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ABSTRACT 
In the presence of on-chip multithreading, a Virtual Machine 
(VM) implementation can readily take advantage of service 
threads for enhancing performance by performing tasks such as 
profile collection and analysis, dynamic optimization, and garbage 
collection concurrently with program execution. In this context, a 
hardware-assisted profiling mechanism is proposed. The 
Relational Profiling Architecture (RPA) is designed from the top 
down. RPA is based on a relational model similar to the relational 
database model. Instructions selected for profiling produce a 
record of information. A simple query engine examines these 
records for patterns, and performs simple actions on matching 
records. 

The power and flexibility of RPA is demonstrated by developing a 
concurrent generational garbage collector for Java. Detailed 
execution driven simulations show that this collector has an 
average runtime overhead of approximately 0.6%. The short 
pauses in the application required for synchronization with the 
garbage collector are at most 54 microseconds, given a 1GHz 
clock frequency. 
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1. INTRODUCTION 
As technology progresses, efficient hardware usage and the 
demand for higher levels of performance are leading to on-chip 
multi-threading, either through simultaneous multithreading 
(SMT) [33][38][37] or on-chip multiprocessing [4][23]. At the 
same time, the emergence of binary translation and virtual 
machine (VM) technologies are pointing to a re-definition of the 
traditional hardware/software interface. 

Our research is targeted at this future environment and is centered 
on the development and application of co-designed virtual 
machines [28]. Co-designed VMs combine hardware and software 
to implement a virtual instruction set architecture (V-ISA). A co-

designed virtual machine can use available on-chip multi-
threading to implement service threads that perform such tasks as 
dynamic compilation, profile collection and processing, and 
garbage collection concurrent with program execution  Properly 
developed hardware-assisted profiling can provide an efficient 
communication mechanism that allow VM service threads to 
monitor program behavior without slowing down program 
threads. 

We employ the above concepts to implement a concurrent garbage 
collection (GC) mechanism supported by Strata, our experimental 
co-designed  VM. GC executes on separate on-chip threads and 
uses hardware-assisted profiling to replace traditional inline store 
barriers. Detailed simulations show that this collector has an 
average run-time overhead of 0.6%, and the worst GC pause time 
is less than 0.2ms. 

1.1 Co-designed Virtual Machines 
Virtual machines execute programs coded in the V-ISA on 
hardware directly supporting another ISA, the implementation 
ISA (I-ISA). Co-designed virtual machines use a mix of hardware 
and software, designed together, to form a high performance 
implementation of the V-ISA. The I-ISA is designed to enable a 
clean, high performance microarchitecture that gets maximum 
benefit from the current generation chip technology. Conversely, 
the software portion of the VM is designed to improve processor 
performance through dynamic recompilation, special I-ISA 
instructions and hint bits, and pipeline tuning features that are 
visible through the I-ISA. In this context, the I-ISA becomes very 
fluid because the V-ISA provides the necessary binary 
compatibility. The System/38 [5] was a pioneer in this field, and 
there has been a flurry of recent co-designed VMs. These include 
Transmeta’s Crusoe processors [18], Sun Microsystem’s MAJC 
processor [30], and the DAISY [16] and BOA [17] research 
projects at IBM. 

1.2 Thread-Level Parallelism and Virtual 
Machines 
Widespread use of thread level parallelism (TLP) is likely to 
provide the next large gains in general purpose performance. 
Compared with instruction-level parallelism (ILP), TLP is 
relatively easy to support in hardware. ILP-oriented superscalar 
processor designs now consume enormous resources in terms of 
transistors, area, and power to reap even incremental gains in 
instructions per cycle. If processors were designed to exploit TLP, 
instead of ILP, much greater peak throughput could be obtained 
with the same resources. Of course, this requires that there are 
multiple threads of execution to exploit. Most recent superscalar 
designs focus on ILP primarily because multiple threads have 
only rarely been available in a general-purpose environment. 

 

 
 
 
 

 



High performance VMs have the potential to change this. Many 
tasks that a VM performs are conceptually parallel to program 
execution. These include garbage collection, program profile 
collection and analysis, and dynamic optimization. Furthermore, 
each of these tasks can be parallelized itself. Hence, VMs have the 
potential for providing many service threads of execution, which 
collectively lead to much higher performance for the main 
program thread(s). 

1.3 Profiling and inter-processor 
communication 
An important aspect of multi-threaded co-designed VMs is the 
interaction of the main program thread(s) and service threads.  
There must be mechanisms for monitoring the performance of 
program threads and low-overhead communication mechanisms 
so that service threads can respond efficiently and correctly to the 
application’s requirements. 

Consequently, we made profiling a high priority and took a top-
down approach to hardware-assisted profiling, first determining 
the properties of program execution that might need to be 
observed. The goal was to develop a mechanism flexible enough 
to meet not only current needs, but unanticipated future needs as 
well. From this we developed a framework for instruction-level 
profiling, which was then engineered to an efficient 
implementation. The result was the Relational Profiling 
Architecture (RPA), described in detail in Section 3.  

