnodemeanghat,comparedvith otherarchitectures,
we needto do moreaddressrithmeticaddson the IA-64. However,
oneshouldnotethatan|A-64 add-then-loadwill likely executewith
delaycomparabldo a registeroffsetaddressingnodeon anotherar-
chitecture sincebothmustdo theaddsomavhere.Further the|A-64
sometimeswoidstheadd,or foldsit into anupdateaddressingnode
on anearlierload or store,andthus may startsomeaccessesooner
The add doesrequirean extra instructionslot, but early experience
with object-orientedcode suggestghat it will take very aggressie
compileroptimizationto fill slotstightly. In additionto performance
considerationghelA-64 style of addressinguggestshataJVM will
needto managenterior pointers.

4.2 Object Allocation

Therearethreeissueswe considerrelatedto objectallocation: how
to avoid lock overheadnallocationin systemsupportingconcurrent
threads;how to zeroallocatedmemory;andvisibility of initializing
writes on multiprocessorsThe latterissuewe deferto the sectionon
memoryacces®rdering.

4.2.1 ZemingMemory

Zeroingmemoryis easyto dealwith: our experienceto date(albeit
mostlyunderthelA-32 architecture)s thatit is bestto zeroallocation
areasn bulk, usingsuppliediibrary routines(e.g.,nmenset), immedi-

S
/
/
ap is the allocation pointer
v
s
n

top:
(swf) nov np = ap

(swf) add ap = ap, sz

wt and swf are predicate registers, always hol ding opposite val ues
swt means a task switch and resunption have happened
swt and swf are thread-| ocal

t is the new object’s vtable pointer val ue

z is the new object’s size in bytes

p receives the address of the new object

i ndi cate address of new obj ect

burmp al | ocati on pointer

I

(swf) st8 [ap] = vt /1 store vtable pointer
I
I

(swt) br redo

redo: // reset pred regs

task switched, so retry whol e sequence

cnp.eq swf, sw =7r0, rO // set swf true, sw false
I

br top

try again

Figure 3: Exampleinterruptible atomic allocation sequence

i ndi cate address of new obj ect
store vtabl e pointer

merge limt test result into swf, swt

/1 st, sf, ap, vt, sz, and np are as before
/1 Ipis the limt pointer
top
(swf) nov np = ap /1
(swf) st8 [ap] = vt /1
(swf) add ap = ap, sz /1 bunp allocation pointer
(swf) cmp.le swf, sw = ap, Ip//
(swt) I

br redo
cnp.eq sw, sw =7r0, r0

(pgt) br.call rp = gc cal |

br top

task switched or past limt

// set swf true, sw false

cnp.le 0, pgt =ap, Ip /l redo limt test to discrimnate
I
11

try again

Figure4: Interruptible allocation sequencencluding limit check

ately beforestartingto useanareafor allocation(this canbe avoided
on thefirst useof demand-zerpages).We obsenedthis to be better
than zeroingimmediatelyafter GC or uponeachallocation. This is
particularlylikely to be true on a multiprocessowhere one proces-
sordoesthe GC work, sinceit notonly removesthezeroingfrom the
critical pathof allocatingandusingobjects,but alsooverlapsthe ze-
roing with otherwork, ratherthan simply moving it to anothertime
and gaining economyof scaleby doingit in bulk. Bulk zeroingis
a potentialperformanceadwantageof linear allocationover free-list
technique$.

4.2.2 AvoidingLodk Overhead:Canthe OSHelp?

The generalstratgy we proposefor avoiding lock overheadon allo-
cationhasbeendonebefore: provide an separatallocationareafor
eachprocessarandlock only whena processos areafills up andit
needsanotherdarge chunkfrom a global pool. This eliminatespossi-
ble interferencdrom otherprocessorsBut anothemtomicityproblem
remains:atomicity with respecto threadsun by the sameprocessar

Whatwe desireis this: if we receve atime-sliceinterrupt,atany
point in the allocationsequenceto be able to switch threads,have
the new threadperformallocationfrom the sameallocationarea,and
whenwe switch backeitherfor the interruptedallocationto be ok or
to have failed detectablysothatwe canretry it.

TheOSsupportwe would like is simple: afterataskswitch,before
resumingtheinterruptedask,seta pair of predicateregistersindicat-
ing thatataskswitchhasoccurred.

6Thisraisesanadditionalpoint: allocatingobjectsin thestackhasdif-
ferentzeroingcost,too, soit is notobviousthatallocatingin thestack
is fasterthanlinearallocationanda well-tunedgarbagecollector

The code sequencen Figure 3 exploits this feature,keepingthe
allocationpointerin a register This register’s value is propagated
from threadto thread(within the sameQOS process)vhenwe thread
switch on the sameprocessqgmwhich, from the threads point of view,
meangheallocationpointercan“jump” atary time.

To understandhis code sequencéetter considerthe effect of a
taskswitch (andresumption)at eachpossibldocation:

At t op (or before): The next threeinstructionsare not executed
(their predicatds false);we branchto r edo andstartover. Notethat
retry is fairly cheapwhich is why we do not startthe sequencevith
settingtheswf andswt predicategverytime.

