
Concurrent Garbage Collection Using Hardware-Assisted
Profiling

Timothy H. Heil James E. Smith
Electrical and Computer Engineering

University of Wisconsin - Madison
1415 Engineering Drive

{heilt,jes}@ece.wisc.edu
ABSTRACT
In the presence of on-chip multithreading, a Virtual Machine
(VM) implementation can readily take advantage of service
threads for enhancing performance by performing tasks such as
profile collection and analysis, dynamic optimization, and garbage
collection concurrently with program execution. In this context, a
hardware-assisted profiling mechanism is proposed. The
Relational Profiling Architecture (RPA) is designed from the top
down. RPA is based on a relational model similar to the relational
database model. Instructions selected for profiling produce a
record of information. A simple query engine examines these
records for patterns, and performs simple actions on matching
records.

The power and flexibility of RPA is demonstrated by developing a
concurrent generational garbage collector for Java. Detailed
execution driven simulations show that this collector has an
average runtime overhead of approximately 0.6%. The short
pauses in the application required for synchronization with the
garbage collector are at most 54 microseconds, given a 1GHz
clock frequency.

Keywords
Concurrent garbage collection, hardware-assisted profiling,
memory management

1. INTRODUCTION
As technology progresses, efficient hardware usage and the
demand for higher levels of performance are leading to on-chip
multi-threading, either through simultaneous multithreading
(SMT) [33][38][37] or on-chip multiprocessing [4][23]. At the
same time, the emergence of binary translation and virtual
machine (VM) technologies are pointing to a re-definition of the
traditional hardware/software interface.

Our research is targeted at this future environment and is centered
on the development and application of co-designed virtual
machines [28]. Co-designed VMs combine hardware and software
to implement a virtual instruction set architecture (V-ISA). A co-

designed virtual machine can use available on-chip multi-
threading to implement service threads that perform such tasks as
dynamic compilation, profile collection and processing, and
garbage collection concurrent with program execution Properly
developed hardware-assisted profiling can provide an efficient
communication mechanism that allow VM service threads to
monitor program behavior without slowing down program
threads.

We employ the above concepts to implement a concurrent garbage
collection (GC) mechanism supported by Strata, our experimental
co-designed VM. GC executes on separate on-chip threads and
uses hardware-assisted profiling to replace traditional inline store
barriers. Detailed simulations show that this collector has an
average run-time overhead of 0.6%, and the worst GC pause time
is less than 0.2ms.

1.1 Co-designed Virtual Machines
Virtual machines execute programs coded in the V-ISA on
hardware directly supporting another ISA, the implementation
ISA (I-ISA). Co-designed virtual machines use a mix of hardware
and software, designed together, to form a high performance
implementation of the V-ISA. The I-ISA is designed to enable a
clean, high performance microarchitecture that gets maximum
benefit from the current generation chip technology. Conversely,
the software portion of the VM is designed to improve processor
performance through dynamic recompilation, special I-ISA
instructions and hint bits, and pipeline tuning features that are
visible through the I-ISA. In this context, the I-ISA becomes very
fluid because the V-ISA provides the necessary binary
compatibility. The System/38 [5] was a pioneer in this field, and
there has been a flurry of recent co-designed VMs. These include
Transmeta’s Crusoe processors [18], Sun Microsystem’s MAJC
processor [30], and the DAISY [16] and BOA [17] research
projects at IBM.

1.2 Thread-Level Parallelism and Virtual
Machines
Widespread use of thread level parallelism (TLP) is likely to
provide the next large gains in general purpose performance.
Compared with instruction-level parallelism (ILP), TLP is
relatively easy to support in hardware. ILP-oriented superscalar
processor designs now consume enormous resources in terms of
transistors, area, and power to reap even incremental gains in
instructions per cycle. If processors were designed to exploit TLP,
instead of ILP, much greater peak throughput could be obtained
with the same resources. Of course, this requires that there are
multiple threads of execution to exploit. Most recent superscalar
designs focus on ILP primarily because multiple threads have
only rarely been available in a general-purpose environment.

High performance VMs have the potential to change this. Many
tasks that a VM performs are conceptually parallel to program
execution. These include garbage collection, program profile
collection and analysis, and dynamic optimization. Furthermore,
each of these tasks can be parallelized itself. Hence, VMs have the
potential for providing many service threads of execution, which
collectively lead to much higher performance for the main
program thread(s).

1.3 Profiling and inter-processor
communication
An important aspect of multi-threaded co-designed VMs is the
interaction of the main program thread(s) and service threads.
There must be mechanisms for monitoring the performance of
program threads and low-overhead communication mechanisms
so that service threads can respond efficiently and correctly to the
application’s requirements.

Consequently, we made profiling a high priority and took a top-
down approach to hardware-assisted profiling, first determining
the properties of program execution that might need to be
observed. The goal was to develop a mechanism flexible enough
to meet not only current needs, but unanticipated future needs as
well. From this we developed a framework for instruction-level
profiling, which was then engineered to an efficient
implementation. The result was the Relational Profiling
Architecture (RPA), described in detail in Section 3.

A central outcome of this research is the realization that there is
synergy between hardware-assisted profiling and inter-thread
communication. Hardware-assisted profiling provides a general
mechanism for observing program behavior without diminishing
application performance, enabling the VM to take advantage of
TLP. However, there must be efficient mechanisms for
communicating this information to service threads. Hence, we
developed a general memory-based model for communicating
profile information.

As noted already, garbage collection provides an excellent
opportunity for applying service threads. Profiling hardware is
used for observing application stores of object references to the
heap, a task traditionally done with inline store barrier code. Then
the relevant store information is passed via the memory interface
to a service thread that actually executes the store barrier code.

1.4 Paper Organization
The remainder of this paper is organized as follows. Section 2
discusses related work in the areas of hardware-assisted profiling,
concurrent garbage collection, and multi-threaded optimizations.
Section 3 discusses the Relational Profiling Architecture in detail.
Section 4 describes the proposed concurrent GC algorithm.
Section 5 describes the experimental methods and results, and
Section 6 concludes the paper.

2. RELATED WORK
To our knowledge, this is the first paper to use multiple threads
and profiling hardware to aid GC. Related work falls into three
categories: hardware-assisted profiling, service threads, and
concurrent GC.

2.1 Hardware-assisted profiling
The RPA described in Section 3 is most similar to ProfileMe [11].
ProfileMe first picks an instruction for profiling at random. As the

instruction flows through the pipeline, information on its behavior
is collected and stored in profile registers. When the instruction is
completed, whether it is squashed due to a branch misprediction
or it is retired, ProfileMe generates an interrupt, and a trap handler
reads the information from the profile registers.

ProfileMe reduces hardware by bounding the number of
instructions simultaneously profiled, typically to one or two.
However, this comes at a cost. ProfileMe lacks some of the
expressive power that may be needed. ProfileMe does not provide
mechanisms to guarantee particular instructions are profiled, to
select which types of instructions are profiled, or to select which
information is collected.

The Profile Buffer [10] is a hardware mechanism designed to
profile branch edge frequencies in programs. It collects taken/not-
taken counts for conditional branches in a buffer following
retirement. The buffer is periodically spilled to memory for
analysis by software.

Merten et al. [20] develop a scheme for identifying hot spots in
programs. Hot spots are relatively small regions of static code that
account for a large portion of dynamic execution. Their scheme
collects branch taken/not-taken counts a structure similar to the
Profile Buffer, the Branch Behavior Buffer (BBB). The BBB also
identifies frequently seen branches and uses this information to
identify hot spots. A separate structure, the Monitor Table
prevents hot spot re-detection. RPA can easily collect edge
profiles by monitoring the outcomes of executed branches. Tasks
such as hot-spot detection would be run on service threads. These
threads would maintain structures like the BBB and Monitor
Table would be maintained in software.

