
Cycles to Recycle: Garbage Collection on the IA-64

Richard L. Hudson
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052-8119

Rick.Hudson@intel.com

J. Eliot B. Moss
Dept. of Computer Science

Univ. of Massachusetts
Amherst, MA 01003-4610

moss@cs.umass.edu

Sreenivas Subramoney
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052-8119

Sreenivas.Subramoney@intel.com

Weldon Washburn
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052-8119

Weldon.Washburn@intel.com

ABSTRACT
The IA-64, Intel’s 64-bit instructionsetarchitecture,exhibits a num-
berof interestingarchitecturalfeatures.Herewe considerthosefea-
turesas they relateto supportinggarbagecollection (GC). We aim
to assistGC andcompilerimplementorsby describinghow onemay
exploit featuresof the IA-64. Along theway, we recordsomeprevi-
ously unpublishedobjectscanningtechniques,andoffer novel ones
for objectallocation(suggestingsomesimpleoperatingsystemsup-
port that would simplify it) and the Java “jsr problem”. We also
discussorderingof memoryaccessesandhow theIA-64 canachieve
publicationsafetyefficiently. While our focus is not on any partic-
ular GC implementationor programminglanguage,we draw on our
experiencedesigningandimplementingGC for theIntel Java Virtual
Machinefor theIA-64.

1. INTRODUCTION
Intel’s new 64-bit instructionsetarchitecture(ISA), theIA-64, intro-
ducesanumberof interestingarchitecturalfeatures.Wehavebeenin-
volved in designingandimplementingthememorymanagementand
garbagecollection(GC) portionsof Intel’s Java (TM)1 Virtual Ma-
chine (JVM) for the IA-64, and have therebygainedexperiencein
how the IA-64’s featuresrelateto GC. We hopethis paperwill help
other GC implementorsas they tackle designing,implementing,or
portingfor theIA-64. Wehaveimplementedonearlyengineeringand
sampleversionsof the Itanium (TM)2 processorhardware most of
the techniqueswe describe,andthe currentsystemrunswell-known
benchmarks,onesmodelingserversaswell asclients.

We proceedby first describingthe featuresof the IA-64 that we
believe to berelevantfor GCandmemorymanagement.Notethatfor
themostpartwe keepthediscussionat thelevel of theinstructionset
architecture,ratherthanconsideringany particularimplementationof
it, suchas the Itanium processor. We next point out the few IA-64
featuresthatappearto bemostsignificantwith respectto GC. Given
the backgroundof IA-64 features,we considera numberof topics
relatedto GC andmemorymanagement,andfor eachtopic consider

1Java is a trademarkof SunMicrosystems,Inc.
2Itaniumis a trademarkof Intel Corporation.

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
ISMM 2000Minneapolis,MN USA
Copyright 2000ACM 0-89791-88-6/97/05..$5.00

implicationsof the IA-64 featureset for the implementationof that
topic. Weclosewith furtherdiscussionof themostsignificantfeatures
in light of themoredetailedGC implementationtopics.

2. FEATURES OF THE IA-64 ISA
Hereis a descriptionof theaspectsof the IA-64 relevant to memory
management.A referencework is availablefor the interestedreader
[9].

Data types: The IA-64 directly manipulates8, 16, 32, and64 bit
signedandunsignedintegerquantities,aswell asfloatingpoint num-
bers,etc.

General registers(GR): Thereare128generalpurpose64-bit reg-
isters.GR0is hard-wiredto thevalue0. Thereis aseparatefile of 128
floatingpoint registers,andupto 128morespecialpurpose(“applica-
tion”) registers.

Predicateregisters(PR): Ratherthanhaving a singlesetof “con-
dition code”registers,theIA-64 has64 1-bit predicateregisters;PR0
is hard-wiredto 1 (true). Comparisonsandothertestsgenerallypro-
duceresultsinto two namedpredicateregisters.Every instructionhas
a6-bit predicatefield, andis executedonly if thecorrespondingpred-
icate register contains1.3 This is called predication, and it allows
shortif-then andif-then-elsesequencesto executeefficiently without
conditionalbranches.

Addr essspace: Addressesare64 bits andcanaddressindividual
8-bit bytes,aswell as16,32,and64bit integerquantities,andseveral
floatingpointsizesupto 128bits. Accessesshouldbealignedfor best
performance.TheIA-64 supportsa comprehensive varietyof paging
andprotectionfeatures,including multiple pagessizesfrom 4Kb to
256Mb.

Registerstack: Thegeneralregistersaredividedinto a staticsub-
set(GRs0–31)anda stackedsubset(32–127).Thestackedregisters
operatesuchthat eachstackframein a program’s call stackhasup
to 96 GRs. A frameallocationinstruction,generallyexecutednear
thebeginningof eachprocedure,indicatesthenumberof registersto
usefor theprocedure’s local variablesandfor its argumentsto proce-
duresit calls. This is similar to the“registerwindow” mechanismof
someotherprocessors,but operateswith finer granularity. The load-
ing/storingof overflowing/underflowing registersis normallycarried
out by a hardwareRegisterStackEngineratherthantrapsto software
fault handlers.Only theGRsarestacked(not thePRs,etc.),andonly
the first 32 GRs are static, so only they can be usedfor dedicated
purposes.

Addr essingmodes:Computationon theIA-64 is mostly register-
to-register, andoneusesexplicit loadsandstoresto accessmemory
(but with automatedstoringandloadingof someregistersvia thereg-
isterstackmechanism).Theonly memoryaddressingmodeis register

3Actually, a few instructionscannotbe predicated,i.e., executionof
thoseinstructionsignoresthepredicateregister’svalue.

indirect: thereis nobaseregisterplusoffsetor baseregisterplusindex
register

�
form, andall addressarithmeticis explicit.4 Thearchitecture

hastheability to adda14-bit immediatevalue,to adda22-bit immedi-
atevalue(with restrictionsonthesourceregister),andto loada64-bit
immediate(usingtwo instructionslots),with a singleinstruction.

Register conventions: Software conventionsfurther restrict the
numberof registersavailable for dedicateduse. The availablegen-
eral registersareGR4–GR7(preserved,i.e., callee-save) andGR14–
GR31(scratch,i.e.,caller-save). Of thepredicateregisters,PR1–PR5
are preserved and PR6–PR15are scratch. Branchregister BR0 re-
ceivesreturnaddresseson calls, while BR1–BR5arepreserved and
BR6–BR7arescratch.

Instruction format: Instructionsaregroupedinto bundles. Each
128-bit bundlecontains3 41-bit instructionslots plus 5 bits of for-
mat informationgiving the bundle’s template, namelywhat kind of
instructionis in eachslot. Not all combinationsof instructionsare
allowedin a singlebundle(giving riseto someinterestinginstruction
schedulingissues).The templatebits alsoindicateinstructiongroup
boundarieswherea laterinstructionmayhavea resourcedependence
on anearlierinstruction(e.g.,consumeits result). Instructiongroups
may be arbitrarily long, crossingbundle boundaries,or as short as
oneinstruction. The essenceof the model is that instructionsin the
samegroupmight executeconcurrently, exploiting whatever degree
of instruction-level parallelismis offeredby theprocessorimplemen-
tation. Branchesarealwaysto thefirst instructionof a bundle,but a
taken branchdoesnot executethe remaininginstructionsof its own
bundle.