After the nobv: Thereareno effectsvisible to otherthreadsand
sincewe retry, we overwritethe possiblystalevaluein np.

After the st 8: In this casewe have storedthe vtable pointerto
memory but ary allocationin athreadwe switchto will overwriteit,
andwe will retry andallocateelsevhere,or executethe storeagainin
the sameplace.

After theadd: Here,sincewe havechangedp, theallocationhas
effectively occurredasfar asotherthreadsareconcerned.However,
we cannotbump ap and checkthe task switch flag togetheratom-
ically, sowe will retry. The neteffect is to leave a garbageobject
behind—notquite as nice aswe would like, but not harmful except
perhapsto performance.With suitablegroupingof the instructions
into bundles this casecanbe madequite rare,perhapsmpossibleon
someimplementation®f the architecturd(i.e., they will notinterrupt
betweertheadd andbr).

After the br : We have committedthe sequence.

Figure4 shavs a similar sequencehatincludesa limit check;we
omit thereasoningasto the correctnessf interruptionat eachpoint,

(
store vtabl e pointer, bunp ap by sz
(as before; only if need limt check)
(

get address for new object
set conpare val ue register

check for crossing bl ock boundary;
al so checks BI G sizes, which flag

t he special cases
go handl e overfl ow and speci al cases

npl to [ap] if [ap] equals np
see if value read (tnp2) equals np
retry if cnpxchg failed

(sf) nov np = ap /1l (as before)
(sf) st8 [ap] = vt, sz I
(sf) cmp.le sf, st =ap, Ip [//
(st) br redo /'l (as before)
Figure5: Allocation using post-incrementingstore
/1 ap PO NTS TO the allocation pointer in nenory
/1 vt, sz, and np are as before
retry:
1d8 np = [ap] /1
nmov ar.ccv = np /1
add tnpl = np, sz /1 bunmp by size
xor tnp2 = tnmpl, np /1
shr tmp2 = tmp2, k I
cnp.eq PRO,pl = tnp2, RO //
(pl) br check-for-gc /1
cnpxchg8. acq tnp2 = [ap], tmpl, ar.ccv
/| exchange, iting t
cnp.eq PRO,pl = np,tnmp2 //
(pl) br retry I
st8 [np] = vt /1

proceed to set up object

Figure 6: Allocation using compare-and-exchange

11
/1
/1
I
111

shr.u ry = obj, k
add rx = obj, f

obj holds a reference to the object nodified
f is the offset of the field being updated

p is the reference being stored

ct holds the virtual base of the card table:

/ the location that would hold the mark for the card at address O
/1 formcard index (k is a constant)

/1 formfield address

/ form address of card byte

add ry =ct, ry /
st8 [rx] =p /] store the pointer
stl [ry] = GRO /

/| store the constant 0 in the entry

Figure 7: Pointer storewith card marking

sincethe argumentis very similar to the previous sequence.

Both sequencesan be improved if the size of the new objectis
known atcodegeneratiortime andwill fit in the 9-bit signedimmedi-
atefield of apost-incrementingtoreinstruction,asshavn in Figure5.

Somethingelseto keepin mind concerningthe atomicity of these
sequenceis that,while thereis nothingin theinstructionsetarchitec-
ture specificationndicatingthe groupsof instructionsthat will actu-
ally be executedconcurrently specificimplementationsnightin fact
happenrto exhibit strongeratomicity, i.e., thatinterruptswill nothap-
penat certainplacesbecausenultiple instructionsare eitherall exe-
cutedor none,just becausef the way the pipelines,instructionissu-
ing, etc.,work.

Anothertechniquewe usein allocationis worth mentioning:if an
objecthasspecialallocationrequirementse.g.,an alignmentrestric-
tion, finalization,or weakpointerpropertiesye setahigh orderbit of
the sizeinformationin the class—theword calledsz in the codese-
quencesAdding suchasizewill violatethelimit, andthussendusto
the“slow path”. In this way we getvery fastinline allocationfor the
commoncasewith theresthandledoy asubroutine This helpsmain-
tain separatiorof responsibilityamongtheclassloader(which creates
sizeinformation),theJIT, andthe GC. It alsoremovestheneedfor the
JIT to generatallocationcodefor thesemorecomplex cases.

The notion of possibly abandoningan allocatedobject, avoiding
morecostly interlockingfor atomicity in allocation,is new. Shivers,
etal., [11] offer a good surwey of atomicallocationtechniqueshput
they focuson list pairs, ratherthan objectsof differentsizes,which

needavtablepointerstoredfor the GC to beableto interpretthem.

4.2.3 AlternativeApproach to Allocation

An ohviousalternatve approactthatdoesnotrequirenew OSsupport
is to usean atomicinstruction. The obvious candidates fetch-and-
add, but it allows only certainsmall andfixed increments. Thuswe
offer in Figure6 asequencéasedon compare-andse&hange.n this
caseweusealimit testbasedngoingpasttheendof analignedblock
of size2X bytes.

Thissequenceouldbeshorteneabit if cmpxchg wereavailable
for registeroperandsThevirtue of our previously proposedsequence
is thatit is faster sinceit hasfewer andcheapememoryoperations.