2.2 Service threads
The service thread concept has been researched under other names
for purposes other than GC. Simultaneous Subordinate
Microthreads (SSMT) [9] uses multiple micro-threads to improve
single-threaded application performance. Multiple threads are run
along with the application using simultaneous multithreading
(SMT) [33][38][37]. Micro-threads are written in an
implementation-specific ISA, different from the application ISA,
and stored in a special cache structure. Branch prediction is used
as an example performance optimization.

Assisted Execution [29] uses nanothreads in conjunction with
SMT in much the same way. Unlike SSMT and this work,
nanothreads share memory and register state with the application
thread. Unlike SSMT and similar to this work, nanothreads
execute the same ISA as application threads. Nanothreads are
invoked either directly by the application, or triggered by
hardware events using nanotraps. Several data prefetching
algorithms are used as example performance enhancements.

2.3 Concurrent garbage collection
Concurrent garbage collection has a long history. Developing an
algorithm that is both efficient and correct has proven to be a
difficult problem. Sweeping, compared to marking, is easy to
perform concurrently with the application. Most research focuses
on making the mark phase concurrent. Many of these algorithms
were developed as incremental algorithms to reduce pause times
on uniprocessors. Usually they could be made completely
concurrent, were multiple processors provided.

Several concurrent algorithms are based on Baker’s incremental
copying algorithm [3]. Before collection, the heap is divided into
a from-space and to-space. From-space contains the objects to be
collected, which are copied into to-space by the collector. The
collector copies all live objects into to-space. From-space then
contains only dead objects and is reclaimed en-mass. The copying
process can occur in parallel with the application, as long as an
important invariant is maintained. The application may only
obtain references to objects in to-space. Whenever the application
attempts to load a reference to from-space, the reference is
redirected to the copy of the object in to-space, copying the object
first if necessary. To accomplish this feat a load-barrier must
examine all loads of references.

Assuming from-space is a contiguous region, RPA can perform
this check by doing a range check on the loaded value, and
throwing a synchronous exception. However, the frequency of
such loads is liable to overwhelm the profile mechanism. Hence
we avoided algorithms based on Baker’s algorithm.

Since maintaining the invariant with software load-barriers is
expensive, many systems have proposed hardware mechanisms for
performing this check. An early but very impressive GC system
was developed for the Symbolics 3600 [21]. This was a system
designed explicitly for LISP, and also represents an early co-
designed VM. The algorithm is a concurrent copying generational
GC algorithm. Card-marking [35] was used to track inter-
generational pointers. Each card was one virtual memory page.

Tagged memory distinguished references from other data for both
hardware and software. Special hardware checked the results of
every load instruction. Loading a references to old-space
generated an interrupt. The trap handler redirected the loaded
word to the copy in copy-space, copying the object first if
necessary.

The Symbolics 3600 also had special hardware to track inter-
generational pointers. When a reference to a young object (called
ephemeral in [21]) was stored hardware set a special bit
associated with the modified page. These pages were examined
for references when the young generation was collected. RPA
performs essentially the same function for the collector described
here.

The MUSHROOM system [36] used similar forms of support.
Tagged memory was used to locate pointers. MUSHROOM,
however used a software-controlled object-oriented cache
structure. The young generation was maintained in the cache.
Objects could be allocated, used, and collected all within the
cache, without ever being assigned a physical address. The young-
generation collector was not concurrent, although collection of
main memory and secondary storage was done incrementally.

Schmidt and Nilsen [27] propose adding hardware support for
Baker’s algorithm [3] to the memory modules, rather than the
CPU. They suggest that adding specialized support in a standard
expansion slot will be economically more attractive than
modifying the CPU. The garbage-collected memory module
(GCMM) contains a to-space and from-space, and performs an
algorithm similar to Baker’s collector. Tagged memory allows the
GCMM to identify pointers for the GCMM. The GCMM also
traps and updates all reads of references to the from-space,
ensuring that the application never obtains references to from-
space.

The above hardware mechanisms are designed specifically to
support GC and particular languages. Such specific hardware
mechanisms have rarely been popular with commercial hardware
vendors. The goal of RPA is produce a general mechanism that is
useful for a wide variety of tasks. The original intent of RPA was
profiling. RPA’s ability to perform other services is evidence of
its generality.

Doligez et al. developed a concurrent mark-sweep GC algorithm
along with a formal proof of correctness [14][15]. Similarly,
Lorenz and Winterbottom described a non-generational
concurrent mark/sweep collector implemented for the Inferno
operating system and the SML/NJ ML compiler [19]. The very
concurrent garbage collector (VCGC) allows application
execution, marking, and sweeping to run concurrently.
Essentially, the marker and sweeper are pipelined; the sweeper
sweeps what was marked in the previous epoch. Objects allocated
in the current epoch will be marked in the next epoch, and swept
two epochs later.

Like the algorithm we present, both of the above algorithms strive
to eliminate as much synchronization as possible. Both of the
algorithms handle concurrent reference mutations using a
snapshot-at-beginning store barrier [35] that observes the
reference about to be overwritten by a store. This is a significant
difference from our algorithm, which uses an incremental update
[35] store barrier, observing the stored values, rather than the
overwritten values. Observing stored values is easier for RPA,
since it need only profile store instructions. RPA can perform a
snapshot-at-beginning store barrier by inserting an extra load just
before the store instruction, and then profiling that load
instruction.

Several concurrent GC algorithms use virtual-memory page
protection to replace in-lined barriers. Appel, Ellis and Li [1] use
this technique for an algorithm based on Baker’s algorithm.
Baker’s algorithm divides to-space into three areas. The scanned
area contains objects that have been scanned for references to
from-space. All references in this area have been redirected; the
scanned area contains only references to to-space. The unscanned
area contains objects that have been copied into to-space, but
which have not yet been scanned for references to from-space.
Appel, Ellis and Li read- and write-protect the unscanned area.
Upon a page protection fault, the handler copies the offending
page from to-space into from-space, and updates all the
references. Hence the application sees only references to objects
in to-space. This algorithm can cause a flurry of page faults at the
beginning of GC, due to the root objects being copied into the
unscanned area. Such faults are also relatively expensive, since
whole pages have to be copied and updated by the handler.

Boehm et al. use this technique to develop a concurrent
conservative non-copying generational collector [7]. Copying is
avoided because of the focus on conservative collectors. This
collector only write-protects pages, and performs only a small
amount of work for each protection fault. Faults could be
dispensed with altogether, if hardware page dirty bits could be
used. Before marking, all of memory is write-protected. For each
write-protection fault, the collector notes the modified page and
removes the write protection. After marking, objects missed due
to concurrent modifications to the heap are detected by following
all references from marked (live) objects on modified pages. This
second mark can be done without stopping the application if all

the pages are re-protected to track modifications. This is done at
most twice, at which point the application is stopped and all
modified pages are marked one more time with the application
stopped. At this point all reachable objects are marked and
sweeping can begin. This is similar to how the reference set is
handled by our algorithm.

Boehm et al. go beyond proposing a particular algorithm, and
propose a general transformation for making a wide variety of
non-concurrent GC algorithms concurrent. The algorithm we
developed can be considered a variation of this algorithm based
on RPA. While they base this transformation on page protection
bits, RPA provides the same basic functionality: the ability to
track modifications to the heap. Hence, RPA also provides a basis
for a wide range of concurrent algorithms, but without the
overhead of page faults.

3. THE RELATIONAL PROFILING
ARCHITECTURE (RPA)
The RPA is a detailed profiling architecture based on the
relational profiling model. This model views profiling as querying
a table of profile information. The relational profiling architecture
(RPA) is a detailed architecture that embodies the relational
model. RPA allows queries to be conveniently expressed and
leads to an efficient implementation.