Integer instructions available: Integer/logicalregisterto register
instructionsinclude:add,subtract,and,andwith complement,or, ex-
clusive or, shift left andshift right (by fixedor variablecount,signed
or unsignedfor shift right), shift left (by 1, 2, 3, or 4 bits) andadd,
compare(lessthan,lessthanunsigned,equal,not equal)5 with vari-
ouswaysof combiningtheresultinto two predicateregisters,testbit
(fixed bit position),shift right pair by a fixed count (which canim-
plementrotation),bit field extractionandinsertion(fixedpositionand
size),populationcount(numberof 1 bits in a register),andcompute
zero index (the position of the first all 0 8-bit byte or 16-bit word,
from eitherthe left or theright endof a 64-bit register). Thefloating
point unit implementsfixedpointmultiply andreciprocalapproxima-
tion (i.e., the integer unit doesnot supportmultiply or divide). The
architecturesupportsvariousmovesbetweenregistersof thedifferent
kinds,etc.

Memory—Contr ol speculation: Control speculationis thespec-
ulative executionof instructionsthat may not be reachedin the true
flow of control (e.g., hoisting codeup out of an if-then-else). The
IA-64 supportsspeculativeloads, which do not causea fault if they
encounteraproblem.Rather, theregistertargetof theloadis specially
marked.GRsaremarkedwith a65thbit calledtheNaT(Not aThing)
bit, andFRswith a specialIEEE floatingpoint value,NaTVal. Most
computationalinstructionsset the NaT bit of their target registersif
the NaT of any input register is 1. If an instructionsetssomething
otherthanaGRor FRandhasaNaTinput,thentheinstructionfaults.
Generally, onechecksfor NaTsexplicitly with a specialconditional
branchinstruction. It would normallybranchto codethatwould ex-
ecutethe load(s)and following computation,but non-speculatively.
The registerstackmechanismandregisterspill/fill instructionshan-
dlesNaTsnaturally.

Memory—Data speculation: A compiler cannotalways prove

4The registerindirect form supportsoptionalpost-incrementationof
the baseregisterby eithera signed9-bit immediateconstantor (for
loadsonly) thecontentsof anotherGR.
5Comparisonsproduceresultsinto two predicateregisters,sooneob-
tainstheoppositesenseby switchingthetwo registers.

that a given load andstoreaccessdifferentmemorylocations,yet it
may be always,or almostalways, true that a later load doesnot ac-
cessthesamelocationasanearlierstore.Dataspeculationconsistsin
movingsuchaloadinstructionearlierthanthestore(perhapsto reduce
stallswhile waiting for theload’sresultsfrom memory),but somehow
checkingthat thestoredid not in factupdatethe locationreadby the
advancedload. The IA-64 supportsdataspeculationwith advanced
loadinstructions,anAdvancedLoadAddressTable(ALAT), andad-
vancedload checks. The advancedload instructionentersits load
addressinto the ALAT, which hassomesmall fixed size. All stores
checktheALAT, andif they find a matchingentry, they invalidateit.
Theadvancedloadcheck,which is generallyinsertedwheretheorigi-
nal loadinstructionwas(i.e.,beforeit wasadvanced),verifiesthatthe
advancedload’s entry is still in theALAT. Onekind of checksimply
re-executestheloadif thereis nomatchingALAT entry;anotherkind
branchesto recovery code,andcanre-loadandre-doany additional
calculationsdependingon theloadedvalue.

Onemay combinecontrol anddataspeculationusingspeculative
advancedloadinstructions.

Memory—Hierar chy Control: In theIA-64 therearethreeways
to controlmemoryhierarchyactions:locality hints,explicit prefetch-
ing, andimplicit prefetching.Locality hints indicatewhethera load,
store,or line fetch instruction’s datais (a) temporallylocal (keepin
level 1 cache),(b) non-temporalat level 1 (but keepin level 2), (c)
non-temporalat level 2 (andnon-temporalat level 1, sokeepin level
3), or (d) non-temporalat all cachelevels. The line fetch instruction
hasfaultingandnon-faultingversions,andwith thehintscanloaddata
into specificlevels of cache.Thereis a separatehint to indicatethat
a loadedvalue is likely to be updated(i.e., in a multiprocessorone
shouldacquireexclusiveaccessto thecacheline, etc.).

Memory—Atomic Update: TheIA-64 supportsthreeatomicread-
update-writememoryoperations:exchange,compare-and-exchange
(sometimescalledcompare-and-swap),andfetch-and-add.

Memory—AccessOrdering: While a processor’s own dataref-
erencesobey read-after-write, write-after-read,andwrite-after-write
orderingswith respectto the orderof instructionsin the instruction
stream,readsandwritesmaybeperceivedby otherprocessorsin dif-
ferentorders. Whererelative orderingof accessesto different loca-
tions is important,loads,stores,andatomicupdateinstructionsmay
specifyadditionalorderingrestrictions.In particular, the IA-64 sup-
portsacquire/releaseorderingsemantics[5] with optionalacquirese-
manticson loads,releasesemanticson stores,andacquireor release
on atomicupdates;it alsooffersamemoryfenceinstruction.

3. MOST RELEVANT FEATURES
We identify four featuresof theIA-64 of greatestrelevanceto GC:

Many general registers: Thereareenoughgeneralpurposereg-
istersthat it is reasonable,at leastmoreso thanon many otherpro-
cessors,to dedicateseveral to specialpurposesfor GC, suchas an
allocationpointer. We will seeseveral instanceswherewe advocate
dedicatinggeneralpurposeor predicateregistersto specificfunctions.

Predication: Predicationmakes it easyto conditionalizea group
of instructionswithout branching.We canexploit it to build atomic
instructionsequencesin waysnot possiblewithoutpredication.

Acquir e/releasememory ordering: Somearchitectures,suchas
theSunSPARC (runningwith Total StoreOrder),orderall storeson
multiprocessors;otherssuchas the CompaqAlpha, allow muchre-
orderingof loadsandstores,andoffer only a strict memoryfenceto
forceorderingwhenit is required.TheIA-64’s acquire/releaseoffers
the bestof both models: it allows muchreorderingfor efficiency in
multiprocessormemoryhardwarewhile imposinglessoverheadthan
fenceswhen somedegreeof orderingis necessary. We exploit the
acquire/releasemodel in implementingJava synchronizationand in

add rba = 8, ro // ro = obj base, rba gets bounds address
add rfe = 16, ro // rfe = address of first element
ld8 rb = [rba] // rb gets bound
shladd ra = ri, 3, rfe // ra (element address) gets (ri << 3) + rfe
cmp.ltu pt, pf = ri, rb // compare index ri against bound

// the less-than-unsigned test checks whether 0 <= ri < rb
// pt == 1 iff the test is true, and pf == NOT pt

(pt) ld8 res = [ra] // load the 8-byte element (if pt is true)
(pf) br throwexception // throw out-of-bounds exception (if pf is true)

Figure1: Examplecodefor array indexing

add rfa = 20, ro // ro = obj base, rfa gets field address
ld4 rf = [rfa] // load a 4-byte field, offset 20
sxt4 rf = rf // sign extend from 4 to 8 bytes

Figure2: Examplecodefor object field access

achieving publicationsafety.
Exploiting instruction level parallelism (ILP): This concernis

commonalsoto VLIW andsuperscalarmachines,but is nevertheless
deservingof discussion.For example,a GC implementormight hope
thatsomeoperations,suchasGC write barriers,might have small in-
crementaloverheadin thatthey fill otherwise“empty” pipelineslots.
Wewill reconsiderthis issueafterwehavepresentedexampleinstruc-
tion sequences.