4.3 Write Barriers

Many garbagecollectorsemplay write barriers to detectwhenuser
codecreatesa pointerfrom oneregion to another In particular gen-
erationalcollectorsusewrite barriersto detectthecreationof pointers
from olderto youngergenerationsOneform of write barrieris card
marking[12], in which oneassociatesvith eachaligned2 byte re-
gion (calleda card) a markindicatingwhetherary objectstartingin
that region hasexperienceda pointer store. Figure 7 shavs a code
sequencéor cardmarkingonthelA-64.

This sequencas not in itself particularly subtle,thoughthereis
flexibility in schedulingthe st 8 instructionlaterif that producesa
betterschedule.However, we obsenre that this sequencenarksthe
cardcorrespondindo the addresf the object’s header not the ad-

(px)

(pnz)

bj holds a reference to the object nodified

is the offset of the field being updated

is the reference being stored; mis a mask of k | ow order ones
(it’s constant, but too big for an i medi ate)

is the sequential store buffer pointer

add rx = obj, f // formfield address

andcmry p, m /1 round p down to start of block
st8 [rx] =p /] store the pointer
I
I

11
11
/1
Iy
/1

0
f
p
/
s

cnp. It px, py conpare source and target addresses
st8 [s] = rx, store rx to SSB, increment s by 8

obj, ry

oo Il

Figure 8: Addressorder write barrier, with sequentialstore buffer

hol ds the reference to check
/] test bit O of obj
/l call read barrier if

/1 obj
tbit.nz pnz, PRO = obj,0

br.call rp = rdbarrier it'’s 1

Figure 9: Examplereadbarrier sequence

/1 obj holds the reference to check

1d8.s vt = [obj]
tbit.nz pnz, PRO = obj,0
br.call rp = rdbarrier
chk.s vt, redo

t est

(pnz) cal |

join:

~———
~~

redo: 1d8 vt = [obj] /'l n
br join /111 obj
I

start spec load of vtable word
bit 0 of obj

read barrier if
check if

it's 1
| oad wor ked

on-specul ative | oad, done when
is ok but
anot her reason,

| d8.s failed for
e.g., TLB miss

Figure 10: Readbarrier with interleaved speculative load

dressof the updatedslot, assuggestedby Holzle [6]. The sequence
of thefigurecompriseghreeinstructiongroups consistingof thefirst
two instruction,thenthe next two, andfinally the lastinstruction. A
sequencehat doescard markingbasedon the slot addresswill have
moregroups becausé mustdo furthercalculationgdependenonthe
resultr y, andthusmaytake morecyclesto execute.

Thesequencéor anaddress-ordenrite barrier[13, 14] is perhaps
moreinteresting.In Figure8 we useablocksizeof 2%; we alsorecord
the interestingstoresusing a sequentialstore buffer [8], to illustrate
thatfeature.

This sequencéakesadwantageof the large registerset(dedicating
registersto hold the block maskm and the SSB pointer s), of the
large addressspace(in usingthe address-ordewrite barrier which,
thoughit canwork in smalleraddressspacesijs particularly suited
to large addressspaces)and of the predicatedexecutionand auto-
incrementaddressingnodefeaturesof the IA-64. This write barrier
is just aslong as the card marking one, and hasthe samenumber
of instructiongroups,but recordsthe actuallocationupdatedwhich
may speedup processingn the GC code(thoughit doesnot absorb
duplicateupdatesasnicely ascardmarkingdoes)’

Chilimbi andLarus[3] usedan SSBto log certainobjectaccesses,
to help reorderobjectsat GC time andimprove cacheperformance.
Again, the IA-64 malkesthis techniqueattractive, sinceit takesjust
oneinstructionandtherearelikely enoughregistersthat dedicating
oneto the SSBdoesnot hurt otherthings. Further the cachecon-
trol featuresof the IA-64 suggesusefulextensionsto Chilimbi and
Larus’s approachaddingprefetchingbothin applicationcodeandin
the GC.

“Our experiencewith benchmarkss thatduplicatesarerare, though
it is trivial to write a programthatupdateshe sameslotsmary times.

4.4 ReadBarriers

Somegarbagecollectorsusereadbarriers to detectaccesseto cer

tain objects(called nodemarking[7]), or via certainpointers(edge
marking, which is what we considerhere. Readbarriersare also
usefulin supportingpersistenceto detectaccesseto objectsnotcur-

rently resident. Sincethe IA-64 is byte-addressedndsinceobjects
will naturally be alignedon 8-byte boundariesnormal objectrefer

enceswill have thelow threebits zero,sowe canuseoneof thoseto

markthe interestingreferencesThe 1A-64 cantestthe bit, andthen
branch(or executeothercodepredicaten thetest),quite efficiently,

asshown in Figure9.

This codesequencavill tendto executewith minimal delay(e.g.,
onepipelinetick betweerthe two instructions).Evenbetter onecan
startloadsvia obj befole this check,usinglA-64 speculatre loads,
which impliesminimal impacton thetiming of the normalcasecriti-
cal path.Figure10 givesa (trivial) illustrationof this.