3.1 The Relational Profiling Model
Conceptually, the relational profiling model is similar to a
relational database. Dynamic instructions are related to events.
Events may result from changes to architected or implementation
state and conceptually can be organized into a table. See Figure 1.
This model leads to two basic forms of queries.

Figure 1. The relational profiling model organizes
instructions and events in a table.

1) Instruction-based queries. "For certain instructions, what events
occurred?" These queries conceptually select columns from the
table. To collect this information, the profile mechanism
essentially follows the instruction as it flows through the pipeline,
collecting event information regarding its behavior. This is similar
to ProfileMe [11].

2) Event-based queries. "For some events, what instructions were
involved?" These queries conceptually select rows from the table.
To collect this information, the profile mechanism essentially sits
at some point(s) in the pipeline, recording information about
instructions that flow past. This is similar to the counter profiling
mechanisms common in processors today. In contrast to counter-
based methods, however, the relational model can provide
detailed information regarding specific dynamic instructions. Still,
hardware counters may sometimes be used as an efficient
summarizing mechanism.

Hybrids are also possible and useful. For instance, the definition
of, “some instructions,” in instruction-based queries may contain
event-related conditions (i.e. “For all load instructions that missed
in the cache...”).

3.2 RPA Assembly Language
The RPA is most easily understood from its assembly language.
Figure 2 shows the RPA assembly language query used for the
concurrent garbage collector presented here. The RPA assembler
was developed using the ANTLR tool [25] to facilitate research
on RPA.

An RPA assembly language statement or “query” 1) describes
records of information to be collected, 2) specifies a rate at which
the information should be collected, 3) describes selection criteria
for which a record should be checked, and 4) indicates actions to
be taken for the selected records.

Unlike typical assembly languages, RPA queries invoke a number
of machine level instructions that manage various structures in the
profile hardware. These structures are described in Subsection
3.3.

for opSTORE 1 always collect op1 op2;
 if op1 <> 0 then send 3 stop else stop;

Figure 2. Concurrent GC RPA query.

An RPA profile program is broken into a series of queries. Each
query begins with a for clause, and is followed by one or more
comparison clauses. The query in Figure 2 contains a single
comparison clause.

The for clause indicates which instructions should be profiled,
what information should be collected and how often. The types of
instructions to profile are listed following the for keyword.
Instructions are divided into the eight classes shown in Table 1.
For example, the statement in Figure 2 specifies that store
instructions should be profiled.

The VM can further classify instructions using two profile bits per
instruction word in the program binary being profiled. This yields
a total of 32 instruction classes. Note that the VM paradigm
enables an implementation ISA with two embedded profile bits
per instruction. An alternative is to add additional hardware tables
to hold software-controlled classification information. The two
bits are interpreted as an integer. The number following the
instruction-class mnemonic indicates what profile bit values
should be profiled.

Table 1. Instruction profiling classes.

Mnemonic Instructions
opJMP Unconditional jumps
opBRANCH Conditional branches
opLOAD Load instructions
opSTORE Store instructions
opALU Simple arithmetic and logical

instructions
opMULT Multiply/divide instructions
opFLOAT Floating point operations
opSYS SYSCALL, BREAK, etc.

Dynamic Instructions

E
ve

nt
s

a)

b)

The concurrent GC algorithm only needs to monitor stores that
are storing references to the heap. The VM tells RPA which store
instructions write references to the heap using the profile bits.
Only store instructions with the profile bits set to 1 are profiled, as
indicated in the query in Figure 2.

For the specified instruction class, the for clause indicates the
information to be collected and a random sampling rate. Simple
random sampling can reduce the rate at which profile information
is collected. Since the GC algorithm relies on observing every
reference store for correctness, the always keyword indicates that
random sampling is not used.

Finally, the for clause lists the information collected. Each item
represents one 32-bit word of information, which is collected and
packed into a record by the RPA. The proposed RPA limits the
information collected to seven words per record. This appears to
be large enough to handle all profiling tasks without producing
overwhelming large records.

Store instructions take three input operands, the value stored
(op1), a base address (op2) and an offset. When writing fields in
regular objects, the offset is typically a small immediate encoded
in the store instruction. When writing arrays, the offset is
provided as an input register. In both cases, the base address is a
reference to the base of the object being modified. The value
stored is the reference being written. The GC query instructs RPA
to collect the reference being stored and the reference of the
object being modified to monitor concurrent modifications to the
heap during marking, and to track inter-generational pointers.

Following the for clause, comparison clauses indicate conditions
used to select certain records and the actions to be taken for the
selected records. Each comparison clause can perform up to two
comparisons to check for desired properties within the record. The
comparison types available include the standard relational
operations, comparisons that check for set or cleared bits, and
further random sampling. If the comparison(s) match, an action
may be performed and/or a branch to another comparison clause
may be taken Otherwise, execution falls through to the next
sequential query instruction. The stop keyword within the
comparison clause indicates that query is completed. Since stores
of null references do not need to be examined by the GC
algorithm, the query in Figure 2 checks if operand 1, the stored
reference, is not null (zero).

Profile actions communicate collected profile information back to
VM software. The most common action is the message send,
indicated by the send keyword, as shown in Figure 2. A copy of
the record is written into a circular message queue where it can be
examined by a service thread. The service thread can then perform
more detailed processing of the information. The query in Figure
2 sends the collected record to a service thread that performs the
store barrier function. Message queues are held in shared memory,
and service threads access these queues using normal loads and
stores. The RPA can also disburse messages can be disbursed to
messages to multiple queues. The RPA will perform load
balancing among the queues so multiple service threads can
efficiently process the records in parallel. Collections of queues
used in this manor are called a pool. Hence RPA send actions
provide an automatic mechanism for single-producer/multiple-
consumer communication. Furthermore, the query engine can
send records with different information to different pools. This
way service threads only receive information related to their task,

eliminating the need to determine what type of message has been
received. The number following the send keyword specifies the
queue pool to which the record is to be written.

3.3 Low-Level Architecture
Figure 3 illustrates an implementation of the RPA. Specific
queries are formed by the virtual machine using the query
language described in the preceding section. Using this
description the assembler divides query processing into two
components shown in the figure. A configuration for the profile
control table (PCT) is derived from the for clauses. The PCT is a
set of architected profile control registers (PCRs). Software
configures the PCT using a special SET_PCR instruction added to
the I-ISA.

collect
PCT

Query
Engine

select

VM

communicate

Pipeline

RPA
specify

SET_PCR

Profile Network

A
C

T
IO

N

Figure 3. The relational profiling architecture contains the
profile control table (PCT) and the query engine.

Comparison clauses generate query instructions to be executed by
the query engine, a simple processor capable of performing the
comparisons and actions dictated by the query. Query instructions
may be stored in memory, or in a special-purpose table
constructed out of PCRs to reduce implementation costs. A
special-purpose table is currently simulated.

3.3.1 The Profile Control Table (PCT)
The PCT implements two PCRs for each of the 32 instruction
classes. The first PCR sets the sampling rate, and selects
information to be collected. The second PCR contains the starting
query PC (QPC), the address of the initial comparison instruction
for the query engine to execute. Profile records collected at the
behest of the PCT are passed to the query engine for further
processing.

3.3.2 The Query Engine
The query engine begins executing the comparison instructions at
the initial QPC location provided by the PCT. Comparison
instructions are executed until terminated by an explicit stop
annotation within an instruction. The application program
continues to execute in parallel with the query engine, and
multiple comparisons may be executed in parallel as well. To
simplify implementation there is no guarantee of the order in
which separate queries are executed or completed.

Each comparison instruction can specify up to two comparisons, a
branch and a profile action. The query engine can compute
arbitrary Boolean expressions by forming comparison instructions
into if-then-else decision trees.