A central outcome of this research is the realization that there is 
synergy between hardware-assisted profiling and inter-thread 
communication. Hardware-assisted profiling provides a general 
mechanism for observing program behavior without diminishing 
application performance, enabling the VM to take advantage of 
TLP. However, there must be efficient mechanisms for 
communicating this information to service threads. Hence, we 
developed a general memory-based model for communicating 
profile information. 

As noted already, garbage collection provides an excellent 
opportunity for applying service threads.   Profiling hardware is 
used for observing application stores of object references to the 
heap, a task traditionally done with inline store barrier code. Then 
the relevant store information is passed via the memory interface 
to a service thread that actually executes the store barrier code. 

1.4 Paper Organization 
The remainder of this paper is organized as follows. Section 2 
discusses related work in the areas of hardware-assisted profiling, 
concurrent garbage collection, and multi-threaded optimizations. 
Section 3 discusses the Relational Profiling Architecture in detail. 
Section 4 describes the proposed concurrent GC algorithm. 
Section 5 describes the experimental methods and  results, and 
Section 6 concludes the paper. 

2. RELATED WORK 
To our knowledge, this is the first paper to use multiple threads 
and profiling hardware to aid GC. Related work falls into three 
categories: hardware-assisted profiling, service threads, and 
concurrent GC. 

2.1 Hardware-assisted profiling 
The RPA described in Section 3 is most similar to ProfileMe [11]. 
ProfileMe first picks an instruction for profiling at random. As the 

instruction flows through the pipeline, information on its behavior 
is collected and stored in profile registers. When the instruction is 
completed, whether it is squashed due to a branch misprediction 
or it is retired, ProfileMe generates an interrupt, and a trap handler 
reads the information from the profile registers. 

ProfileMe reduces hardware by bounding the number of 
instructions simultaneously profiled, typically to one or two. 
However, this comes at a cost. ProfileMe lacks some of the 
expressive power that may be needed. ProfileMe does not provide 
mechanisms to guarantee particular instructions are profiled, to 
select which types of instructions are profiled, or to select which 
information is collected. 

The Profile Buffer [10] is a hardware mechanism designed to 
profile branch edge frequencies in programs. It collects taken/not-
taken counts for conditional branches in a buffer following 
retirement. The buffer is periodically spilled to memory for 
analysis by software. 

Merten et al. [20] develop a scheme for identifying hot spots in 
programs. Hot spots are relatively small regions of static code that 
account for a large portion of dynamic execution. Their scheme 
collects branch taken/not-taken counts a structure similar to the 
Profile Buffer, the Branch Behavior Buffer (BBB). The BBB also 
identifies frequently seen branches and uses this information to 
identify hot spots. A separate structure, the Monitor Table 
prevents hot spot re-detection. RPA can easily collect edge 
profiles by monitoring the outcomes of executed branches. Tasks 
such as hot-spot detection would be run on service threads. These 
threads would maintain structures like the BBB and Monitor 
Table would be maintained in software. 

2.2 Service threads  
The service thread concept has been researched under other names 
for purposes other than GC. Simultaneous Subordinate 
Microthreads (SSMT) [9] uses multiple micro-threads to improve 
single-threaded application performance. Multiple threads are run 
along with the application using simultaneous multithreading 
(SMT) [33][38][37]. Micro-threads are written in an 
implementation-specific ISA, different from the application ISA, 
and stored in a special cache structure. Branch prediction is used 
as an example performance optimization. 

Assisted Execution [29] uses nanothreads in conjunction with 
SMT in much the same way. Unlike SSMT and this work, 
nanothreads share memory and register state with the application 
thread. Unlike SSMT and similar to this work, nanothreads 
execute the same ISA as application threads. Nanothreads are 
invoked either directly by the application, or triggered by 
hardware events using nanotraps. Several data prefetching 
algorithms are used as example performance enhancements. 

2.3 Concurrent garbage collection 
Concurrent garbage collection has a long history. Developing an 
algorithm that is both efficient and correct has proven to be a 
difficult problem. Sweeping, compared to marking, is easy to 
perform concurrently with the application. Most research focuses 
on making the mark phase concurrent. Many of these algorithms 
were developed as incremental algorithms to reduce pause times 
on uniprocessors. Usually they could be made completely 
concurrent, were multiple processors provided. 



Several concurrent algorithms are based on Baker’s incremental 
copying algorithm [3]. Before collection, the heap is divided into 
a from-space and to-space. From-space contains the objects to be 
collected, which are copied into to-space by the collector. The 
collector copies all live objects into to-space. From-space then 
contains only dead objects and is reclaimed en-mass. The copying 
process can occur in parallel with the application, as long as an 
important invariant is maintained. The application may only 
obtain references to objects in to-space. Whenever the application 
attempts to load a reference to from-space, the reference is 
redirected to the copy of the object in to-space, copying the object 
first if necessary. To accomplish this feat a load-barrier must 
examine all loads of references. 

Assuming from-space is a contiguous region, RPA can perform 
this check by doing a range check on the loaded value, and 
throwing a synchronous exception. However, the frequency of 
such loads is liable to overwhelm the profile mechanism. Hence 
we avoided algorithms based on Baker’s algorithm. 