Notethatafterthecall, eithervt wasloadedall right to begin with,
orther dbarri er routinefixedit up,orthel d8. s failedfor some
otherreasone.g., TLB miss. In the casewherethe addressshould
be ok but the | d8. s failed, we retry the load non-speculatiely, to
force handlingof soft faults(or reportingof hardones). In ary case
speculatiorcanhelphidethe costof areadbarrier

4.5 Object Scanning

During garbagecollectiononemustscanobjectsin the heap,in order
to procesgheir pointer fields and the targetsof thosepointers. We
foundthefollowing techniqueo produceefficientcode.We associate
with eachnon-arrayclassatablegiving theoffsetsof thepointerfields
for objectsof thatclass.We markthe endof thetablewith a 0 word.
This schemas undoubtedIlywell known, but to our knowledgeis not
in the literature. It is faster(astestedon the I1A-32) than scanning

/1 obj holds the reference to the object
/1 t points to the first table entry; off gets the offset
next: 1d4 off =[t], 4 / 32-bit offsets; bunp ptr, too
cnp. ne pgo, PRO = of f,GRO // check for end
add rfa = obj, off // formfield address
(pgo) Id rf = [rfa] /1 load field
. /] additional processing
/1 loop if nore
/1 fall through when done

b'r' next

Figure 11: Object scanningcodesequence

/1 obj holds the reference to the object; p will scan it
add p = obj, 8 /1 form address of size field
1d8 sz = [p], 8 /1 get size; bump p to first el enent
mv LC = sz /1 get size in the loop count reg
br test /1 branch to test at end of |oop
next: 1d8 elem= [p], 8 /1 fetch el ement and bunmp p
/1 additional processing
test: br.cloop next /1 decr LC and branch if not O

Figure 12: Scanningan array with a countedloop

a bit-vector indicating pointer and non-pointerfields for objectsof
eachclass.Our scanningcodelooks somethindik e whatis shawvn in
Figurell.

For handlingarraysof pointers,we canscanusinga countedioop
andthe LC (loop count)applicationregistetr asshowvn in Figure12.
(We couldusethesameapproacHor thefield offsettableif it happens
to runfaster)

4.6 Stackand RegisterTracing

For accuratésC oneneedsgo find exactlythoselocationsin thethread
stacksregistersglobals,andheapthatcontainpointers.We described
how to scanheapobjectsfor pointersin the previous section. The
generalapproachesnewould usefor finding pointersin stacksand
registersare the sameas for other architecturesand thereare soft-
ware corventions,particularly thosesupportingexceptionhandling,
thathelpin “decoding”thestacksoasto find individual stackframes.
On the other hand, determininghow to handleeachstackslot and
registeris a bit more subtle,becausef the IA-64’s predicationand
speculatiorfeatures.

Contmol speculation i.e., speculatie loads, presentghree cases.
First,theload mayhavefailed,leaving aNaT in theregister Second,
theload mayhave succeededyut reada valuethatthe programis not
goingto use,e.qg.,by speculatiely loadinga value off the endof an
array Thispresenta difficulty sincesuchvaluescanbearbitrary and
thusshouldnotbetreatedaspointersby the GC. Worse the predicate
determiningf thevaluewill beusedmaynotyethavebeencomputed.
Thethird caseis thattheload may have succeedeth loadinga value
thatwill beused(andthusis type safe).

Oneway to handlespeculatiely loadedvaluesis to make the load
to appearto have failed, andthus not needto handlethe value that
may have beenloaded.The JIT shouldthereforeproducetablesfrom
which the GC can determinewhich registerscontain speculatiely
loadedvaluesthat might possiblybe pointers. The GC will thenset
the NaT bits for thoseregisters,andwhenthe threadis resumedei-
therthe valuewill never be usedor the threads checkswill redothe
loadsasnecessaryThethreadwill thereforeseethe new valuesthe
GC may have producedasit moved objectsin the heap.

Data speculationi.e., advancedloads. Again, the issuingthread
checkstheseandit is concernedvith possiblealiasingby storesbe-
tweentheadwancedoadandthe check. Threadswitchinginvalidates

adwancedoadinformation(the ALAT), sooneneednotconsidether
threadgexceptperhaponamultiprocessarbut thatraisesmary con-
curreny issuesdeyondthe ALAT). If runningGConthesamethread,
it is correct(andeasiestsimply to invalidatethe ALAT.

Predicationencourageacodegeneratiorstylein whichif-thenand
if-then-elsecodeis producedvithoutbrancheshaving theconditional
code predicated. Such predicatedcode would then be interleaved,
with thethen-clausénstructionamixedin with theelse-claus@nstruc-
tions, but only thoseinstructionscorrespondingo the properclause
actuallyexecuted.Now supposehaton onebranchof anif-then-else
aparticularregistercontainsa pointer andon the otherbrancha non-
pointervalue. It is clearthat the GC must consultthe predicateto
determinewhetherthe register containsa pointer sincethe program
countervaluecannottell uswhich clauseis beingexecuted.

This kind of situationwasanticipatedoy Diwan, Moss,andHud-
son[4], but they foundit to beveryrarein their code , whereador the
IA-64 it may be more common. This leadsto a style of associating
apredicateegisterwith eachgenerakegister indicatingwhetherthat
generalregister containsa pointer We canusePROin the uncondi-
tional case.(We alsoneeda “sense”,i.e., whetherhaving the PR be
true meansthat the GR holds a pointer or meansthat the GR holds
a non-pointer) Note thatin thesecaseghereis no overheadin the
mutator sincethe predicateis alreadybeingused. Note further that
usuallythe samepredicatecanbe associatedvith morethanoneGR.