4. SUPPORTING GC ACTIONS
We begin with a seriesof topicsdirectly relatedto GC andmemory
management,andlatercover thememoryaccessorderingfeaturesof
the IA-64 relevant to memorysemanticsissuessuchas publication
safety, locking, andvolatile variables.A point we do no discuss
further is thatonemaymoreeasilymanagea 64-bit addressspacein
creative waysthanonecana 32-bit addressspace.

4.1 AccessingFields and Dispatching
Themain thing to notehereis that,giventheIA-64’s singleregister-
indirect memoryaddressingmode,objectreferencesshouldpoint to
the most commonlyaccessedword of an object. This most likely
is the virtual function table pointer. Other fields may be accessed
equallyconvenientlyat positive andnegative offsetsfrom the object
base,exceptarraysarebestlaid out at positive offsets.Theshift-left-
and-addinstructionis convenientfor arrayaccessesif theelementsize
is 2, 4, 8, or 16 bytes. Figure1 givesan exampleJava arrayaccess
codesequence;we make no claim of optimality! Note that someof
thevalues,suchastheboundrb andtheaddressof thefirst element
rfe, might be kept in registersfor repeateduse; it is goodthat the
IA-64 offersplentyof registers!

The first columnindicatesthe predicateregisterusedto predicate
executionof an instruction; if there is no register mentioned,then
it meansto usePR0, which is always 1 (true). Ratherthan condi-
tionalizing the load of the element,one could usean unconditional
speculative load,which would allow the load to beplacedbefore the
boundscheck,which might improve instructionscheduling,depend-
ing on thesurroundingcode.In eithercaseanIA-64 feature(predica-
tion or speculation)is useful. Clearly therearemany possiblevaria-
tions,andobtaininggoodschedulesdependsonspecificsof processor
implementationaswell assurroundingcode.

A 4-bytesignedinteger field accessmight look asin Figure2. It
couldbehelpful to managean “interior” pointer, adjustingit at each
field load, using the base-register-updateaddressingmode,so as to
point to thenext field needed.

A significantimplication for GC is that it is desirableto support
interior pointers(pointersthat do not point directly to the baseof
anobject). Diwan,et al., exploredissuesin supportingsuchderived
pointers [4]. A derivedpointeris a functionof somenumberof base
pointersanda fixed or variableinteger offset, suchthat onecanre-
covertheoffsetgiventhederivedpointerandall thebasepointers.An
interior pointerpointsto a field within anobject,andis a specialcase
of a derivedpointerconstructedfrom a singlebasepointerby adding
theoffset.

A GC strategy Diwan,et al., proposedis: beforeGC, convert de-
rivedpointersto offsetsfrom correspondingbasepointers;duringGC,
relocatethe basepointersasnecessary;afterGC, convert the offsets
backto possiblyrelocatedderivedpointers.A niceeffectof thisstrat-
egy is that it shieldsthemajority of theGC codefrom interior point-
ers.Thestrategy requiresthateachderivedpointerhaveanassociated
basepointer, which thecompilermustkeepavailablesomewherefor
the GC. Given the numberof registerson the IA-64, the occasional
retentionof additionalbasepointervaluesis lessof a problemthanit
might beon otherarchitectures.

Summary: Field accesssequenceswill typically be quite short,
with minimumpossiblememoryaccesses.Theabsenceof a register-
offsetaddressingmodemeansthat,comparedwith otherarchitectures,
we needto do moreaddressarithmeticaddson theIA-64. However,
oneshouldnotethatan IA-64 add-then-loadwill likely executewith
delaycomparableto a register-offsetaddressingmodeon anotherar-
chitecture,sincebothmustdo theaddsomewhere.Further, theIA-64
sometimesavoidstheadd,or folds it into anupdateaddressingmode
on anearlierloador store,andthusmaystartsomeaccessessooner.
The add doesrequirean extra instructionslot, but early experience
with object-orientedcodesuggeststhat it will take very aggressive
compileroptimizationto fill slotstightly. In additionto performance
considerations,theIA-64 styleof addressingsuggeststhataJVM will
needto manageinteriorpointers.

4.2 Object Allocation
Therearethreeissueswe considerrelatedto objectallocation: how
to avoid lock overheadonallocationin systemssupportingconcurrent
threads;how to zeroallocatedmemory;andvisibility of initializing
writeson multiprocessors.Thelatter issuewe deferto thesectionon
memoryaccessordering.

4.2.1 ZeroingMemory
Zeroingmemoryis easyto dealwith: our experienceto date(albeit
mostlyundertheIA-32 architecture)is thatit is bestto zeroallocation
areasin bulk, usingsuppliedlibrary routines(e.g.,memset), immedi-

// swt and swf are predicate registers, always holding opposite values
//// swt means a task switch and resumption have happened
//// swt and swf are thread-local
// ap is the allocation pointer
// vt is the new object’s vtable pointer value
// sz is the new object’s size in bytes
// np receives the address of the new object

top:
(swf) mov np = ap // indicate address of new object
(swf) st8 [ap] = vt // store vtable pointer
(swf) add ap = ap, sz // bump allocation pointer
(swt) br redo // task switched, so retry whole sequence

....
redo: // reset pred regs

cmp.eq swf, swt = r0, r0 // set swf true, swt false
br top // try again

Figure 3: Example interruptible atomic allocation sequence

// st, sf, ap, vt, sz, and np are as before
// lp is the limit pointer

top:
(swf) mov np = ap // indicate address of new object
(swf) st8 [ap] = vt // store vtable pointer
(swf) add ap = ap, sz // bump allocation pointer
(swf) cmp.le swf, swt = ap, lp // merge limit test result into swf, swt
(swt) br redo // task switched or past limit

....
redo:

cmp.eq swf, swt = r0, r0 // set swf true, swt false
cmp.le 0, pgt = ap, lp // redo limit test to discriminate

(pgt) br.call rp = gc // call gc
br top // try again

Figure4: Interruptible allocation sequenceincluding limit check

atelybeforestartingto useanareafor allocation(this canbeavoided
on thefirst useof demand-zeropages).We observedthis to bebetter
thanzeroingimmediatelyafter GC or uponeachallocation. This is
particularly likely to be true on a multiprocessorwhereoneproces-
sordoestheGC work, sinceit not only removesthezeroingfrom the
critical pathof allocatingandusingobjects,but alsooverlapstheze-
roing with otherwork, ratherthansimply moving it to anothertime
and gainingeconomyof scaleby doing it in bulk. Bulk zeroingis
a potentialperformanceadvantageof linear allocationover free-list
techniques.6

4.2.2 AvoidingLock Overhead:CantheOSHelp?
Thegeneralstrategy we proposefor avoiding lock overheadon allo-
cationhasbeendonebefore: provide an separateallocationareafor
eachprocessor, andlock only whena processor’s areafills up andit
needsanotherlargechunkfrom a globalpool. This eliminatespossi-
bleinterferencefrom otherprocessors.But anotheratomicityproblem
remains:atomicitywith respectto threadsrun by thesameprocessor.