Since maintaining the invariant with software load-barriers is 
expensive, many systems have proposed hardware mechanisms for 
performing this check. An early but very impressive GC system 
was developed for the Symbolics 3600 [21]. This was a system 
designed explicitly for LISP, and also represents an early co-
designed VM. The algorithm is a concurrent copying generational 
GC algorithm. Card-marking [35] was used to track inter-
generational pointers. Each card was one virtual memory page. 

Tagged memory distinguished references from other data for both 
hardware and software. Special hardware checked the results of 
every load instruction. Loading a references to old-space 
generated an interrupt. The trap handler redirected the loaded 
word to the copy in copy-space, copying the object first if 
necessary.  

The Symbolics 3600 also had special hardware to track inter-
generational pointers. When a reference to a young object (called 
ephemeral in [21]) was stored hardware set a special bit 
associated with the modified page. These pages were examined 
for references when the young generation was collected. RPA 
performs essentially the same function for the collector described 
here. 

The MUSHROOM system [36] used similar forms of support. 
Tagged memory was used to locate pointers. MUSHROOM, 
however used a software-controlled object-oriented cache 
structure. The young generation was maintained in the cache. 
Objects could be allocated, used, and collected all within the 
cache, without ever being assigned a physical address. The young-
generation collector was not concurrent, although collection of 
main memory and secondary storage was done incrementally. 

Schmidt and Nilsen [27] propose adding hardware support for 
Baker’s algorithm [3] to the memory modules, rather than the 
CPU. They suggest that adding specialized support in a standard 
expansion slot will be economically more attractive than 
modifying the CPU. The garbage-collected memory module 
(GCMM) contains a to-space and from-space, and performs an 
algorithm similar to Baker’s collector. Tagged memory allows the 
GCMM to identify pointers for the GCMM. The GCMM also 
traps and updates all reads of references to the from-space, 
ensuring that the application never obtains references to from-
space. 

The above hardware mechanisms are designed specifically to 
support GC and particular languages. Such specific hardware 
mechanisms have rarely been popular with commercial hardware 
vendors. The goal of RPA is produce a general mechanism that is 
useful for a wide variety of tasks. The original intent of RPA was 
profiling. RPA’s ability to perform other services is evidence of 
its generality. 

Doligez et al. developed a concurrent mark-sweep GC algorithm  
along with a formal proof of correctness [14][15]. Similarly, 
Lorenz and Winterbottom described a non-generational 
concurrent mark/sweep collector implemented for the Inferno 
operating system and the SML/NJ ML compiler [19]. The very 
concurrent garbage collector (VCGC) allows application 
execution, marking, and sweeping to run concurrently. 
Essentially, the marker and sweeper are pipelined; the sweeper 
sweeps what was marked in the previous epoch. Objects allocated 
in the current epoch will be marked in the next epoch, and swept 
two epochs later. 

Like the algorithm we present, both of the above algorithms strive 
to eliminate as much synchronization as possible. Both of the 
algorithms handle concurrent reference mutations using a 
snapshot-at-beginning store barrier [35] that observes the 
reference about to be overwritten by a store. This is a significant 
difference from our algorithm, which uses an incremental update 
[35] store barrier, observing the stored values, rather than the 
overwritten values. Observing stored values is easier for RPA, 
since it need only profile store instructions. RPA can perform a 
snapshot-at-beginning store barrier by inserting an extra load just 
before the store instruction, and then profiling that load 
instruction. 

Several concurrent GC algorithms use virtual-memory page 
protection to replace in-lined barriers. Appel, Ellis and Li [1] use 
this technique for an algorithm based on Baker’s algorithm. 
Baker’s algorithm divides to-space into three areas. The scanned 
area contains objects that have been scanned for references to 
from-space. All references in this area have been redirected; the 
scanned area contains only references to to-space. The unscanned 
area contains objects that have been copied into to-space, but 
which have not yet been scanned for references to from-space. 
Appel, Ellis and Li read- and write-protect the unscanned area. 
Upon a page protection fault, the handler copies the offending 
page from to-space into from-space, and updates all the 
references. Hence the application sees only references to objects 
in to-space. This algorithm can cause a flurry of page faults at the 
beginning of GC, due to the root objects being copied into the 
unscanned area. Such faults are also relatively expensive, since 
whole pages have to be copied and updated by the handler. 

Boehm et al. use this technique to develop a concurrent 
conservative non-copying generational collector [7]. Copying is 
avoided because of the focus on conservative collectors. This 
collector only write-protects pages, and performs only a small 
amount of work for each protection fault. Faults could be 
dispensed with altogether, if hardware page dirty bits could be 
used. Before marking, all of memory is write-protected. For each 
write-protection fault, the collector notes the modified page and 
removes the write protection. After marking, objects missed due 
to concurrent modifications to the heap are detected by following 
all references from marked (live) objects on modified pages. This 
second mark can be done without stopping the application if all 



the pages are re-protected to track modifications. This is done at 
most twice, at which point the application is stopped and all 
modified pages are marked one more time with the application 
stopped. At this point all reachable objects are marked and 
sweeping can begin. This is similar to how the reference set is 
handled by our algorithm. 