This associatiorof predicateregisterswith generalregistersto in-
dicatewhich containpointervaluesleadsto a novel way of handling
the“j sr problem”[1]. In Jara, a typical way to generatecodefor
atry-finally blockisto emitthefi nal |y clauseasa local
subroutinecalledwith theJavaj sr bytecodeThisf i nal | y block
is calledfrom the normalcaseandthe exceptioncase andthosetwo
contets may usethe samelocal variable slot differently, one for a
pointerandthe otherfor a non-pointer If we usea predicateregis-
ter to distinguishthe normal and exceptioncasesthen our register
decodingmechanisnhandleg sr routinesnicely®

4.7 GC SafePoints

In mostgarbagecollectedsystemghereare pointsin the codewhere

8Since the number of predicateregistersis finite and nesting of
try-final |y blocksis notboundedthis schemenight (in princi-
ple, probablynotin practice)needanoverflov mechanism.

/] Thread T1

/1 v has the vtable val ue
/1 p has the object address
/1 g points to the gl obal
st8 [p] =V

st8.rel [g] =p

/] Thread T2

/1 g points to the gl obal

// p gets the object address

/1 v gets the vtable value

1 d8.acqg p = [9g] /| .acqnotrequired!
1d8 v = [p]

Figure 13: Object initialization / publication safetyexample

a GC is ok—andother pointswhereit is not, becausesomeimpor-
tant invariantis temporarily violated, e.g., betweena write and its
correspondingvrite barrier In the Intel JVM for the IA-64 we used
the sameapproachwe did for the IA-32: to producesuitableregister
andstackframemappingtablesfor essentiallyevery codepositionin
codegeneratedy the JIT compiler[15]. Native routinesthat might
lock or take a long time have associatedC tables.However, notall
routinescodedin C thatusereferencesave tables,so collectionis
disalloved when a threadis executingthere. We male write barri-
ersGC-atomicby performingthemin sucharoutine. We getthreads
into GC-safestateshy continuingandinterruptingthem,repeatingas
necessaryuntil they arein GC-safecode. The delay until we geta
threadto a GC-safepoint variesstatistically but the approactseems
towork well in practice.OnecouldalsohavetheGCinterpretforward
throughshortstylizedsequencessuchaswrite barriers.In ary case,
the GC-safe-almostaeerywhereapproachworksfine onthe IA-64.

We also consideredput did notimplement,a complementaryap-
proach: GC-safeonly at certainchosenspots. This also appeargo
be easyto supportonthe IA-64. (In fact,onecanusethe sametech-
nigue, but if the safespotsarerelatively rare, the expectednumber
of timesoneneedsto allow a threadto advancewill be large.) One
simply dedicatesa predicateregisterto indicatethata GC (or other
interruptionof normalcontrol)is desiredandplantsa predicatectall
or branchinstructionat eachsafespot. At first blushthis polling may
not seemattractve, but in practiceonelikely hasmary choicesof
whereto placethe polling instructionsandcanchooseo putthemin
otherwiseunusedslots. Also, sincethe predicatethey aretestingis
essentiallynever setin nearbycode,they do not involve datadepen-
denceghatreduceparallelism.

Notethatif athreadis executinga “foreign” codesubroutinej.e.,
codethat doesnot necessarilyobey the sameregister corventions,
etc.,thenratherthanusingapredicateegisterto signaltheneedfor an
interruptionof control,onemightusea (probablyperthread)memory
location, checled on the way out of the foreign code. This shavs
that polling via predicateregistersmustuselocal ratherthanglobal
registers,andthat one would thus needto manipulateeachthreads
registersetindependentlyversussettinga singleglobalvalue).

Thereare undoubtedlymary othertechniques.Our point hereis
thatfor thelA-64 it is morereasonabléo considerdedicatingaregis-
ter for thiskind of purpose.

4.8 Memory AccessOrdering Issues

In orderto achieve the besthardware implementationperformance,
mary modernmultiprocessorslonotguarante¢hatmemoryaccesses
becomeuvisible to other processorsn the sameorderthey are per
formedlocally. In thosecasesn which software algorithmsrequire
certainorderingsfor correctnesspne usesspecialinstructionsto en-
force the requiredordering. The IA-64 supportsthe acquire/release
model of ordering. A load acquire guaranteeshat its load appears
to happeratthememory(i.e., to otherprocessorspeforelatermem-
ory accesseby the sameprocessorastore releaseguaranteethatits
storeappeargo happerat the memoryafterearliermemoryaccesses
by the sameprocessar

While it is admittedlyhardto getusedto at first, orderingis quite

distinct from atomicity Atomic read-update-writ@perationsaffect
a singlememorylocation,and guaranteehat no otherreador write
happengo thatlocationin the middle. Acquire/releaseénstructions
enforceorderingwith respecto otherstoragdocationsin additionto
theoneaccessedyut do not of themselesguaranteatomicity.