Whatwe desireis this: if we receive a time-sliceinterrupt,at any
point in the allocationsequence,to be able to switch threads,have
thenew threadperformallocationfrom thesameallocationarea,and
whenwe switchbackeitherfor the interruptedallocationto beok or
to have faileddetectably, sothatwecanretry it.

TheOSsupportwewould like is simple:afterataskswitch,before
resumingtheinterruptedtask,seta pair of predicateregistersindicat-
ing thata taskswitchhasoccurred.

6Thisraisesanadditionalpoint: allocatingobjectsin thestackhasdif-
ferentzeroingcost,too,soit is notobviousthatallocatingin thestack
is fasterthanlinearallocationanda well-tunedgarbagecollector.

The codesequencein Figure 3 exploits this feature,keepingthe
allocationpointer in a register. This register’s value is propagated
from threadto thread(within the sameOS process)whenwe thread
switchon thesameprocessor, which, from thethread’s pointof view,
meanstheallocationpointercan“jump” atany time.

To understandthis codesequencebetter, considerthe effect of a
taskswitch(andresumption)ateachpossiblelocation:

At top (or before): The next threeinstructionsarenot executed
(their predicateis false);we branchto redo andstartover. Notethat
retry is fairly cheap,which is why we do not startthesequencewith
settingtheswf andswt predicatesevery time.

After the mov: Thereareno effectsvisible to otherthreads,and
sinceweretry, we overwritethepossiblystalevaluein np.

After the st8: In this casewe have storedthe vtablepointer to
memory, but any allocationin a threadwe switchto will overwriteit,
andwe will retry andallocateelsewhere,or executethestoreagainin
thesameplace.

After theadd: Here,sincewehavechangedap, theallocationhas
effectively occurredasfar asotherthreadsareconcerned.However,
we cannotbump ap and checkthe task switch flag togetheratom-
ically, so we will retry. The net effect is to leave a garbageobject
behind—notquite asnice aswe would like, but not harmful except
perhapsto performance.With suitablegroupingof the instructions
into bundles,this casecanbemadequiterare,perhapsimpossibleon
someimplementationsof thearchitecture(i.e., they will not interrupt
betweentheadd andbr).

After the br: We havecommittedthesequence.
Figure4 shows a similar sequencethat includesa limit check;we

omit thereasoningasto thecorrectnessof interruptionat eachpoint,

(sf) mov np = ap // (as before)
(sf) st8 [ap] = vt, sz // store vtable pointer, bump ap by sz
(sf) cmp.le sf, st = ap, lp // (as before; only if need limit check)
(st) br redo // (as before)

Figure5: Allocation usingpost-incrementingstore

// ap POINTS TO the allocation pointer in memory
// vt, sz, and np are as before

retry:
ld8 np = [ap] // get address for new object
mov ar.ccv = np // set compare value register
add tmp1 = np, sz // bump by size
xor tmp2 = tmp1, np // check for crossing block boundary;
shr tmp2 = tmp2, k // also checks BIG sizes, which flag
cmp.eq PR0,p1 = tmp2,R0 // ... the special cases

(p1) br check-for-gc // go handle overflow and special cases
cmpxchg8.acq tmp2 = [ap], tmp1, ar.ccv

// exchange, writing tmp1 to [ap] if [ap] equals np
cmp.eq PR0,p1 = np,tmp2 // see if value read (tmp2) equals np

(p1) br retry // retry if cmpxchg failed
st8 [np] = vt // proceed to set up object

Figure6: Allocation using compare-and-exchange

// obj holds a reference to the object modified
// f is the offset of the field being updated
// p is the reference being stored
// ct holds the virtual base of the card table:
//// the location that would hold the mark for the card at address 0
shr.u ry = obj, k // form card index (k is a constant)
add rx = obj, f // form field address
add ry = ct, ry // form address of card byte
st8 [rx] = p // store the pointer
st1 [ry] = GR0 // store the constant 0 in the entry

Figure7: Pointer storewith card marking

sincetheargumentis very similar to theprevioussequence.
Both sequencescan be improved if the size of the new object is

known atcodegenerationtimeandwill fit in the9-bit signedimmedi-
atefield of apost-incrementingstoreinstruction,asshown in Figure5.

Somethingelseto keepin mind concerningtheatomicityof these
sequencesis that,while thereis nothingin theinstructionsetarchitec-
turespecificationindicatingthegroupsof instructionsthatwill actu-
ally beexecutedconcurrently, specificimplementationsmight in fact
happento exhibit strongeratomicity, i.e., thatinterruptswill not hap-
penat certainplacesbecausemultiple instructionsareeitherall exe-
cutedor none,just becauseof theway thepipelines,instructionissu-
ing, etc.,work.

Anothertechniquewe usein allocationis worth mentioning:if an
objecthasspecialallocationrequirements,e.g.,analignmentrestric-
tion, finalization,or weakpointerproperties,wesetahighorderbit of
thesizeinformationin theclass—theword calledsz in thecodese-
quences.Addingsuchasizewill violatethelimit, andthussendusto
the“slow path”. In this way we getvery fastinline allocationfor the
commoncase,with theresthandledby asubroutine.Thishelpsmain-
tainseparationof responsibilityamongtheclassloader(whichcreates
sizeinformation),theJIT, andtheGC.It alsoremovestheneedfor the
JIT to generateallocationcodefor thesemorecomplex cases.

The notion of possiblyabandoningan allocatedobject, avoiding
morecostly interlockingfor atomicity in allocation,is new. Shivers,
et al., [11] offer a goodsurvey of atomicallocationtechniques,but
they focuson list pairs, ratherthanobjectsof differentsizes,which

needavtablepointerstoredfor theGC to beableto interpretthem.

4.2.3 AlternativeApproach to Allocation
An obviousalternativeapproachthatdoesnot requirenew OSsupport
is to usean atomic instruction. The obvious candidateis fetch-and-
add,but it allows only certainsmall andfixed increments.Thuswe
offer in Figure6 a sequencebasedon compare-and-exchange.In this
caseweusealimit testbasedongoingpasttheendof analignedblock
of size2k bytes.

Thissequencecouldbeshortenedabit if cmpxchg wereavailable
for registeroperands.Thevirtueof ourpreviouslyproposedsequence
is thatit is faster, sinceit hasfewer andcheapermemoryoperations.

4.3 Write Barriers
Many garbagecollectorsemploy write barriers to detectwhenuser
codecreatesa pointerfrom oneregion to another. In particular, gen-
erationalcollectorsusewrite barriersto detectthecreationof pointers
from older to youngergenerations.Oneform of write barrieris card
marking [12], in which oneassociateswith eachaligned2k byte re-
gion (calleda card) a mark indicatingwhetherany objectstartingin
that region hasexperienceda pointerstore. Figure7 shows a code
sequencefor cardmarkingon theIA-64.