The comparison instructions are encoded in a 64-bit format. The
basic two-comparison format is shown in Figure 4. The
comparison instruction reads two values from the record.
Comparisons operate on 8,16 or 32 bit data, so both the size and
location of the data to examine are encoded in the instruction. To
reduce implementation costs, one even word and one odd word
from the profile record are selected. The comparison instruction
also includes a 16 bit immediate value.

Figure 4. Comparison instructions contain up to two
comparisons, a branch and an action.

If both comparisons in the instruction match, the specified action
is performed and the branch is taken. Otherwise execution falls
through to the next sequential comparison instruction.

To implement message actions, the query engine manages circular
message queues in memory. Each message uses eight words of
memory, and the size of the queue is configurable up to 128
messages. To write a record into a queue, the query engine writes
the seven words of the record. The eighth word is used as a ready
word to indicate that the record is available. To read a record, a
service thread polls the ready word, reads the record from
memory, and then clears the ready word. The service thread also
periodically informs the query engine how many messages have
been read. This is done by storing the total messages read into the
buffer read status word in memory, which is examined
periodically by the query engine. The query engine uses the
number of messages read, along with the number written (which it
knows), to determine if space is available for another message.
Using the buffer read status word reduces the polling required by
the query engine, over using the ready words alone.

3.4 RPA Implementation and Cost
The query engine pipeline modeled for this research is shown in
Figure 5. The query engine is designed to execute up to four
queries simultaneously using a simple barrel-and-slot design [31].
The pipeline is four stages long, and executes one query
instruction for each active query once every four cycles in a
round-robin fashion. As the profile records fill, the processing
power of the query engine increases to one query instruction per

cycle. The barrel-and-slot design eliminates all interlocks and
dependences in the pipeline as well as branch misprediction
penalties.

Messages are sent by the message engine. The message engine
reads records from the record buffer using a second dedicated
port, and writes them to the in-memory queues. The message
engine also handles polling the buffer read status words.

A profile network is needed to carry profile information from the
pipeline to the profile buffers. Though a complete design of this
network is beyond the scope of this paper, the size of the network
will scale linearly with the number of simultaneously profiled
instructions [11]. The latency of this network is not a concern; the
profile mechanism can be relatively distant from the core pipeline.
However the size and layout impact of this network on the core
should be minimized.

Instructions are selected for profiling during instruction dispatch.
At this point a profile buffer is allocated to store the collected
information until the query engine finishes processing it, and a
profile network is allocated to carry information for the profiled
instruction. If either is not available then dispatch stalls. When the
instruction retires the profile network is freed, but the profile
buffer remains allocated until the query completes. Four profile
networks and eight profile buffers, 256 bytes, is enough to make
stalls due to profiling a rarity, as will be shown in Section 5.4.

4. CONCURRENT GARBAGE
COLLECTION USING THE RELATIONAL
PROFILING ARCHITECTURE
Concurrent [19][14][32][35] and generational [34] garbage
collection schemes must monitor stores to the heap while
collection is in progress. This store barrier typically takes the
form of several instructions inserted before every instruction that
stores a reference to the heap.

As shown in Figure 2 and described in Subsection 3.2, the RPA
replaces inlined store-barriers by profiling the store instructions.
The RPA collects the needed information, and sends this
information to store barrier threads, which execute the store
barrier in parallel with the application. Three store barrier threads
are currently used. This is enough to keep up with application
stores, though it may be possible to use fewer threads.

Furthermore, the store barrier changes slightly depending on
whether a collection is actually taking place. Dynamically altering
store barrier behavior is easy with RPA, unlike traditional inlined
store barriers. The store barriers simply check a global variable to
see which type of store barrier needs to be executed. This check is
only performed when the message queues are empty, so the
overhead of the check occurs only when there is no other work to
do.

The resulting GC algorithm is an almost entirely concurrent two-
generation algorithm. Because moving objects concurrently is
difficult [14], we focused on non-copying generational collection
[7][12]. The application must stop for three short pauses during
garbage collection, as is explained later.

4.1 Heap layout
We organize the heap in a manner similar to the "big-bag-of-
pages" organization used in the Boehm-Weiser conservative
collector [6]. Heap space is allocated in chunks, and each chunk

Query
I-Cache

Profile
Buffers

Decode

Fetch Read Record
Decode

Execute Write
back

Figure 5. The query engine four stage pipeline.

2236712 164 12

Compare 2 Immediate

unused ActionCompare 1 Source words

Branch
target Format

contains an integer number of same-size blocks. Chunks are
nominally 1KB. However, unlike many collectors using this
layout, all chunks need not be the same size, and they only need
be double word aligned. If blocks of a given size do not fit evenly
into a chunk, slightly smaller chunks are allocated for that size.

The heap is divided into the young generation and the old
generation. Each generation is composed of a doubly-linked list of
chunks. Chunks are moved between generations by removing
them from one list and inserting them into the other.

Supporting all block sizes is inefficient, as there are frequently not
enough objects of a given size to fill up a chunk. This is especially
true for larger sizes. All block sizes divisible by eight bytes are
supported up to 128 bytes; block sizes divisible by 16 bytes are
supported up to 256 bytes. This combination appears to yield
good performance. An object will use the smallest size block into
which it fits. Objects larger than 256 bytes are allocated
separately.

The first word of each object, called the method table pointer
(MTP), points to type information for the object. This is used for
virtual function calls, type checks, and to find reference masks
used to locate the references within the object. The GC algorithm
uses the lower three bits of this pointer for GC state. These bits
must be masked off before the MTP can be used. This overhead
has not been found to be significant. If this overhead should be an
issue, a load-and-mask operation could be added to the I-ISA. The
advantage of this, versus storing the bits off to the side, is that the
bits can be easily found given the object reference or the block
address. Storing the state elsewhere generally results in a
relatively complex instruction sequence just to locate the state.

The three MTP bits are the OLDGEN_MARK set for objects in the
old generation, the REM_MARK used to maintain the remembered
set described in the next subsection, and the LIVE_MARK set
when an object has been reached by the marking process.

Marking an object involves setting the LIVE_MARK, and placing
the object on the mark stack. Objects are popped off the mark
stack, and scanned for references to unmarked objects, which do
not have the LIVE_MARK set. This process iterates until the
mark stack empties, at which point all reachable objects have been
marked. During sweeping, objects with the LIVE_MARK unset
are collected and the LIVE_MARKs are reset.

Unallocated blocks are placed in per-size singly linked lists stored
in the free blocks themselves. Object allocation is inlined in the
application code, and involves popping a free block off the list.
Except for the first two words of memory, used for the free list,
the GC algorithm initializes memory to zero concurrently, so
allocation results in an initialized block.

If no free block is available then a new chunk must be allocated
and initialized. This more complex operation is performed
through a call to the run-time system. If this expands the heap
beyond a dynamically adjusted threshold, GC is invoked.
Typically only the young generation needs to be collected. If
tenuring expands the old generation beyond a dynamically
adjusted threshold, the entire heap is collected.

Whole chunks are tenured by unlinking them from the young
generation and linking them into the old generation. In addition
OLDGEN_MARK is set when an object is tenured into the old
generation. GC uses OLDGEN_MARK to avoid marking old
generation objects when collecting only the young generation.

Tenuring free blocks wastes space since new objects cannot be
allocated into the old generation. The tenuring policy tries to
minimize this waste by selecting nearly full chunks. Only chunks
that are at least 75% full are tenured. In practice, between 0% and
14% of the tenured blocks are free. In addition, chunks are de-
tenured when they become mostly free. In order to reclaim
otherwise wasted space, blocks are de-tenured when no more than
25% full. Demers et al. describe a similar solution for their non-
copying conservative generational collectors [12]. This mixes old-
generation objects into the young generation. Sweeping the young
generation becomes slightly less efficient, because old objects
must be explicitly skipped over. However, in practice less than
2% of objects in the young generation are old-generation objects.