An importantcasethathascomeupin discussiongboutJava con-
cernsinitializations of objects[10]. SupposehreadT1 allocatesan
object, initializing the vtable, andthen storesinto a global variable
theaddres®f thenew object.A little later, threadT2 readsheglobal
variable,obtainsthe addresof the new object,andreadsthe vtable
pointer We would like to insurethat T2 seesheright vtablepointer
value.Figure13 shavs codethatwill work.

It works becausehest 8. r el forcesthest 8 to occurfirst, the
| d8. acq forcesthel d8 to occurlater Thus,if thel d8. acq ob-
tainsthevaluestoredby thest 8. r el , thel d8 will obtainthevalue
storedby thest 8.

The possibleproblemhereis that orderedmemoryoperationscan
be slower. The caseof initialization is not necessarilythat bad. We
needa storereleaseonly whenstoringa pointerthatmight be readby
anotherthread.Thus,entirelylocal objectsdo notevenneedit. Since
the two storesare not otherwiserelated,we needthe storereleaseo
enforcethe orderingif the objectmay be accessedby otherthreads.
Sothisis thebestwe cando from T1's side.

T2’s sideis moreworrisome though,sinceit would seemto imply
that we needa load acquireevery time we load a pointerfrom the
heap,to an objectwhosefields we accessunlesswe can prove the
objectis private. However, unlike T1, T2's loadsarerelated the
| d8’saddresgin p) depend®n theresultof thel d8. acq. It turns
out that the 1A-64 will enforcean orderingon thesetwo particular
loadsevenif we usea non-acquiringoad. This is goodnews, since
loadacquiredforce orderingwith respecto all memoryaccessesjot
justthedependentneswhereasll we needhereis for thedependent
onesto beordered.

Therearetwo othercasesvherememoryacces®rderingis a par
ticularly prominentissue:locking, andvolatile variables. Theseare
bothhandledairly nicely onthelA-64. Whenlocking a (non-private)
object,oneusesanatomicoperationsuchascompare-and>xhange,
with an acquiretag to force acquireorderingsemantics.Onceone
hasthelock, oneusesordinaryloadsandstoresto accesghelocked
object’s (or objects’)fields,thenusesanothercompare-and>hange,
but with a releasetag to obtain releasesemantics. This guarantees
that all accesgo the locked object are suitably “bracketed” by the
lock/unlockoperationsFigure 14 shavs codefor this approach.

The code shavn in Figure 14 is for the commoncaseof a syn-
chronizationmplementatiorstrateyy known asthin locks[2]. In this
stratgy the commoncasegecordall relevantlock stateinformation
directly in thelock word. However, if otherthreadswait for thelock,
they enqueughemselesby changingthe lock stateto referto their
queueentries. To do that enqueuing,a threadlocks the lock word,
i.e.,it obtainsthemeta-lo&. Whenathreadobtainsthe meta-lock,no
otherthreadis allowed to changethe lock word until the meta-lock
is released.Thus,anst . r el instructioncanbe usedto releasehe
meta-locksincethelock word’s valuecannotchangewhile the meta-

/1 obj

holds a reference to a lock field

/1 cv has the expected current value of the field

/1 nv has the desired new val ue
nov ar.ccv = cv

cnpxchg8.acq tnp = [obj], nv,

prepare to conpare-and-exchange
ar.ccv

"l ock" cases

/1 access with ordinary | oads/stores

"unl ock" cases

cnp.eq PRO,pl = cv,tnp // see if value read is expected
(pl) br.call slow ock /1 handl e | ess conmon

nmov ar.ccv = nv now expect the "new' val ue

cnmpxchg8.rel tnmp2 = [obj], tnp, ar.ccv

cnp.eq PRO,pl = nv,tnmp2 // see if value read is expected
(pl) br.call slownlock /1 handl e | ess conmon

Figure 14: Codesequencdor Java synchronizedaccess

/1 obj holds a reference to a lock field

/1 cv has the expected current value of the field

/1 nv has the desired new val ue

nov ar.ccv = cV prepare to conpare-and- exchange
redo: cnpxchg8.acq tnmp = [obj], nv, ar.ccv

cnp.eq PRO,pl = cv,tnp /1l see if value read is expected
(pl) br redo /1 (one could add back off,

/1 here we hold the netal ock

etc.)

/11l we can change the lock info with ordinary | oads/stores

/1 end with nv hol di ng the "netal ock-rel eased" val ue

st8.rel [obj] = nv

Figure 15: Codesequencedor metalock usage

lock is held. We shaw thisin Figure15. Theflip sideof this protocol
is that releasingan ordinary lock requiresa compare-and»&hange
sincethelock word’s valuecanchangewhile thelock is held, e.g.,to

enqueuea threadthatis requestinghelock.

Javavolatile variablesneedto be readwith acquiresemanticand
written with releasesemanticsto enforce suitable memory order
ing. Furthermorepnlessthe Java memorymodelis revised,in order
to guaranteesequentiaktonsisteng of accesseto volatile variables,
storesto volatilesneedto be followed by memoryfenceinstructions
beforethenext readof avolatile by the samethread.

We obsenethatsomeotherarchitecturesffer onlyamemoryfence
to enforceordering,andthatit resultsn potentiallymuchgreateiover-
headthanthe acquire/releasmodel. The IA-64 propertythatdepen-
dentloadsareorderedmayimprove efficiency considerablyaswell.