This sequenceis not in itself particularly subtle, thoughthereis
flexibility in schedulingthest8 instructionlater if that producesa
betterschedule.However, we observe that this sequencemarksthe
cardcorrespondingto the addressof the object’s header, not the ad-

// obj holds a reference to the object modified
// f is the offset of the field being updated
// p is the reference being stored; m is a mask of k low-order ones
//// (it’s constant, but too big for an immediate)
// s is the sequential store buffer pointer
add rx = obj, f // form field address
andcm ry = p, m // round p down to start of block
st8 [rx] = p // store the pointer
cmp.lt px, py = obj, ry // compare source and target addresses

(px) st8 [s] = rx, 8 // store rx to SSB, increment s by 8

Figure8: Addr essorder write barrier , with sequentialstorebuffer

// obj holds the reference to check
tbit.nz pnz,PR0 = obj,0 // test bit 0 of obj

(pnz) br.call rp = rdbarrier // call read barrier if it’s 1

Figure9: Example readbarrier sequence

// obj holds the reference to check
ld8.s vt = [obj] // start spec load of vtable word
tbit.nz pnz,PR0 = obj,0 // test bit 0 of obj

(pnz) br.call rp = rdbarrier // call read barrier if it’s 1
chk.s vt, redo // check if load worked

join: ...

redo: ld8 vt = [obj] // non-speculative load, done when
br join //// obj is ok but ld8.s failed for

//// another reason, e.g., TLB miss

Figure10: Readbarrier with interleavedspeculative load

dressof the updatedslot, assuggestedby Hölzle [6]. The sequence
of thefigurecomprisesthreeinstructiongroups,consistingof thefirst
two instruction,thenthenext two, andfinally the last instruction. A
sequencethat doescardmarkingbasedon theslot addresswill have
moregroups,becauseit mustdofurthercalculationsdependentonthe
resultry, andthusmaytake morecyclesto execute.

Thesequencefor anaddress-orderwrite barrier[13, 14] is perhaps
moreinteresting.In Figure8 weuseablocksizeof 2k; wealsorecord
the interestingstoresusinga sequentialstore buffer [8], to illustrate
thatfeature.

This sequencetakesadvantageof the largeregisterset(dedicating
registersto hold the block maskm and the SSB pointers), of the
large addressspace(in usingthe address-orderwrite barrier, which,
thoughit can work in smalleraddressspaces,is particularly suited
to large addressspaces),and of the predicatedexecutionand auto-
incrementaddressingmodefeaturesof the IA-64. This write barrier
is just as long as the card marking one, and hasthe samenumber
of instructiongroups,but recordsthe actuallocationupdated,which
may speedup processingin the GC code(thoughit doesnot absorb
duplicateupdatesasnicelyascardmarkingdoes).7

Chilimbi andLarus[3] usedanSSBto log certainobjectaccesses,
to help reorderobjectsat GC time andimprove cacheperformance.
Again, the IA-64 makesthis techniqueattractive, sinceit takes just
one instructionandthereare likely enoughregistersthat dedicating
one to the SSB doesnot hurt other things. Further, the cachecon-
trol featuresof the IA-64 suggestusefulextensionsto Chilimbi and
Larus’s approach,addingprefetchingboth in applicationcodeandin
theGC.

7Our experiencewith benchmarksis that duplicatesarerare,though
it is trivial to write aprogramthatupdatesthesameslotsmany times.

4.4 ReadBarriers
Somegarbagecollectorsusereadbarriers to detectaccessesto cer-
tain objects(callednodemarking [7]), or via certainpointers(edge
marking), which is what we considerhere. Readbarriersare also
usefulin supportingpersistence,to detectaccessesto objectsnotcur-
rently resident.Sincethe IA-64 is byte-addressed,andsinceobjects
will naturallybe alignedon 8-byteboundaries,normalobject refer-
enceswill have thelow threebits zero,sowe canuseoneof thoseto
mark the interestingreferences.The IA-64 cantestthebit, andthen
branch(or executeothercodepredicatedon thetest),quiteefficiently,
asshown in Figure9.

This codesequencewill tendto executewith minimal delay(e.g.,
onepipelinetick betweenthetwo instructions).Evenbetter, onecan
startloadsvia obj before this check,usingIA-64 speculative loads,
which impliesminimal impacton thetiming of thenormalcasecriti-
cal path.Figure10 givesa (trivial) illustrationof this.

Notethatafterthecall, eithervt wasloadedall right to begin with,
or therdbarrier routinefixedit up,or theld8.s failedfor some
other reason,e.g.,TLB miss. In the casewherethe addressshould
be ok but theld8.s failed, we retry the load non-speculatively, to
forcehandlingof soft faults(or reportingof hardones). In any case
speculationcanhelphidethecostof a readbarrier.

4.5 Object Scanning
During garbagecollectiononemustscanobjectsin theheap,in order
to processtheir pointerfields and the targetsof thosepointers. We
foundthefollowing techniqueto produceefficientcode.Weassociate
with eachnon-arrayclassatablegiving theoffsetsof thepointerfields
for objectsof thatclass.We marktheendof thetablewith a 0 word.
This schemeis undoubtedlywell known, but to our knowledgeis not
in the literature. It is faster(as testedon the IA-32) than scanning

// obj holds the reference to the object
// t points to the first table entry; off gets the offset

next: ld4 off = [t], 4 // 32-bit offsets; bump ptr, too
cmp.ne pgo,PR0 = off,GR0 // check for end
add rfa = obj, off // form field address

(pgo) ld rf = [rfa] // load field
(pgo) ... // additional processing
(pgo) br next // loop if more

// fall through when done

Figure11: Object scanningcodesequence

// obj holds the reference to the object; p will scan it
add p = obj, 8 // form address of size field
ld8 sz = [p], 8 // get size; bump p to first element
mov LC = sz // get size in the loop count reg
br test // branch to test at end of loop

next: ld8 elem = [p], 8 // fetch element and bump p
... // additional processing

test: br.cloop next // decr LC and branch if not 0

Figure12: Scanningan array with a countedloop

a bit-vector indicating pointer and non-pointerfields for objectsof
eachclass.Our scanningcodelookssomethinglike whatis shown in
Figure11.

For handlingarraysof pointers,we canscanusinga countedloop
andtheLC (loop count)applicationregister, asshown in Figure12.
(Wecouldusethesameapproachfor thefield offsettableif it happens
to run faster.)

4.6 Stackand RegisterTracing
For accurateGConeneedsto find exactlythoselocationsin thethread
stacks,registers,globals,andheapthatcontainpointers.Wedescribed
how to scanheapobjectsfor pointersin the previous section. The
generalapproachesonewould usefor finding pointersin stacksand
registersare the sameas for other architectures,and therearesoft-
ware conventions,particularly thosesupportingexceptionhandling,
thathelpin “decoding”thestacksoasto find individualstackframes.
On the other hand,determininghow to handleeachstackslot and
register is a bit moresubtle,becauseof the IA-64’s predicationand
speculationfeatures.

Control speculation, i.e., speculative loads,presentsthreecases.
First, theloadmayhave failed,leaving a NaT in theregister. Second,
theloadmayhavesucceeded,but reada valuethattheprogramis not
going to use,e.g.,by speculatively loadinga valueoff the endof an
array. Thispresentsadifficulty sincesuchvaluescanbearbitrary, and
thusshouldnotbetreatedaspointersby theGC.Worse,thepredicate
determiningif thevaluewill beusedmaynotyethavebeencomputed.
Thethird caseis thattheloadmayhave succeededin loadinga value
thatwill beused(andthusis typesafe).

Oneway to handlespeculatively loadedvaluesis to make theload
to appearto have failed, andthusnot needto handlethe value that
mayhave beenloaded.TheJIT shouldthereforeproducetablesfrom
which the GC can determinewhich registerscontainspeculatively
loadedvaluesthat might possiblybe pointers.The GC will thenset
the NaT bits for thoseregisters,andwhenthe threadis resumed,ei-
ther thevaluewill never beusedor the thread’s checkswill redothe
loadsasnecessary. The threadwill thereforeseethe new valuesthe
GC mayhaveproducedasit movedobjectsin theheap.