The GC algorithm uses load-locked/store-conditional primitives
to atomically examine and set MTP bits. However, the application
does not require any synchronization with the GC algorithm.
Since the application does not modify the MTP or use the GC
state bits, there are no synchronization issues with these bits.

The algorithm also eliminates all synchronization hazards between
allocation, which pops objects off the free lists, and sweeping,
which places collected object on the free lists. The young
generation is divided into two portions. New objects are allocated
by the application into the crib. GC sweeps the sweep area.
Before sweeping, the application is paused temporarily, and all
objects are (logically) moved from the crib into the sweep area,
leaving the crib empty. After sweeping, the application is again
paused temporarily, and uncollected objects are merged back into
the crib. Fine-grain synchronization is unnecessary because
collected objects are placed en mass on the free-lists while the
application is paused. This also prevents objects that were
allocated during sweeping from being erroneously swept and
collected. A similar optimization is performed in VCGC [19].

4.2 Remembered set and inter-generational
references
To collect only the young generation, some mechanism must track
references from the old generation into the young generation. This
is done using the REM_MARK MTP bit and the remembered set.
The remembered set is a list of all objects in the old generation
that may contain references to objects in the young generation.
REM_MARK is set for all objects in the remembered set to avoid
adding duplicate entries to the remembered set.

Store-barrier threads examine the REM_MARK of modified
objects, as reported by RPA. If it is not set, the object is placed in
the remembered set, and the REM_MARK is set. To prevent
young-generation objects from being placed in the remembered
set all objects in the young generation have the REM_MARK set.

The resulting extremely efficient store barrier is shown in pseudo-
code in Figure 6. Although this is shown in C-like code, each
statement represents one machine instruction. For most
applications only a few old-generation objects point to young-
generation objects, so only a few objects need be placed in the
remembered set. In benchmarks we have observed REM_MARK
is already set 99.99% of the time. Hence, the basic store barrier is
3 instructions in the common case. The resulting remembered set
is free of duplicates, and contains exactly those objects in the old
generation that must be examined.

Store_bar:
 mtp = load_locked(obj.mtp);
 rem_mark = mtp | REM_MARK;
 If (mtp != rem_mark) {
 if (!store_cond(obj.mtp, rem_mark)) goto Store_bar;
 // Add to remembered set …
 }

Figure 6. Generational store barrier pseudo-code.

Objects referenced by the root references, references in local and
global variables, are marked first. When collecting the young
generation, young objects referenced from old objects in the
remembered set are also marked. Several other marking steps are
required to make the algorithm concurrent, as explained in the
next subsection.

4.3 Concurrent modifications of the heap
Concurrent collection also requires the store barrier to keep track
of modifications to heap references during marking. Otherwise,
GC could collect live objects when the application moves
references during marking. A simple example is shown in Figure
3. In Step 1 GC has marked and scanned object A, placing object
B on the mark stack. However in Step 2, before the GC scans
object B, the application moves object B’s reference to object C
into object A. Finally in Step 3, GC scans Object B. Object C is
missed, and is mistakenly collected.

To solve this problem, we use an incremental update [35] scheme.
Whenever a reference to an object is written to the heap, the
referenced object is marked live, and placed in the reference set.
This set contains all the objects that might otherwise be missed
due to application modifications of the heap.

 1 2 3

C

B

A

C

B

A

C

B

A

Figure 7. Example concurrent reference mutation.

We use a store barrier mechanism similar to the one used for the
remembered set. RPA is used to collect the same information from
every reference store, the stored reference and a reference to the
modified object. If the LIVE_MARK of the referenced object is
not set, then LIVE_MARK is set and the object is placed on the
reference set. In our benchmarks, at least 98.5% of the time the
LIVE_MARK is already set, and no more work needs to be done.
The query engine simplifies the concurrent store barrier code by
doing the required null reference check.

The store barrier thread must execute two or three additional
instructions to remove the profile message from the message
queue. This results in a five-instruction store barrier in
generational mode when not marking concurrently, and a twelve-
instruction store barrier in concurrent mode during marking.

4.4 Complete algorithm
Figure 8 provides a time line of the algorithm's execution. Time
runs down the image, and is not to scale. A collection of the
young generation is depicted and described. Collecting the entire
heap is similar but simpler. Five threads are shown, the
application thread, three identical store barrier threads, and the
garbage collection thread, which executes the marks and sweeps.
The wide crosshatched bars indicate where the application is
running. The narrow vertical lines indicate where the GC
algorithm is running. No line indicates that the thread is paused.
Horizontal dashed lines depict inter-thread control

The complete algorithm works as follows:

Steps 1-4. The application tries to expand the heap, exceeding the
GC threshold. This will begin the GC process. Next the
application thread builds the set of root references, and switches
the store barrier from the generational store barrier to the
concurrent store barrier. Then, GC is started and the application
continues execution.

Step 5. The GC thread marks the root set built in Step 2

Step 6. All objects in the remembered set are scanned for
references to young-generation objects. These young-generation
objects are marked. To prevent the store-barrier threads from
modifying the remembered set being examined by the GC thread,
the GC thread atomically snapshots the current state of the
remembered set. Store barrier threads find the remembered set
using a global pointer within the run-time system. To snapshot the
remembered set, the GC thread grabs a copy of the global pointer,
and swaps in a pointer to a spare remembered set. Mutual
exclusion locks make this operation atomic. During the rest of
Step 6 store-barrier threads will add objects to the spare
remembered set. At the end of Step 6 the original and spare
remembered sets are merged.

Objects remembered during this phase will not be examined
during this collection. This is not a problem because the
concurrent store barrier will add any referenced young objects to
the reference set, which is repeatedly marked in the next step.

Objects are removed from the remembered set if no references to
young objects are found. This creates a subtle synchronization
hazard, which must be guarded against. A scenario is illustrated in
Figure 9.

In Step 1 of Figure 9 a remembered object is being scanned from
beginning to end for references to young-generation objects. In
Step 2, the application stores a reference to a young object into
the remembered object. However, the GC thread has already
moved past this reference field and does not see the new
reference. In Step 3, the GC thread, believing the object contains
no references to young-generation objects, erroneously removes
the object from the remembered set. The referenced young object
will not be collected during this GC, because the store barrier will
add it reference set in Step 2 of Figure 9. It will be erroneously
collected in the next GC, if the stored reference is the only
reference to the object. Because the old-generation object is not in
the remembered set, the collector will not find or follow the
reference.

Clearing the REM_MARK before scanning remembered objects
solves the problem. In the scenario just described the store barrier
thread will add the object to the spare remembered set, and set the
REM_MARK again. To protect against duplicate entries in the

remembered set, the GC thread examines the REM_MARK again
after scanning an object if young-object references were found. If
it is set, the object is removed from the snapshot copy of the
remembered set, since a duplicate was added to the spare set.

Steps 7-9. Eventually the application must be stopped, and some
amount of marking must be done with the program paused. The
goal of a good algorithm is to minimize the duration of this pause.
The size of the reference set, built as explained above by the
concurrent store barrier, is examined. If the reference set is large,
it will be repeatedly marked in parallel. If it is small, it will be
marked while the application is paused, and marking will
terminate. The threshold between "small" and "large" is doubled
each iteration, guaranteeing the loop will terminate.

The size threshold starts at 20 objects, and is approximately
doubled every iteration. The loop exits when the number of
objects on the reference set is less than the threshold. In addition,
we found it was very important to do at least one parallel mark,
even if there are only a few entries in the initial reference set. The
number of entries only approximately indicates the amount of
work to be done during marking, because a single reference could
point to a large body of unmarked objects. This appears to happen
quite regularly for the initial reference set, so it is important to
mark the initial reference set in parallel regardless of its size.
While the algorithm makes no guarantees, this does not seem to
occur during subsequent passes through the loop. For subsequent
iterations the number of reference set entries is an accurate
measure of the time needed to mark them.