Boehm et al. go beyond proposing a particular algorithm, and 
propose a general transformation for making a wide variety of 
non-concurrent GC algorithms concurrent. The algorithm we 
developed can be considered a variation of this algorithm based 
on RPA. While they base this transformation on page protection 
bits, RPA provides the same basic functionality: the ability to 
track modifications to the heap. Hence, RPA also provides a basis 
for a wide range of concurrent algorithms, but without the 
overhead of page faults. 

3. THE RELATIONAL PROFILING 
ARCHITECTURE (RPA) 
The RPA is a detailed profiling architecture based on the 
relational profiling model. This model views profiling as querying 
a table of profile information. The relational profiling architecture 
(RPA) is a detailed architecture that embodies the relational 
model. RPA allows queries to be conveniently expressed and 
leads to an efficient implementation. 

3.1 The Relational Profiling Model 
Conceptually, the relational profiling model is similar to a 
relational database. Dynamic instructions are related to events. 
Events may result from changes to architected or implementation 
state and conceptually can be organized into a table. See Figure 1. 
This model leads to two basic forms of queries. 

 

Figure 1. The relational profiling model organizes 
instructions and events in a table. 

1) Instruction-based queries. "For certain instructions, what events 
occurred?" These queries conceptually select columns from the 
table. To collect this information, the profile mechanism 
essentially follows the instruction as it flows through the pipeline, 
collecting event information regarding its behavior. This is similar 
to ProfileMe [11]. 

2) Event-based queries. "For some events, what instructions were 
involved?" These queries conceptually select rows from the table. 
To collect this information, the profile mechanism essentially sits 
at some point(s) in the pipeline, recording information about 
instructions that flow past. This is similar to the counter profiling 
mechanisms common in processors today. In contrast to counter-
based methods, however, the relational model can provide 
detailed information regarding specific dynamic instructions. Still, 
hardware counters may sometimes be used as an efficient 
summarizing mechanism. 

Hybrids are also possible and useful. For instance, the definition 
of, “some instructions,” in instruction-based queries may contain 
event-related conditions (i.e. “For all load instructions that missed 
in the cache...”). 

3.2 RPA Assembly Language 
The RPA is most easily understood from its assembly language. 
Figure 2 shows the RPA assembly language query used for the 
concurrent garbage collector presented here. The RPA assembler 
was developed using the ANTLR tool [25] to facilitate research 
on RPA. 

An RPA assembly language statement or “query” 1) describes 
records of information to be collected, 2) specifies a rate at which 
the information should be collected, 3) describes selection criteria 
for which a record should be checked, and 4) indicates actions to 
be taken for the selected records.  

Unlike typical assembly languages, RPA queries invoke a number 
of machine level instructions that manage various structures in the 
profile hardware. These structures are described in Subsection 
3.3. 

for opSTORE 1 always collect op1 op2; 
 if op1 <> 0 then send 3 stop else stop; 

Figure 2. Concurrent GC RPA query. 

An RPA profile program is broken into a series of queries. Each 
query begins with a for clause, and is followed by one or more 
comparison clauses. The query in Figure 2 contains a single 
comparison clause. 

The for clause indicates which instructions should be profiled, 
what information should be collected and how often. The types of 
instructions to profile are listed following the for keyword. 
Instructions are divided into the eight classes shown in Table 1. 
For example, the statement in Figure 2 specifies that store 
instructions should be profiled.  

The VM can further classify instructions using two profile bits per 
instruction word in the program binary being profiled. This yields 
a total of 32 instruction classes. Note that the VM paradigm 
enables an implementation ISA with two embedded profile bits 
per instruction. An alternative is to add additional hardware tables 
to hold software-controlled classification information. The two 
bits are interpreted as an integer. The number following the 
instruction-class mnemonic indicates what profile bit values 
should be profiled. 

Table 1. Instruction profiling classes. 

Mnemonic Instructions 
opJMP Unconditional jumps 
opBRANCH Conditional branches 
opLOAD Load instructions 
opSTORE Store instructions 
opALU Simple arithmetic and logical 

instructions 
opMULT Multiply/divide instructions 
opFLOAT Floating point operations 
opSYS SYSCALL, BREAK, etc. 

Dynamic Instructions

E
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The concurrent GC algorithm only needs to monitor stores that 
are storing references to the heap. The VM tells RPA which store 
instructions write references to the heap using the profile bits. 
Only store instructions with the profile bits set to 1 are profiled, as 
indicated in the query in Figure 2. 

For the specified instruction class, the for clause indicates the 
information to be collected and a random sampling rate. Simple 
random sampling can reduce the rate at which profile information 
is collected. Since the GC algorithm relies on observing every 
reference store for correctness, the always keyword indicates that 
random sampling is not used.  

Finally, the for clause lists the information collected. Each item 
represents one 32-bit word of information, which is collected and 
packed into a record by the RPA. The proposed RPA limits the 
information collected to seven words per record. This appears to 
be large enough to handle all profiling tasks without producing 
overwhelming large records. 