Data speculation, i.e., advancedloads. Again, the issuingthread
checksthese,andit is concernedwith possiblealiasingby storesbe-
tweentheadvancedloadandthecheck.Threadswitchinginvalidates

advancedloadinformation(theALAT), sooneneednotconsiderother
threads(exceptperhapsonamultiprocessor, but thatraisesmany con-
currency issuesbeyondtheALAT). If runningGConthesamethread,
it is correct(andeasiest)simply to invalidatetheALAT.

Predicationencouragesacodegenerationstylein whichif-thenand
if-then-elsecodeis producedwithoutbranches,having theconditional
codepredicated. Suchpredicatedcodewould then be interleaved,
with thethen-clauseinstructionsmixedin with theelse-clauseinstruc-
tions, but only thoseinstructionscorrespondingto the properclause
actuallyexecuted.Now supposethaton onebranchof anif-then-else
a particularregistercontainsa pointer, andon theotherbrancha non-
pointer value. It is clear that the GC must consultthe predicateto
determinewhetherthe registercontainsa pointer, sincethe program
countervaluecannottell uswhichclauseis beingexecuted.

This kind of situationwasanticipatedby Diwan,Moss,andHud-
son[4], but they foundit to bevery rarein their code,whereasfor the
IA-64 it may be morecommon. This leadsto a style of associating
apredicateregisterwith eachgeneralregister, indicatingwhetherthat
generalregistercontainsa pointer. We canusePR0in the uncondi-
tional case.(We alsoneeda “sense”,i.e., whetherhaving thePR be
true meansthat the GR holdsa pointeror meansthat the GR holds
a non-pointer.) Note that in thesecasesthereis no overheadin the
mutator, sincethe predicateis alreadybeingused. Note further that
usuallythesamepredicatecanbeassociatedwith morethanoneGR.

This associationof predicateregisterswith generalregistersto in-
dicatewhich containpointervaluesleadsto a novel way of handling
the “jsr problem” [1]. In Java, a typical way to generatecodefor
a try-finally block is to emit thefinally clauseasa local
subroutine,calledwith theJavajsr bytecode.Thisfinally block
is calledfrom thenormalcaseandtheexceptioncase,andthosetwo
contexts may usethe samelocal variableslot differently, one for a
pointerandthe otherfor a non-pointer. If we usea predicateregis-
ter to distinguishthe normal and exceptioncases,then our register
decodingmechanismhandlesjsr routinesnicely.8

4.7 GC SafePoints
In mostgarbagecollectedsystemstherearepointsin thecodewhere

8Since the number of predicateregisters is finite and nesting of
try-finally blocksis not bounded,thisschememight (in princi-
ple,probablynot in practice)needanoverflow mechanism.

// Thread T1 // Thread T2
// v has the vtable value // g points to the global
// p has the object address // p gets the object address
// g points to the global // v gets the vtable value
st8 [p] = v ld8.acq p = [g] // .acqnot required!
st8.rel [g] = p ld8 v = [p]

Figure 13: Object initialization / publication safetyexample

a GC is ok—andotherpointswhereit is not, becausesomeimpor-
tant invariant is temporarilyviolated, e.g., betweena write and its
correspondingwrite barrier. In the Intel JVM for the IA-64 we used
thesameapproachwe did for theIA-32: to producesuitableregister
andstackframemappingtablesfor essentiallyevery codepositionin
codegeneratedby the JIT compiler[15]. Native routinesthat might
lock or take a long time have associatedGC tables.However, not all
routinescodedin C that usereferenceshave tables,so collection is
disallowed whena threadis executingthere. We make write barri-
ersGC-atomicby performingthemin sucha routine.We getthreads
into GC-safestatesby continuingandinterruptingthem,repeatingas
necessary, until they are in GC-safecode. The delayuntil we get a
threadto a GC-safepoint variesstatistically, but theapproachseems
to work well in practice.OnecouldalsohavetheGCinterpretforward
throughshortstylizedsequences,suchaswrite barriers.In any case,
theGC-safe-almost-everywhereapproachworksfine on theIA-64.

We alsoconsidered,but did not implement,a complementaryap-
proach: GC-safeonly at certainchosenspots. This alsoappearsto
beeasyto supporton theIA-64. (In fact,onecanusethesametech-
nique,but if the safespotsare relatively rare, the expectednumber
of timesoneneedsto allow a threadto advancewill be large.) One
simply dedicatesa predicateregister to indicatethat a GC (or other
interruptionof normalcontrol)is desired,andplantsa predicatedcall
or branchinstructionat eachsafespot.At first blushthispolling may
not seemattractive, but in practiceone likely hasmany choicesof
whereto placethepolling instructions,andcanchooseto put themin
otherwiseunusedslots. Also, sincethe predicatethey aretestingis
essentiallynever setin nearbycode,they do not involve datadepen-
dencesthatreduceparallelism.

Note that if a threadis executinga “foreign” codesubroutine,i.e.,
code that doesnot necessarilyobey the sameregister conventions,
etc.,thenratherthanusingapredicateregisterto signaltheneedfor an
interruptionof control,onemightusea(probablyper-thread)memory
location, checked on the way out of the foreign code. This shows
that polling via predicateregistersmustuselocal ratherthanglobal
registers,andthat onewould thusneedto manipulateeachthread’s
registersetindependently(versussettinga singleglobalvalue).

Thereareundoubtedlymany other techniques.Our point hereis
thatfor theIA-64 it is morereasonableto considerdedicatingaregis-
ter for thiskind of purpose.

4.8 Memory AccessOrdering Issues
In order to achieve the besthardware implementationperformance,
many modernmultiprocessorsdonotguaranteethatmemoryaccesses
becomevisible to other processorsin the sameorder they are per-
formedlocally. In thosecasesin which softwarealgorithmsrequire
certainorderingsfor correctness,oneusesspecialinstructionsto en-
force the requiredordering. The IA-64 supportsthe acquire/release
modelof ordering. A load acquire guaranteesthat its load appears
to happenat thememory(i.e., to otherprocessors)beforelatermem-
ory accessesby thesameprocessor;astore releaseguaranteesthatits
storeappearsto happenat thememoryafterearliermemoryaccesses
by thesameprocessor.

While it is admittedlyhardto getusedto at first, orderingis quite

distinct from atomicity. Atomic read-update-writeoperationsaffect
a singlememorylocation,andguaranteethat no otherreador write
happensto that location in the middle. Acquire/releaseinstructions
enforceorderingwith respectto otherstoragelocationsin additionto
theoneaccessed,but do notof themselvesguaranteeatomicity.

An importantcasethathascomeup in discussionsaboutJava con-
cernsinitializationsof objects[10]. SupposethreadT1 allocatesan
object, initializing the vtable,and thenstoresinto a global variable
theaddressof thenew object.A little later, threadT2 readstheglobal
variable,obtainsthe addressof the new object,andreadsthe vtable
pointer. We would like to insurethatT2 seestheright vtablepointer
value.Figure13 shows codethatwill work.

It works becausethest8.rel forcesthest8 to occurfirst, the
ld8.acq forcestheld8 to occurlater. Thus,if theld8.acq ob-
tainsthevaluestoredby thest8.rel, theld8 will obtainthevalue
storedby thest8.