1) The GC thread begins
scanning an object in the
remembered set.

3) The GC thread mistakenly
concludes the object contains no
references to young objects. The
object is erroneously removed
from the remembered set.

2) The application thread stores
a reference to a young-
generation object behind the
scanning pointer.

Young Object

Figure 9. Removing objects from the remembered set
creates a subtle synchronization hazard.

When marking the reference set in parallel, the GC thread
atomically takes a snapshot of the current reference set to prevent
the store barrier from modifying the reference set that the GC
thread is examining.

Steps 10-17. Once a small reference set has been obtained, it is
time for the final serial mark. The application stops and pauses the

Figure 8. Concurrent GC algorithm

$SSOLFDWLRQ *&

6ZHHS
7HQXUH
3UXQH�UHPHPEHUHG�VHW
6WRS�*&

0DUN�URRWV
0DUN�UHPHPEHUHG�VHW
&KHFN�UHIHUHQFH�OLVW

5HTXHVW�ILQDO�PDUN

ODUJH
6QDS�VKRW
0DUN�OLYH�VHW

VPDOO

&RQFXUUHQW

*HQHUDWLRQDO

T
im

e

6WRUH
%DUULHU

��
��
��
��

5
6
7

8
9

10

7ULJJHU�*&
*HW�URRWV

6WDUW�FRQFXUUHQW�VW��EDU�
6WDUW�*&

�
�
�
�

��
��
��
��
��
��
��

6WRS�VW��EDU
0RYH�FULE�WR�VZHHS�DUHD

*HW�URRWV
0DUN�UHIHUHQFH�OLVW

0DUN�URRWV
6WDUW�VWRUH�EDUULHU

5HVWDUW�*&

0HUJH�VZHHS�DUHD��

store barriers. This process ensures that there are no unexamined
store-barrier messages in the system. At this point the application
thread (logically) moves objects from the crib into the young
generation, leaving the crib empty, as explained in Subsection 4.1.

The application can then mark the final reference set, and obtain
and mark the final root set. At this point, all live objects have
been marked. The store barrier threads are restarted in
generational-only mode, and the application restarts while the GC
thread sweeps the sweep area in parallel.

Steps 18-21. Dead objects in the sweep area of the young
generation are collected. When collecting the entire heap, objects
in the remembered set may be freed, and these entries must be
removed from the remembered set. This is done with an explicit
scan of the remembered set following sweeping. Finally, GC is
complete. The GC thread informs the application that it is
finished, and stops.

Step 22. The application, when preparing to allocate more
memory, notices that GC has finished. At this point it (logically)
merges the sweep area back into the crib, allowing recently freed
objects to be reused. The sweep area is left empty for the next GC.

4.5 Correctness
GC correctness, defined as never collecting reachable objects, is
difficult to prove in the presence of concurrent modifications by
the application. Although this has been done formally for some
algorithms [14], we must leave this for future work.

The application complicates GC when it moves a reference from
one location to another. Moving a reference involves first making
a copy of it, and, second, overwriting the original copy. Neither
copying nor overwriting alone is sufficient to undermine the GC
process. Copying alone is not a problem; the original reference
still exists to be traced during marking. Overwriting alone is not a
problem; if the reference is actually gone, it does not need to be
followed.

This algorithm assures correctness by monitoring the copied
references. Other algorithms, as described in the Subsection 2.3
on related GC algorithms, monitor overwritten references. The
goal of this algorithm is to assure that a copied reference will be
traced during marking, no matter where it is copied. There are
three regions to which a reference may be copied: local and global
variables, the young generation and the old generation. If the
reference is copied to local or global variables, it will be caught
when the roots are obtained the second time in Step 13, and
marked in Step 15. If the reference is copied to the young
generation, it will be placed on the reference list by the store
barrier threads, and marked in either Step 9 or 14. The same is
true for copies made to the old generation. In addition, the object
in the old generation is placed in the remembered set,
guaranteeing that the copied reference will be marked in future
GC passes as well.

5. EXPERIMENTAL METHODOLOGY
Our experiments are based on the Strata VM for Java and the
SimpleMP simulator [26]. SimpleMP is a version of the
SimpleScalar [8] execution-driven timing simulator of out-of-
order processors that was extended to simulate multiple
processors. This was further extended to simulate SMT and RPA.

5.1 The Strata compiler
Co-designed VMs use a combination of interpretation and
dynamic compilation to transparently execute programs encoded
in the V-ISA on hardware directly supporting the I-ISA. This
research focuses on the interactions between compiler, run-time
system, architecture and micro-architecture. Rather than creating a
complete VM, Strata statically compiles Java bytecodes to
SimpleScalar PISA assembly code. To aid in development, Strata
also targets SPARC assembly. This provides a simple and flexible
system for research, while reducing the effort required for
building and maintaining the system. Essentially, only the
execution of the run-time system (including GC), and dynamically
optimized code is simulated. Other phases of execution, such as
compilation and interpretation, are not simulated. In a well tuned
VM, these phases of execution should not dominate execution
time. We expect future VMs to perform compilation in parallel
with application execution (using service threads), and possibly to
preserve compiled code across executions of the same program.

The Strata compiler is itself written in Java, and forms one of our
better benchmarks. The Strata compiler performs typical
optimizations such as global register allocation, constant
propagation, local common sub-expression elimination and global
copy propagation. It also performs Java-specific optimizations
aimed at eliminating null-pointer checks, type checks and array
bounds checks.

Strata is still under development, and does not perform some
common optimizations. In the future we plan to include forms of
global code motion, such as partial-redundancy elimination (PRE)
[22], and function inlining. These optimizations will make low-
overhead GC more important, since the application will be
executing relatively faster.

The runtime system, which contains the GC algorithm, is written
in C. Running a Java application involves compiling the
bytecodes using the Strata compiler, and then linking the resulting
assembly with the runtime system.

5.2 Benchmarks
The four benchmarks shown in Table 1 are simulated. The first is
the Strata compiler. The other three are taken from the
SpecJVM98 suite. They are DB, a simple relational database,
Jack, a parser generator, and Ray, a 3-D rendering tool.
Applications are simulated from about 10 million instructions
before the first GC, to completion.

Table 2. Benchmark characteristics.

Duration (Millions) Bench-
mark

Input
Data Instr. Cyc. GCs

Strata spec.benchmarks.
 _209_db.Database

557 228 6

Ray 50 500 time-test.model 282 79 3
DB db2 src3 241 78 1
Jack 10 692 244 7

5.3 Processor models
Ways to exploit TLP include multiple processor cores and
simultaneous multithreading, which allows instructions from
multiple threads to flow through the pipeline at the same time.
Service threads that access much of the same data as the
application should be executed on the same processor core using
SMT to prevent data from being bounced between processor

caches. Threads using different data should be executed on
different cores to prevent L1 cache pollution. Since GC generally
has poor locality characteristics, we chose to execute the GC
algorithm on separate cores. Quantitatively analyzing different
design points is on-going research.

The particular design explored in this paper, Figure 10, uses both
SMT and multiple on-chip cores. On one chip, there is a large
high-ILP processor supplemented by two service processors. The
computation of greatest concern, the application program, runs on
the high-ILP processor. Given many service threads, more
instruction throughput can be obtained merely by stamping out
more processors. Hence, the service processors are designed to
maximize instruction throughput per unit area, rather than single-
thread performance at any cost. Lower priority VM tasks, in this
case GC, run on these processors concurrently with application
execution.

Figure 10. System-on-a-chip design.

Parameters for the processor models are shown in Table 3. The
ILP processor is an 8-way superscalar, out-of-order processor,
running only one thread. Each service processor is a six stage
scalar pipeline capable of running 3 threads in an SMT fashion.
To keep these processors small and simple, they have small L1
caches and predict-not-taken branch prediction. All three
processors connect to an L2 cache with a 12-cycle access time.
The L2 is perfect; it never misses.