Store instructions take three input operands, the value stored 
(op1), a base address (op2) and an offset. When writing fields in 
regular objects, the offset is typically a small immediate encoded 
in the store instruction. When writing arrays, the offset is 
provided as an input register. In both cases, the base address is a 
reference to the base of the object being modified. The value 
stored is the reference being written. The GC query instructs RPA 
to collect the reference being stored and the reference of the 
object being modified to monitor concurrent modifications to the 
heap during marking, and to track inter-generational pointers. 

Following the for clause, comparison clauses indicate conditions 
used to select certain records and the actions to be taken for the 
selected records. Each comparison clause can perform up to two 
comparisons to check for desired properties within the record. The 
comparison types available include the standard relational 
operations, comparisons that check for set or cleared bits, and 
further random sampling. If the comparison(s) match, an action 
may be performed and/or a branch to another comparison clause 
may be taken Otherwise, execution falls through to the next 
sequential query instruction. The stop keyword within the 
comparison clause indicates that query is completed. Since stores 
of null references do not need to be examined by the GC 
algorithm, the query in Figure 2 checks if operand 1, the stored 
reference, is not null (zero). 

Profile actions communicate collected profile information back to 
VM software. The most common action is the message send, 
indicated by the send keyword, as shown in Figure 2. A copy of 
the record is written into a circular message queue where it can be 
examined by a service thread. The service thread can then perform 
more detailed processing of the information. The query in Figure 
2 sends the collected record to a service thread that performs the 
store barrier function. Message queues are held in shared memory, 
and service threads access these queues using normal loads and 
stores. The RPA can also disburse messages can be disbursed to 
messages to multiple queues. The RPA will perform load 
balancing among the queues so multiple service threads can 
efficiently process the records in parallel. Collections of queues 
used in this manor are called a pool. Hence RPA send actions 
provide an automatic mechanism for single-producer/multiple-
consumer communication. Furthermore, the query engine can 
send records with different information to different pools. This 
way service threads only receive information related to their task, 

eliminating the need to determine what type of message has been 
received. The number following the send keyword specifies the 
queue pool to which the record is to be written. 

3.3 Low-Level Architecture 
Figure 3 illustrates an implementation of the RPA. Specific 
queries are formed by the virtual machine using the query 
language described in the preceding section. Using this 
description the assembler divides query processing into two 
components shown in the figure. A configuration for the profile 
control table (PCT) is derived from the for clauses. The PCT is a 
set of architected profile control registers (PCRs). Software 
configures the PCT using a special SET_PCR instruction added to 
the I-ISA. 
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Figure 3. The relational profiling architecture contains the 
profile control table (PCT) and the query engine. 

Comparison clauses generate query instructions to be executed by 
the query engine, a simple processor capable of performing the 
comparisons and actions dictated by the query. Query instructions 
may be stored in memory, or in a special-purpose table 
constructed out of PCRs to reduce implementation costs. A 
special-purpose table is currently simulated. 

3.3.1 The Profile Control Table (PCT)  
The PCT implements two PCRs for each of the 32 instruction 
classes. The first PCR sets the sampling rate, and selects 
information to be collected. The second PCR contains the starting 
query PC (QPC), the address of the initial comparison instruction 
for the query engine to execute. Profile records collected at the 
behest of the PCT are passed to the query engine for further 
processing. 

3.3.2 The Query Engine 
The query engine begins executing the comparison instructions at 
the initial QPC location provided by the PCT. Comparison 
instructions are executed until terminated by an explicit stop 
annotation within an instruction. The application program 
continues to execute in parallel with the query engine, and 
multiple comparisons may be executed in parallel as well. To 
simplify implementation there is no guarantee of the order in 
which separate queries are executed or completed. 

Each comparison instruction can specify up to two comparisons, a 
branch and a profile action. The query engine can compute 
arbitrary Boolean expressions by forming comparison instructions 
into if-then-else decision trees. 



The comparison instructions are encoded in a 64-bit format. The 
basic two-comparison format is shown in Figure 4. The 
comparison instruction reads two values from the record. 
Comparisons operate on 8,16 or 32 bit data, so both the size and 
location of the data to examine are encoded in the instruction. To 
reduce implementation costs, one even word and one odd word 
from the profile record are selected. The comparison instruction 
also includes a 16 bit immediate value. 

 

Figure 4. Comparison instructions contain up to two 
comparisons, a branch and an action. 

If both comparisons in the instruction match, the specified action 
is performed and the branch is taken. Otherwise execution falls 
through to the next sequential comparison instruction. 

To implement message actions, the query engine manages circular 
message queues in memory. Each message uses eight words of 
memory, and the size of the queue is configurable up to 128 
messages. To write a record into a queue, the query engine writes 
the seven words of the record. The eighth word is used as a ready 
word to indicate that the record is available. To read a record, a 
service thread polls the ready word, reads the record from 
memory, and then clears the ready word. The service thread also 
periodically informs the query engine how many messages have 
been read. This is done by storing the total messages read into the 
buffer read status word in memory, which is examined 
periodically by the query engine. The query engine uses the 
number of messages read, along with the number written (which it 
knows), to determine if space is available for another message. 
Using the buffer read status word reduces the polling required by 
the query engine, over using the ready words alone. 