Thepossibleproblemhereis thatorderedmemoryoperationscan
be slower. The caseof initialization is not necessarilythat bad. We
needa storereleaseonly whenstoringapointerthatmightbereadby
anotherthread.Thus,entirelylocal objectsdo not evenneedit. Since
the two storesarenot otherwiserelated,we needthestorereleaseto
enforcethe orderingif the objectmay be accessedby otherthreads.
Sothis is thebestwecando from T1’s side.

T2’s sideis moreworrisome,though,sinceit would seemto imply
that we needa load acquireevery time we load a pointer from the
heap,to an objectwhosefields we access,unlesswe canprove the
object is private. However, unlike T1, T2’s loadsare related: the
ld8’s address(in p) dependson theresultof theld8.acq. It turns
out that the IA-64 will enforcean orderingon thesetwo particular
loadseven if we usea non-acquiringload. This is goodnews, since
loadacquiresforceorderingwith respectto all memoryaccesses,not
just thedependentones,whereasall weneedhereis for thedependent
onesto beordered.

Therearetwo othercaseswherememoryaccessorderingis a par-
ticularly prominentissue: locking, andvolatile variables.Theseare
bothhandledfairly nicelyontheIA-64. Whenlockinga(non-private)
object,oneusesanatomicoperation,suchascompare-and-exchange,
with an acquiretag to force acquireorderingsemantics.Onceone
hasthe lock, oneusesordinaryloadsandstoresto accessthe locked
object’s(or objects’)fields,thenusesanothercompare-and-exchange,
but with a releasetag to obtain releasesemantics.This guarantees
that all accessto the locked object are suitably “bracketed” by the
lock/unlockoperations.Figure14 showscodefor thisapproach.

The codeshown in Figure 14 is for the commoncaseof a syn-
chronizationimplementationstrategy known asthin locks [2]. In this
strategy the commoncasesrecordall relevant lock stateinformation
directly in thelock word. However, if otherthreadswait for thelock,
they enqueuethemselvesby changingthe lock stateto refer to their
queueentries. To do that enqueuing,a threadlocks the lock word,
i.e., it obtainsthemeta-lock. Whena threadobtainsthemeta-lock,no
other threadis allowed to changethe lock word until the meta-lock
is released.Thus,anst.rel instructioncanbeusedto releasethe
meta-locksincethelock word’s valuecannotchangewhile themeta-

// obj holds a reference to a lock field
// cv has the expected current value of the field
// nv has the desired new value
mov ar.ccv = cv prepare to compare-and-exchange
cmpxchg8.acq tmp = [obj], nv, ar.ccv
cmp.eq PR0,p1 = cv,tmp // see if value read is expected

(p1) br.call slowlock // handle less common "lock" cases
... // access with ordinary loads/stores
mov ar.ccv = nv now expect the "new" value
cmpxchg8.rel tmp2 = [obj], tmp, ar.ccv
cmp.eq PR0,p1 = nv,tmp2 // see if value read is expected

(p1) br.call slowunlock // handle less common "unlock" cases

Figure14: Codesequencefor Java synchronizedaccess

// obj holds a reference to a lock field
// cv has the expected current value of the field
// nv has the desired new value
mov ar.ccv = cv prepare to compare-and-exchange

redo: cmpxchg8.acq tmp = [obj], nv, ar.ccv
cmp.eq PR0,p1 = cv,tmp // see if value read is expected

(p1) br redo // (one could add back off, etc.)
// here we hold the metalock
//// we can change the lock info with ordinary loads/stores
...
// end with nv holding the "metalock-released" value
st8.rel [obj] = nv

Figure15: Codesequencefor metalock usage

lock is held. We show this in Figure15. Theflip sideof this protocol
is that releasingan ordinary lock requiresa compare-and-exchange
sincethelock word’s valuecanchangewhile thelock is held,e.g.,to
enqueuea threadthatis requestingthelock.

Java volatile variablesneedto bereadwith acquiresemanticsand
written with releasesemantics,to enforcesuitablememory order-
ing. Furthermore,unlesstheJava memorymodelis revised,in order
to guaranteesequentialconsistency of accessesto volatile variables,
storesto volatilesneedto be followedby memoryfenceinstructions
beforethenext readof a volatileby thesamethread.

Weobservethatsomeotherarchitecturesoffer onlyamemoryfence
to enforceordering,andthatit resultsin potentiallymuchgreaterover-
headthantheacquire/releasemodel. TheIA-64 propertythatdepen-
dentloadsareorderedmayimproveefficiency considerablyaswell.

5. MOST RELEVANT FEATURES AGAIN
Having surveyeda rangeof GC-relatedfeaturesandcodesequences,
we reconsiderthefour mostrelevantIA-64 features.

Registers: We suggestedkeepingan allocation frontier pointer
andcorrespondinglimit pointerin generalregisters,keepinganSSB
pointer in a generalregister, keepingtask switch flags in predicate
registers,andthat retaining(in generalregisters)basepointerscorre-
spondingto derivedpointerswould not likely bea problem.

Predication: We showed how predicationhelps in constructing
atomic sequences,e.g., for allocation,and we also suggestedusing
predicateregistersto help determinewhich generalregisterscontain
pointersatparticularcodepoints.

Memory accessordering: We showedhow to usetheIA-64’s ac-
quire/releasemodel to supportpublicationsafetyfairly cheaply, and
describedhow it avoidsfull memoryfencesfor mostsynchronizations
andaccesses(exceptstoresto volatilevariables).

Exploiting ILP: This topic deservesfurtherdiscussion.Thegen-

eral experiencein the communityis that object-oriented(OO) code,
or at leastpointer-oriented,code,which we take asbeinglargelycor-
relatedwith useof GC, doesnot offer asmuchILP as(say)Fortran
arraycode.While theoptimizationtechniquesaredifferentand(some
might arguelessmature)for OO code,thedifferencein ILP appears
alsoto be morefundamental:OO programsfollow chainsof depen-
dentpointers.TheIA-64 doesnot directly “fix” this problem,though
predicationandspeculationhelp.

An appropriatequestionto askis: DoesinsertingGC-relatedcode
sequencesmake thesituationworse?We considerthreeexamples.

First,we presentedtwo samplewrite barriercodesequencesabove
(Figures7 and8). Eachconsistsof five instructionsin threeinstruc-
tion groups.Clearly, if the write barrier is in the vicinity of just the
right othercode,it canbe interleaved into that othercode’s instruc-
tion groupsandmaynot resultin any slow down. If theothercode’s
groupshave no-opsthatthewrite barriercanfill, thenonewould not
evenbeincreasingthesizeof thegroups.Evenif oneneededto make
thegroupslargeranduseotherbundletemplates,thenumberof clocks
neededto fetch,issue,andexecutethecodemightnotchange,though
the slight increasein codesizemight impactinstructionfetch band-
width andinstructioncachefootprint. How oftenandhow effectively
write barrierscanbemergedwith surroundingcodeis an interesting
quantitativequestionbeyondthescopeof thispaper.

Secondis thecardmarkingwrite barrier. As mentionedbeforewe
mark basedon the object headerratherthan the addressof the up-
datedslot. Sincetheslot addressmustbecalculatedfrom theheader
address,usingtheslotaddressimpliesdelayingcalculationof thecard
to mark,which increasesthenumberof instructiongroups.