5. MOST RELEVANT FEATURES AGAIN

Having sunweyedarangeof GC-relatedeaturesandcodesequences
we reconsidethe four mostrelevant|A-64 features.

Registers: We suggestedkeepingan allocation frontier pointer
andcorrespondindimit pointerin generalregisters,keepingan SSB
pointerin a generalregister keepingtask switch flagsin predicate
registers,andthatretaining(in generalregisters)basepointerscorre-
spondingto derived pointerswould notlikely be a problem.

Predication: We shaved how predicationhelpsin constructing
atomic sequencese.g., for allocation,and we also suggestedising
predicateregistersto help determinewhich generalregisterscontain
pointersat particularcodepoints.

Memory accesrdering: We shovedhow to usethe IA-64's ac-
quire/releasenodelto supportpublicationsafetyfairly cheaply and
describedhow it avoidsfull memoryfencesor mostsynchronizations
andaccessegexceptstoresto volatile variables).

Exploiting ILP: This topic deseresfurther discussion.The gen-

eral experiencein the communityis that object-oriented OO) code,
or atleastpointeroriented,code,which we take asbeinglargely cor
relatedwith useof GC, doesnot offer asmuchILP as(say)Fortran
arraycode.While theoptimizationtechniquegredifferentand(some
might amuelessmature)for OO code,the differencein ILP appears
alsoto be morefundamental:00 programsfollow chainsof depen-
dentpointers.The IA-64 doesnotdirectly “fix” this problem,though
predicatiorandspeculatiorhelp.

An appropriateguestionto askis: DoesinsertingGC-relatedcode
sequencemale thesituationworse?We considerthreeexamples.

First, we presentedwo samplewrite barriercodesequenceabore
(Figures7 and8). Eachconsistsof five instructionsin threeinstruc-
tion groups. Clearly, if the write barrieris in the vicinity of just the
right othercode, it canbe interleaved into that othercodes instruc-
tion groupsandmay not resultin ary slow down. If the othercode’s
groupshave no-opsthatthe write barriercanfill, thenonewould not
evenbeincreasinghesizeof thegroups.Evenif oneneededo make
thegroupdargeranduseotherbundletemplatesthenumberof clocks
neededo fetch,issue andexecutethecodemight not changethough
the slight increasen codesize mightimpactinstructionfetch band-
width andinstructioncachefootprint. How oftenandhow effectively
write barrierscanbe melgedwith surroundingcodeis aninteresting
guantitatve questionbeyondthe scopeof this paper

Seconds the cardmarkingwrite barrier As mentionecbeforewe
mark basedon the object headerratherthan the addresf the up-
datedslot. Sincethe slot addressnustbe calculatedrom the header
addressuysingtheslotaddressmpliesdelayingcalculationof thecard
to mark,which increaseshe numberof instructiongroups.

A third exampleis polling for rare conditions,suchasa request
for a GCin apolling implementatiorof GC safepoints. Onewould
insertpredicated(i.e., conditional)call instructions.In this casewe
canbeopportunisticandsearcHor no-opslotssuitablefor suchcalls.

Sincethereis no nearbysettingof the predicateregistertestedby the
instruiction, thereis no nearbydatadependeng so onecanimagine
implementationf the I1A-64 instructionsetarchitecturethat elimi-
natesuchconditionalbranchegarlyandwith nodisruptionto pipeline
flow. On the otherhand,the succeedingnstructionsare control de-
pendenton the conditionalbranchs not being taken, andthusthere
may be oneor morecyclesof delay dependingn theissuelogic and
pipeline design. While suchpolling instructionscan conceivablybe
essentially'free,” they may still have someoverhead.This overhead
mightbeminimizedif they areplacedattheendof instructiongroups,
which arelikely to incur adelayanyway.

We offer afinal obsenationaboutpipelineslots: otherpartsof sys-
temsbeyond the GC would like to useary “spare” slots. Examples
includelow overheadorofiling andassertiortesting.

6. SUMMARY AND CONCLUSION

Thelntel JavaVirtual Machinenow runsonengineeringampld A-64
hardware andsoftware. The GC is robustand supportsgenerational
copying GC, alarge objectspacethe Train Algorithm (matureobject
space),finalization, weak referencesthreads,and synchronization.
The JVM includesa JIT. We look forward to measuringhe system
and comparingimplementationstrateyies once productionsystems
becomeavailable, but our main point is that mostof the techniques
we have describedareimplementecandknown to work.