3.4 RPA Implementation and Cost 
The query engine pipeline modeled for this research is shown in 
Figure 5. The query engine is designed to execute up to four 
queries simultaneously using a simple barrel-and-slot design [31]. 
The pipeline is four stages long, and executes one query 
instruction for each active query once every four cycles in a 
round-robin fashion. As the profile records fill, the processing 
power of the query engine increases to one query instruction per 

cycle. The barrel-and-slot design eliminates all interlocks and 
dependences in the pipeline as well as branch misprediction 
penalties. 

Messages are sent by the message engine. The message engine 
reads records from the record buffer using a second dedicated 
port, and writes them to the in-memory queues. The message 
engine also handles polling the buffer read status words. 

A profile network is needed to carry profile information from the 
pipeline to the profile buffers. Though a complete design of this 
network is beyond the scope of this paper, the size of the network 
will scale linearly with the number of simultaneously profiled 
instructions [11]. The latency of this network is not a concern; the 
profile mechanism can be relatively distant from the core pipeline. 
However the size and layout impact of this network on the core 
should be minimized. 

Instructions are selected for profiling during instruction dispatch. 
At this point a profile buffer is allocated to store the collected 
information until the query engine finishes processing it, and a 
profile network is allocated to carry information for the profiled 
instruction. If either is not available then dispatch stalls. When the 
instruction retires the profile network is freed, but the profile 
buffer remains allocated until the query completes. Four profile 
networks and eight profile buffers, 256 bytes, is enough to make 
stalls due to profiling a rarity, as will be shown in Section 5.4. 

4. CONCURRENT GARBAGE 
COLLECTION USING THE RELATIONAL 
PROFILING ARCHITECTURE 
Concurrent [19][14][32][35] and generational [34] garbage 
collection schemes must monitor stores to the heap while 
collection is in progress. This store barrier typically takes the 
form of several instructions inserted before every instruction that 
stores a reference to the heap. 

As shown in Figure 2 and described in Subsection 3.2, the RPA 
replaces inlined store-barriers by profiling the store instructions. 
The RPA collects the needed information, and sends this 
information to store barrier threads, which execute the store 
barrier in parallel with the application. Three store barrier threads 
are currently used. This is enough to keep up with application 
stores, though it may be possible to use fewer threads. 

Furthermore, the store barrier changes slightly depending on 
whether a collection is actually taking place. Dynamically altering 
store barrier behavior is easy with RPA, unlike traditional inlined 
store barriers. The store barriers simply check a global variable to 
see which type of store barrier needs to be executed. This check is 
only performed when the message queues are empty, so the 
overhead of the check occurs only when there is no other work to 
do. 

The resulting GC algorithm is an almost entirely concurrent two-
generation algorithm. Because moving objects concurrently is 
difficult [14], we focused on non-copying generational collection 
[7][12]. The application must stop for three short pauses during 
garbage collection, as is explained later. 

4.1 Heap layout 
We organize the heap in a manner similar to the "big-bag-of-
pages" organization used in the Boehm-Weiser conservative 
collector [6]. Heap space is allocated in chunks, and each chunk 
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contains an integer number of same-size blocks. Chunks are 
nominally 1KB. However, unlike many collectors using this 
layout, all chunks need not be the same size, and they only need 
be double word aligned. If blocks of a given size do not fit evenly 
into a chunk, slightly smaller chunks are allocated for that size. 

The heap is divided into the young generation and the old 
generation. Each generation is composed of a doubly-linked list of 
chunks. Chunks are moved between generations by removing 
them from one list and inserting them into the other. 

Supporting all block sizes is inefficient, as there are frequently not 
enough objects of a given size to fill up a chunk. This is especially 
true for larger sizes. All block sizes divisible by eight bytes are 
supported up to 128 bytes; block sizes divisible by 16 bytes are 
supported up to 256 bytes. This combination appears to yield 
good performance. An object will use the smallest size block into 
which it fits. Objects larger than 256 bytes are allocated 
separately. 

The first word of each object, called the method table pointer 
(MTP), points to type information for the object. This is used for 
virtual function calls, type checks, and to find reference masks 
used to locate the references within the object. The GC algorithm 
uses the lower three bits of this pointer for GC state. These bits 
must be masked off before the MTP can be used. This overhead 
has not been found to be significant. If this overhead should be an 
issue, a load-and-mask operation could be added to the I-ISA. The 
advantage of this, versus storing the bits off to the side, is that the 
bits can be easily found given the object reference or the block 
address. Storing the state elsewhere generally results in a 
relatively complex instruction sequence just to locate the state. 

The three MTP bits are the OLDGEN_MARK set for objects in the 
old generation, the REM_MARK used to maintain the remembered 
set described in the next subsection, and the LIVE_MARK set 
when an object has been reached by the marking process. 