A third exampleis polling for rare conditions,suchas a request
for a GC in a polling implementationof GC safepoints. Onewould
insertpredicated(i.e., conditional)call instructions.In this case,we
canbeopportunisticandsearchfor no-opslotssuitablefor suchcalls.

Sincethereis no nearbysettingof thepredicateregistertestedby the
instruction,� thereis no nearbydatadependency, so onecanimagine
implementationsof the IA-64 instructionsetarchitecturethat elimi-
natesuchconditionalbranchesearlyandwith nodisruptiontopipeline
flow. On the otherhand,the succeedinginstructionsare control de-
pendenton the conditionalbranch’s not being taken, andthusthere
maybeoneor morecyclesof delay, dependingon theissuelogic and
pipelinedesign. While suchpolling instructionscanconceivablybe
essentially“free,” they maystill have someoverhead.This overhead
mightbeminimizedif they areplacedattheendof instructiongroups,
which arelikely to incur adelayanyway.

Weoffer afinal observationaboutpipelineslots:otherpartsof sys-
temsbeyond the GC would like to useany “spare” slots. Examples
includelow overheadprofiling andassertiontesting.

6. SUMMARY AND CONCLUSION
TheIntel JavaVirtualMachinenow runsonengineeringsampleIA-64
hardwareandsoftware. The GC is robustandsupportsgenerational
copying GC,a largeobjectspace,theTrain Algorithm (matureobject
space),finalization, weak references,threads,and synchronization.
The JVM includesa JIT. We look forward to measuringthe system
and comparingimplementationstrategies once productionsystems
becomeavailable,but our main point is that mostof the techniques
we havedescribedareimplementedandknown to work.

The contributions of this paperare as follows. Most obviously,
we have illustratedhow variousGC-relatedcodekernelsappearon
theIA-64, simplifying GCimplementationfor compilerandrun-time
writers. We describedhow GC can handlecode that exploits the
speculationfeaturesof the IA-64. We devised a task-switchsignal
from the operatingsystemthat simplifiesandspeedsup atomicob-
ject allocation—andchallengethe OS communityto supportit. We
recordedfor the literaturean objectscanningtechnique,testedto be
fasterthanscanningbit vectors.We offer a new solutionto theJava
jsr problem,usingIA-64 predicateregistersandgiving a uniform
solutionto modelingwhich registerscontainpointersfor GC.We de-
scribedhow to achieve publicationsafetyon theIA-64—cheaply.

In our survey of techniquesandcodefragmentswe identifiedfour
featuresof the IA-64 asparticularlyrelevant to GC: the large regis-
ter setallows moreGC-specificitemsto residein dedicatedregisters;
predicationmakesit easierto constructatomicinstructionsequences
for object allocation; acquire/releasesemanticsand orderingof de-
pendentloadsgive the prospectof betterperformancefor synchro-
nizationprimitives andpublicationsafety;and instructiongrouping
andmulti-way issuelikely provide significantopportunityto “hide”
theoverheadof GC-relatedoperationssuchaswrite barriers.

Ourconclusionis, asourexampleshaveshown, thattheIA-64 pro-
videssuperiorcapabilitiesfor implementingGC.

Acknowledgments
Many membersof the Intel Java Virtual Machinegroupalsoworked
in theimplementation,includingMichal Cierniak,JesseZ. Fang,An-
drew Hsieh, Guei-Yuan (Ken) Lueh, and TatianaShpeisman.The
anonymousreviews werehelpful.

7. REFERENCES
[1] O. Agesen,D. Detlefs,andJ.E. B. Moss.Garbagecollection

andlocalvariabletype-precisionandlivenessin Java(TM)
virtual machines.In Proceedingsof SIGPLAN’98Conference
on ProgrammingLanguagesDesignandImplementation,
volume33 of ACM SIGPLANNotices, pages269–279,
Montreal,Québec,Canada,June1998.ACM Press.

[2] D. F. Bacon,R. Konuru,C. Murthy, andM. Serrano.Thin
locks: Featherweightsynchronizationfor Java.In 1998ACM
SIGPLANConf. on Prog. Lang. DesignandImpl., pages
258–268,Montreal,Quebec,June1998.ACM Press.

[3] T. M. Chilimbi andJ.R. Larus.Usinggenerationalgarbage
collectionto implementcache-consciousdataplacement.In
The1998InternationalSymposiumon MemoryManagement,
Vancouver, BC, Oct.1998.

[4] A. Diwan,J.E. B. Moss,andR. L. Hudson.Compilersupport
for garbagecollectionin astaticallytypedlanguage.In
Conferenceon ProgrammingLanguage Designand
Implementation, pages273–282,SanFrancisco,California,
June1992.SIGPLAN,ACM Press.

[5] K. Gharachorloo,D. Lenoski,J.Laudon,P. Gibbons,A. Gupta,
andJ.Hennessy. Memoryconsistency andeventorderingin
scalableshared-memorymultiprocessors.In Proceedings17th
AnnualInternationalSymposiumon ComputerArchitecture,
pages15–26.ACM Press,May 1990.

[6] U. Hölzle.A fastwrite barrierfor generationalgarbage
collectors.In E. Moss,P. R. Wilson,andB. Zorn,editors,
OOPSLA/ECOOP’93 Workshopon GarbageCollectionin
Object-OrientedSystems, Oct.1993.

[7] A. L. Hosking.LightweightSupportfor Fine-Grained
PersistenceonStock Hardware. PhDthesis,Universityof
Massachusettsat Amherst,MA 01003,Feb. 1995.

[8] R. L. Hudson,J.E. B. Moss,A. Diwan,andC. F. Weight.A
language-independentgarbagecollectortoolkit. COINS

TechnicalReport91-47,Universityof Massachusetts,Amherst,
Sept.1991.

[9] Intel Corporation.TheIA-64 Architecture: Software
Developer’sManual. SantaClara,CA, Jan.2000.URL:
http://developer.intel.com/design/ia-64/manuals/.

[10] W. Pugh.Fixing theJavamemorymodel.In Java’99:
Proceedingsof the1999ACM ConferenceonJavaGrande,
pages89–98,SanFrancisco,CA, June1999.ACM Press.

[11] O. Shivers,J.W. Clark,andR. McGrath.Atomic heap
transactionsandfine-graininterrupts.In Proceedingsof the
1999ACM InternationalConferenceon Functional
Programming(ICFP), Paris,France,Sept.1999.

[12] P. G. Sobalvarro.A lifetime-basedgarbagecollectorfor LISP
systemson general-purposecomputers,1988.B.S.Thesis,
Dept.of EECS,MassachusettsInstituteof Technology,
Cambridge.

[13] D. Stefanović. Propertiesof Age-BasedAutomaticMemory
ReclamationAlgorithms. PhDthesis,Universityof
Massachusetts,Amherst,MA, Feb. 1999.

[14] D. Stefanović, K. S.McKinley, andJ.E. B. Moss.Age-based
garbagecollection.In Proc.1999ACM SIGPLANConf. on
Object-OrientedProgrammingSystems,Languages&
Applications(OOPSLA’99), Denver, Colorado,November1-5,
1999, pages379–381.ACM, Nov. 1999.

[15] J.M. Stichnoth,G.-Y. Lueh,andM. Cierniak.Supportfor
garbagecollectionat every instruction.In Proceedingsof the
ACM SIGPLAN’99 ConferenceonProgrammingLanguage
DesignandImplementation(PLDI), pages118–127,May 1999.