5.4 Results
Table 4 shows simulated times for various phases of GC, averaged
over all GCs in each benchmark. The first three columns of data
show the pause times for the application thread. Referring back to
Figure 4, the first pause is for initial collection of the roots, Steps
1-4. The second pause is for the final root collection and mark
phase, Steps 11-17. The third pause is for merging the collected
sweep area back into the crib area of the young generation, Step

22. These pause times represent one of small remaining sources of
GC overhead. Times are shown in 1000’s of cycles. For a 1GHz
clock, this corresponds to microseconds. The second pause,
involving both a root collection and a small mark, is always the
longest pause. The largest pause time of 53,000 cycles was
observed for the Strata benchmark.

Column 4 shows the cycles (in thousands) required to mark the
root set (Figure 4, Step 5). Column 5 shows the cycles required to
mark the remembered set (Step 6). During the first collection the
old generation and the remembered set are both empty. As shown
in Table 2 DB only performs one collection, and so spends little
time on the remembered set.

Columns 6 through 8 give statistics indicating the performance of
the iterative reference set marking process, Steps 7 through 9 in
Figure 4. Column 6 (Live) shows the total time for this loop,
Column 7 (N) indicates the number of iterations, and Column 8
(Final) shows the number of objects in the reference set when the
loop exited. DB spends more time marking the reference set than
other benchmarks because the reference set grows to over 2000
entries. For all other observed collections the number of entries
ranged between 0 and about 1000. Marking was never performed
in parallel more than once because of the small number of
additional entries added to the reference set. For Raytrace some
collections the reference set was empty, which led to an average
number of iterations less than one.

Finally, columns 9 through 11 give times in cycles for sweeping,
tenuring and pruning. Tenuring and pruning take a relatively short
time. Sweeping is the longest single collection phase as shown in
Figure 11.

Table 3. Processor model parameters.

Parameter High-ILP
Processor

Service
Processor

Units

Processors 1 2 Proc.
Threads 1 3 Threads
Width 8 1 Instr.
Instr. Win. 128 (in-order) Instr.
Br. Pred. 8K entry

gshare
Not-taken

Min.
penalty

8 4 Cycles

I-Cache 32KB
2-way

1KB 4-way

D-Cache 64KB
4-way

2KB 4-way

Unified L2 Perfect

Table 4. GC Performance Characteristics
(Thousands of cycles)

P1 P2 P3 Root1 Rem Set Live N Final Sweep Tenure Prune Benchmark
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Strata 33 42 28 2844 5708 1744 1.0 4 13165 926 1812
Ray 19 33 25 316 4195 1281 0.7 7 11010 372 340
DB 15 19 6 1970 1 13443 1.0 0 16888 380 306
Jack 23 29 21 1702 4084 196 1.0 0 11890 534 703

High-ILP
Processor

8-way
O-O-O

Service
Processors

Scalar In-order

Unified L2

Figure 11 represents similar information graphically for the
second garbage collection in the Strata benchmark. The total
duration of the collection is a little less than 20 million cycles,
shown on the X-axis. The upper time line shows the various GC
phases, and the lower line shows the application pauses. The
pauses are so small that the hash marks plot on top of each other.
The sweep phase is easily the longest phase. This involves
scanning the heap for dead objects, zeroing freed object, and
putting them on a free list for reallocation.

Figure 11. Time line for the second GC in the Strata
benchmark.

Table 5 describes the time overhead of GC for each benchmark.
The first column of data shows the percentage of cycles that
dispatch was stalled due to a lack of profile resources. Simulation
results not shown indicate that these stalls occur due to limited
profiling networks, not limited profile buffers. Jack stores
references much more frequently than the other benchmarks,
stressing the RPA. The out-of-order execution window covers
about half of these stall cycles. The second column shows the
actual slow down compared to an implementation with unlimited
profile networks and buffers. The third column shows the
percentage of cycles spent in the three pause times. The final
column sums the previous two, giving the total time overhead for
GC. Jack experiences the greatest GC overhead of 1.32%.
Average overhead is a miniscule 0.55%. Direct comparisons to
previous collectors are difficult, due to varying languages,
benchmarks and VM implementations. However, GC overhead, as
well as the overhead for explicit memory management in C and
C++ programs, is typically reported as being 20% or more
[2][24][13][40][39].

Table 5. Garbage collection time overhead.

Bench-
mark

Profile
Stalls

(%)

Profile
Overhead

(%)

GC
Pauses

(%)

Total GC
Time

Overhead
(%)

strata 0.46 0.18 0.31 0.49
ray 0 0 0.34 0.34
db 0 0 0.05 0.05
jack 2.06 1.11 0.21 1.32
Avg. 0.63 0.32 0.23 0.55

Cache interference is another source of overhead not shown Table
5. GC can interact with the application through the memory
hierarchy, slowing the application down by causing extra cache
misses. Future research will examine these effects.

Table 6 shows the effectiveness of null-reference check performed
by RPA. The first column of data shows the cycles per profiled
store instruction. Store-barrier threads would be completely
overwhelmed by the Jack benchmark if the RPA did not filter
stores of null references. The percentage of records eliminated
through this check, shown in the second column, varies widely
across the benchmarks. Jack stores a null reference 95% of the
time. This does not include instructions that store null as an
immediate value. Jack makes frequent use of the hash table in the
Java library. Almost all of the null reference stores in Jack occur
as a result of one store instruction within that library. The final
column shows the number of cycles per message handled by the
store barrier threads. The amount of work performed by the store-
barrier threads varies by a factor of two, suggesting that the VM
adapt the number of threads assigned to this task to the workload.

Table 6. Store barrier work eliminated by RPA.

Bench-
mark

Cycles per
Profiled

Store

Null
Reference
Stores (%)

Cycles per
Processed

Store.
strata 102.3 28.2 142.6
ray 390.4 0.0 390.5
db 142.2 0.0 142.2
jack 16.3 94.9 319.6

6. CONCLUSIONS AND FUTURE
RESEARCH
The Relational Profiling Architecture provides a low-overhead
flexible mechanism for inter-thread communication. It allowed the
concurrent GC algorithm to monitor stores with very little
overhead, provided a more flexible store barrier that could change
depending on needs of the moment, and filtered out unnecessary
null-reference stores. This enabled the Strata virtual machine to
take advantage of low-cost thread-level parallelism, resulting in a
GC system with pause times of 53 microseconds or less with a
1GHz clock cycle, and an average time overhead less than 0.6%.

Further improvements can be made to the GC algorithm. All
phases of the GC algorithm can be highly parallelized.
Parallelizing these phases will become necessary as Strata moves
on to multi-threaded applications in order for the GC algorithm to
keep up with multiple application threads.

The RPA is a low-cost general mechanism, enabling such
improvements for a wide range of GC algorithms, as well as a host
of other profiling tasks. Future work includes using the RPA to
collect profile information for such optimizations as function
inlining, basic-block ordering, and partial-redundancy elimination
[22].

7. ACKNOWLEDGEMENTS
This work was support by NSF Grant CCR-9900610, by Sun

Microsystems, by an IBM Partnership Award, and by Intel
Corporation. The authors would also like to thank the reviewers
for their helpful comments, as well as Mario Wolczko and
Subramanya Sastry.

8. REFERENCES
[1] Andrew W. Appel, John R. Ellis, Kai Li, "Real-Time

Concurrent Collection on Stock Multiprocessors," 1988
Conf. on Programming Language Design and
Implementation, pp. 11-20, June 1988.

[2] Eric Armstrong, "Hotspot, A New Breed of Virtual
Machine", JavaWorld, March 1998.

[3] H. G. Baker, "List Processing in Real Time on a Serial
Computer," Communications of the ACM, 21(4), pp. 280-
294, April 1978.