Marking an object involves setting the LIVE_MARK, and placing 
the object on the mark stack. Objects are popped off the mark 
stack, and scanned for references to unmarked objects, which do 
not have the LIVE_MARK set. This process iterates until the 
mark stack empties, at which point all reachable objects have been 
marked. During sweeping, objects with the LIVE_MARK unset 
are collected and the LIVE_MARKs are reset. 

Unallocated blocks are placed in per-size singly linked lists stored 
in the free blocks themselves. Object allocation is inlined in the 
application code, and involves popping a free block off the list. 
Except for the first two words of memory, used for the free list, 
the GC algorithm initializes memory to zero concurrently, so 
allocation results in an initialized block. 

If no free block is available then a new chunk must be allocated 
and initialized. This more complex operation is performed 
through a call to the run-time system. If this expands the heap 
beyond a dynamically adjusted threshold, GC is invoked. 
Typically only the young generation needs to be collected. If 
tenuring expands the old generation beyond a dynamically 
adjusted threshold, the entire heap is collected. 

Whole chunks are tenured by unlinking them from the young 
generation and linking them into the old generation. In addition 
OLDGEN_MARK is set when an object is tenured into the old 
generation. GC uses OLDGEN_MARK to avoid marking old 
generation objects when collecting only the young generation. 

Tenuring free blocks wastes space since new objects cannot be 
allocated into the old generation. The tenuring policy tries to 
minimize this waste by selecting nearly full chunks. Only chunks 
that are at least 75% full are tenured. In practice, between 0% and 
14% of the tenured blocks are free. In addition, chunks are de-
tenured when they become mostly free. In order to reclaim 
otherwise wasted space, blocks are de-tenured when no more than 
25% full. Demers et al. describe a similar solution for their non-
copying conservative generational collectors [12]. This mixes old-
generation objects into the young generation. Sweeping the young 
generation becomes slightly less efficient, because old objects 
must be explicitly skipped over. However, in practice less than 
2% of objects in the young generation are old-generation objects. 

The GC algorithm uses load-locked/store-conditional primitives 
to atomically examine and set MTP bits. However, the application 
does not require any synchronization with the GC algorithm. 
Since the application does not modify the MTP or use the GC 
state bits, there are no synchronization issues with these bits. 

The algorithm also eliminates all synchronization hazards between 
allocation, which pops objects off the free lists, and sweeping, 
which places collected object on the free lists. The young 
generation is divided into two portions. New objects are allocated 
by the application into the crib. GC sweeps the sweep area. 
Before sweeping, the application is paused temporarily, and all 
objects are (logically) moved from the crib into the sweep area, 
leaving the crib empty. After sweeping, the application is again 
paused temporarily, and uncollected objects are merged back into 
the crib. Fine-grain synchronization is unnecessary because 
collected objects are placed en mass on the free-lists while the 
application is paused. This also prevents objects that were 
allocated during sweeping from being erroneously swept and 
collected. A similar optimization is performed in VCGC [19]. 

4.2 Remembered set and inter-generational 
references 
To collect only the young generation, some mechanism must track 
references from the old generation into the young generation. This 
is done using the REM_MARK MTP bit and the remembered set. 
The remembered set is a list of all objects in the old generation 
that may contain references to objects in the young generation. 
REM_MARK is set for all objects in the remembered set to avoid 
adding duplicate entries to the remembered set. 

Store-barrier threads examine the REM_MARK of modified 
objects, as reported by RPA. If it is not set, the object is placed in 
the remembered set, and the REM_MARK is set. To prevent 
young-generation objects from being placed in the remembered 
set all objects in the young generation have the REM_MARK set. 

The resulting extremely efficient store barrier is shown in pseudo-
code in Figure 6. Although this is shown in C-like code, each 
statement represents one machine instruction. For most 
applications only a few old-generation objects point to young-
generation objects, so only a few objects need be placed in the 
remembered set. In benchmarks we have observed REM_MARK 
is already set 99.99% of the time. Hence, the basic store barrier is 
3 instructions in the common case. The resulting remembered set 
is free of duplicates, and contains exactly those objects in the old 
generation that must be examined. 



Store_bar: 
  mtp = load_locked(obj.mtp); 
  rem_mark = mtp | REM_MARK; 
  If (mtp != rem_mark) { 
      if (!store_cond(obj.mtp, rem_mark)) goto Store_bar; 
      // Add to remembered set … 
  } 

Figure 6.  Generational store barrier pseudo-code. 

Objects referenced by the root references, references in local and 
global variables, are marked first. When collecting the young 
generation, young objects referenced from old objects in the 
remembered set are also marked. Several other marking steps are 
required to make the algorithm concurrent, as explained in the 
next subsection. 

4.3 Concurrent modifications of the heap 
Concurrent collection also requires the store barrier to keep track 
of modifications to heap references during marking. Otherwise, 
GC could collect live objects when the application moves  
references during marking. A simple example is shown in Figure 
3. In Step 1 GC has marked and scanned object A, placing object 
B on the mark stack. However in Step 2, before the GC scans 
object B, the application moves object B’s reference to object C 
into object A. Finally in Step 3, GC scans Object B. Object C is 
missed, and is mistakenly collected. 