The contributions of this paperare asfollows. Most obviously,
we have illustratedhow various GC-relatedcodekernelsappearon
thelA-64, simplifying GC implementatiorfor compilerandrun-time
writers. We describedhowv GC can handlecode that exploits the
speculationfeaturesof the I1A-64. We devised a task-switchsignal
from the operatingsystemthat simplifies and speedsup atomic ob-
ject allocation—andchallengethe OS communityto supportit. We
recordedfor the literaturean objectscanningtechnique testedto be
fasterthanscanningpit vectors. We offer a new solutionto the Java
j sr problem,usinglA-64 predicateregistersand giving a uniform
solutionto modelingwhich registerscontainpointersfor GC. We de-
scribedhow to achieve publicationsafetyon the IA-64—cheaply

In our sunwy of techniquesandcodefragmentswe identifiedfour
featuresof the IA-64 asparticularlyrelevantto GC: the large regis-
ter setallows more GC-specifiatemsto residein dedicatedegisters;
predicationmalesit easierto constructatomicinstructionsequences
for objectallocation; acquire/releasesemanticsand orderingof de-
pendentloads give the prospectof better performanceor synchro-
nization primitives and publicationsafety; and instructiongrouping
and multi-way issuelikely provide significantopportunityto “hide”
theoverheadof GC-relatetbperationsuchaswrite barriers.

Our conclusionis, asour exampleshave shaovn, thatthe |A-64 pro-
videssuperiorcapabilitiesfor implementingGC.

Acknowledgments

Many membersf the Intel Java Virtual Machinegroupalsoworked
in theimplementationincludingMichal Cierniak,Jess&. Fang,An-
drew Hsieh, Guei-Yuan (Ken) Lueh, and TatianaShpeisman. The
anorymousreviews werehelpful.

7. REFERENCES

[1] O.AgesenD. Detlefs,andJ.E. B. Moss.Garbagecollection
andlocal variabletype-precisiorandlivenessn Java(TM)
virtual machineslin Proceeding®f SIGPLAN’98Confeence
on ProgrammingLanguayesDesignand Implementation
volume33 of ACM SIGPLANNOotices pages269-279,
Montreal,Québec,Canada,Junel998.ACM Press.

[2] D.F Bacon,R.Konuru,C. Murthy, andM. SerranoThin
locks: Featherweighsynchronizatiorior Jasa.In 1998ACM
SIGPLANConf on Prog. Lang DesignandImpl., pages
258-268Montreal,Quebec,Junel998.ACM Press.

[3] T. M. Chilimbi andJ.R. Larus.Usinggenerationagjarbage
collectionto implementcache-conscioudataplacementin
The1998InternationalSymposiunon MemoryManagement
Vancouer, BC, Oct.1998.

[4] A. Diwan,J.E.B. Moss,andR. L. Hudson.Compilersupport
for garbagecollectionin astaticallytypedlanguageln
Confeenceon ProgrammingLanguaye Designand
Implementationpage73—-282 SanFranciscoCalifornia,
Junel992.SIGPLAN,ACM Press.

[5] K. GharachorlooD. Lenoski,J.Laudon,P. GibbonsA. Gupta,
andJ. HennessyMemory consisteng andeventorderingin
scalableshared-memorynultiprocessordn Proceedingd 7th
AnnuallnternationalSymposiunon ComputerArchitecture,
pagesl5-26.ACM PressMay 1990.

[6] U. Hblzle.A fastwrite barrierfor generationagjarbage
collectors.In E. Moss,P. R. Wilson,andB. Zorn, editors,
OOPSLA/ECOOPI3 Workshopon Garbage Collectionin
Object-OrientedSystemsOct. 1993.

[7] A. L. Hosking.LightweightSupportfor Fine-Grained
Persistenceon Stok Hardware. PhDthesis,University of
Massachusetigt Amherst,MA 01003,Feh 1995.

[8] R.L.HudsonJ.E.B. Moss,A. Diwan,andC. F. Weight.A
language-independegarbagecollectortoolkit. COINS
TechnicalReport91-47,University of Massachusettg&ymherst,
Sept.1991.

[9] Intel CorporationThelA-64 Architectue: Softwae
Developers Manual SantaClara,CA, Jan.2000.URL:
http://developerintel.com/design/ia-64/manuals/.

[10] W. Pugh.Fixing the Java memorymodel.In Java’99:
Proceeding®f the 1999ACM Confeenceon JavaGrande
pages89-98,SanFranciscoCA, Junel999.ACM Press.

[11] O. Shiers,J.W. Clark,andR. McGrath.Atomic heap
transactiongndfine-graininterrupts.In Proceeding®f the
1999ACM InternationalConfeenceon Functional
Programming(ICFP), Paris, France Sept.1999.

[12] P. G. Sobaharro.A lifetime-basedyarbagecollectorfor LISP
systemon general-purposeomputers1988.B.S. Thesis,
Dept.of EECS,Massachusettsistituteof Technology
Cambridge.

[13] D. Stefanovic. Propertiesof Age-BasedAutomaticMemory
ReclamatiomAlgorithms PhDthesis,University of
Massachusett®ymherst,MA, Feh 1999.

[14] D. stefanovit, K. S.McKinley, andJ.E. B. Moss.Age-based
garbagecollection.In Proc. 1999ACM SIGPLANConf on
Object-OrientedP’rogrammingSystemd,.anguaes&
Applications(OOPSLA99), Denver, Colorado,Novemberl-5,
1999 pages379-381ACM, Nov. 1999.

[15] J.M. Stichnoth,G.-Y. Lueh,andM. Cierniak.Supportfor
garbagecollectionat every instruction.In Proceeding®f the
ACM SIGPLAN'99 Confeenceon ProgrammingLanguae
DesignandImplementatior{PLDI), pagesl18-127 May 1999.