[4] Luiz André Barroso, et al., “Piranha: A Scalable
Architecture Based on Single-Chip Multiprocessing,” 27th
Intl. Symp. on Computer Architecture, pp. 282-293, June
2000.

[5] Viktors Berstis, "Security and Protection of Data in the IBM
System/38," 7th Intl. Symp. on Computer Architecture,
pp. 245-252, 1980.

[6] H. Boehm, M. Weiser, "Garbage Collection in an Un-
cooperative Environment," Software Practice and
Experience, pp. 807-820, Sept. 1988.

[7] Hans J. Boehm, Alan Demers, Scott Shenker, “Mostly
Parallel Garbage Collection,” SIGPLAN Conf. on
Programming Languages Design and Implementation,
pp. 257-264, June 1991.

[8] Douglas C. Burger, Todd M. Austin, "The SimpleScalar Tool
Set, Version 2.0," Univ. of Wisconsin - Madison Comp. Sci.
Tech. Report #1342, June 1997.

[9] Robert S. Chappel, Jared Stark, Sangwook P. Kim, Steven K.
Reinhardt, Yale N. Patt, "Simultaneous Subordinate
Microthreading (SSMT)," 26th Intl. Conf. on Computer
Architecture, pp. 186-195, May 1999.

[10] Thomas M. Conte, Kishore N. Menezes, Mary Ann Hirsch,
"Accurate and Practical Profile-Driven Compilation Using
the Profile Buffer," 29th Intl. Symp. on Microarchitecture,
pp. 36-45, Dec. 1996.

[11] Jeffrey Dean, James E. Hicks, Carl A Waldspurger, William
E. Weihl, George Chrysos, "ProfileMe: Hardware Support
for Instruction-Level Profiling on Out-of-Order Processors,"
30th Intl. Symp. on Microarchitecture, pp. 292-302,
Dec. 1997.

[12] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm,
Daniel Bobrow, Scott Shenker, “Combining Generational
and Conservative Garbage Collection: Framework and
Implementations,” 17th Symp. on Principles of Programming
Languages, pp. 261-269, Jan. 1990.

[13] David Detlefs, Al Dosser, Benjamin Zorn, "Memory
Allocation Costs in Large C and C++ Programs," Univ. of
Colorado at Boulder Tech. Rep. #CU-CS-665-93, 1993.

[14] Damien Doligez, Xavier Leroy, "A Concurrent, Generational
Garbage Collector for a Multithreaded Implementation of
ML," 20th ACM Symp. on Principles of Programming
Languages, pp. 113-123, Jan. 1993.

[15] Damien Doligez, Georges Gonthier, "Portable, Unobtrusive
Garbage Collection for Multiprocessor Systems," 24th Symp.
on Principles of Programming Languages, pp. 70-83, Jan.
1994.

[16] Kemal Ebcioglu, Erik R. Altman, "DAISY: Dynamic
Compilation for 100% Architecture Compatibility," IBM
Research Report RC 20538, Aug. 1996.

[17] Michael Gschwind, Erik R. Altman, Sumedh Sathaye, Paul
Ledak, David Appenzeller, "Dynamic and Transparent
Binary Translation," Computer, pp. 54-59, Mar. 2000.

[18] Alexander Klaiber, "The Technology Behind Crusoe
Processors," a Transmeta technical brief, 2000.

[19] Lorenz Huelsbergen, Phil Winterbottom, "Very Concurrent
Mark-&-Sweep Garbage Collection Without Fine-Grain
Synchronization," Intl. Symp. on Memory Management,
pp. 166 - 175, 1998.

[20] Matthew C. Merten, Andrew R. Trick, Christopher N.
George, John C. Gyllenhaal, Wen-mei W. Hwu, "A
Hardware-Driven Profiling Scheme for Identifying Program
Hot Spots to Support Runtime Optimization," 26th Intl.
Symp. on Computer Architecture, pp. 136-147, May, 1999.

[21] David A. Moon, "Garbage Collection in a Large Lisp
System," 1984 Symp. on LISP and Functional Programming,
pp. 235-246, Aug. 1984.

[22] E. Morel, C. Renvoise, "Global Optimization by Suppression
of Partial Redundancies," Communications of the
ACM:22(2), pp. 96-103, 1979.

[23] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, K.-Y.
Chang, “The Case for a Single-Chip Multiprocessor,” 7th
Intl. Symp. on Architectural Support for Programming
Languages and Operating Systems, Oct. 1996.

[24] James O'Toole, Scott Nettles, "Concurrent Replicating
Garbage Collection," Proc. of the 1994 ACM Conf. on LISP
and Functional Programming, pp. 34-42, 1994.

[25] Terence Parr, ANother Tool for Language Recognition
(ANTLR), available at http://www.ANTLR.org.

[26] Ravi Rajwar, Alain Kagi, James Goodman. Private
correspondence. The SimpleMP simulator was produced by
the Galileo group at the University of Wisconsin - Madison.

[27] William J. Schmidt, Kelvin D. Nilsen, "Performance of a
Hardware-Assisted Real-Time Garbage Collector," 6th Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems, pp. 76-85, Oct. 1994.

[28] James E. Smith, Timothy Heil, Subramanya Sastry, Todd M.
Bezenek, "Achieving High Performance via Co-Designed
Virtual Machines," Intl. Workshop on Innovative
Architecture for Future Generation High-Performance
Processors and Systems , pp. 77-84, Oct. 1998.

[29] Y. Song, M. Dubois, "Assisted Execution," Technical Report
#CENG 98-25, Dept. of EE-Systems, USC, Oct. 1998.

[30] "MAJC Architecture Tutorial", Sun Microsystems White
Paper, May 1999.

[31] J. E. Thornton, "Parallel Operation in the Control Data
6600," American Federation of Information Processing
Societies Conf. Proceedings, 26: Part II, FJCC, pp. 33-41,
1964.

[32] James O’Toole, Scott Nettles, "Concurrent Replicating
Garbage Collection," 1994 ACM conference on LISP and
Functional Programming, pp. 34-42, 1994.

[33] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M.
Levy, Jack L. Lo, Rebecca L. Stamm, "Exploiting Choice:
Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor", 23rd Intl. Symp. on
Computer Architecture, pp. 191-202, May 1996.

[34] David Ungar, "Generation Scavenging: A Non-disruptive
High Performance Storage Reclamation Algorithm," SIG-
SOFT/SIGPLAN Practical Programming Environments
Conf., pp. 157-167, April 1984.

[35] Paul R. Wilson, "Uniprocessor Garbage Collection
Techniques," 1992 SIGPLAN Intl. Workshop on Memory
Management, pp. 1-42, Sept. 1992.

[36] Mario Wolczko, Ifor Williams, "Multi-level Garbage
Collection in a High-Performance Persistent Object System,"
5th Intl. Workshop on Persistent Object Systems, Sept. 1992.

[37] W. Yamamoto, M.J. Serrano, A.R. Talcott, R.C. Wood, and
M. Nemirosky, “Performance Estimation of Multistreamed,
Superscalar Processors,” 27th Hawaii Intl. Conf. on System
Sciences, pp. I:105-204, Jan. 1994.

[38] W. Yamamoto, M. Nemirovsky, “Increasing Superscalar
Performance Through Multistreaming,” Conf. on Parallel
Architectures and Compilation Techniques, pp. 49-58,
June 1995.

[39] Benjamin Zorn, "Comparing Mark-and-Sweep and Stop-and-
Copy Garbage Collection," Proc. of the 1990 ACM Conf. on
LISP and Functional Programming, pp. 87-98, June, 1990.

[40] Benjamin Zorn, "The Measured Cost of Conservative
Garbage Collection," Univ. of Colorado, Boulder, CS Dept.
Tech. Rep. CU-CS-573-92, Feb. 1992.