To solve this problem, we use an incremental update [35] scheme. 
Whenever a reference to an object is written to the heap, the 
referenced object is marked live, and placed in the reference set. 
This set contains all the objects that might otherwise be missed 
due to application modifications of the heap. 
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Figure 7. Example concurrent reference mutation. 

We use a store barrier mechanism similar to the one used for the 
remembered set. RPA is used to collect the same information from 
every reference store, the stored reference and a reference to the 
modified object. If the LIVE_MARK of the referenced object is 
not set, then LIVE_MARK is set and the object is placed on the 
reference set. In our benchmarks, at least 98.5% of the time the 
LIVE_MARK is already set, and no more work needs to be done. 
The query engine simplifies the concurrent store barrier code by 
doing the required null reference check. 

The store barrier thread must execute two or three additional 
instructions to remove the profile message from the message 
queue. This results in a five-instruction store barrier in 
generational mode when not marking concurrently, and a twelve-
instruction store barrier in concurrent mode during marking. 

4.4 Complete algorithm 
Figure 8 provides a time line of the algorithm's execution. Time 
runs down the image, and is not to scale. A collection of the 
young generation is depicted and described. Collecting the entire 
heap is similar but simpler. Five threads are shown, the 
application thread, three identical store barrier threads, and the 
garbage collection thread, which executes the marks and sweeps. 
The wide crosshatched bars indicate where the application is 
running. The narrow vertical lines indicate where the GC 
algorithm is running. No line indicates that the thread is paused. 
Horizontal dashed lines depict inter-thread control 

The complete algorithm works as follows: 

Steps 1-4. The application tries to expand the heap, exceeding the 
GC threshold. This will begin the GC process. Next the 
application thread builds the set of root references, and switches 
the store barrier from the generational store barrier to the 
concurrent store barrier. Then, GC is started and the application 
continues execution. 

Step 5. The GC thread marks the root set built in Step 2 

Step 6. All objects in the remembered set are scanned for 
references to young-generation objects. These young-generation 
objects are marked. To prevent the store-barrier threads from 
modifying the remembered set being examined by the GC thread, 
the GC thread atomically snapshots the current state of the 
remembered set. Store barrier threads find the remembered set 
using a global pointer within the run-time system. To snapshot the 
remembered set, the GC thread grabs a copy of the global pointer, 
and swaps in a pointer to a spare remembered set. Mutual 
exclusion locks make this operation atomic. During the rest of 
Step 6 store-barrier threads will add objects to the spare 
remembered set. At the end of Step 6 the original and spare 
remembered sets are merged. 

Objects remembered during this phase will not be examined 
during this collection. This is not a problem because the 
concurrent store barrier will add any referenced young objects to 
the reference set, which is repeatedly marked in the next step. 

Objects are removed from the remembered set if no references to 
young objects are found. This creates a subtle synchronization 
hazard, which must be guarded against. A scenario is illustrated in 
Figure 9.  

In Step 1 of Figure 9 a remembered object is being scanned from 
beginning to end for references to young-generation objects. In 
Step 2, the application stores a reference to a young object into 
the remembered object. However, the GC thread has already 
moved past this reference field and does not see the new 
reference. In Step 3, the GC thread, believing the object contains 
no references to young-generation objects, erroneously removes 
the object from the remembered set. The referenced young object 
will not be collected during this GC, because the store barrier will 
add it reference set in Step 2 of Figure 9. It will be erroneously 
collected in the next GC, if the stored reference is the only 
reference to the object. Because the old-generation object is not in 
the remembered set, the collector will not find or follow the 
reference. 

Clearing the REM_MARK before scanning remembered objects 
solves the problem. In the scenario just described the store barrier 
thread will add the object to the spare remembered set, and set the 
REM_MARK again. To protect against duplicate entries in the 



remembered set, the GC thread examines the REM_MARK again 
after scanning an object if young-object references were found. If 
it is set, the object is removed from the snapshot copy of the 
remembered set, since a duplicate was added to the spare set. 

Steps 7-9. Eventually the application must be stopped, and some 
amount of marking must be done with the program paused. The 
goal of a good algorithm is to minimize the duration of this pause. 
The size of the reference set, built as explained above by the 
concurrent store barrier, is examined. If the reference set is large, 
it will be repeatedly marked in parallel. If it is small, it will be 
marked while the application is paused, and marking will 
terminate. The threshold between "small" and "large" is doubled 
each iteration, guaranteeing the loop will terminate. 

The size threshold starts at 20 objects, and is approximately 
doubled every iteration. The loop exits when the number of 
objects on the reference set is less than the threshold. In addition, 
we found it was very important to do at least one parallel mark, 
even if there are only a few entries in the initial reference set. The 
number of entries only approximately indicates the amount of 
work to be done during marking, because a single reference could 
point to a large body of unmarked objects. This appears to happen 
quite regularly for the initial reference set, so it is important to 
mark the initial reference set in parallel regardless of its size. 
While the algorithm makes no guarantees, this does not seem to 
occur during subsequent passes through the loop. For subsequent 
iterations the number of reference set entries is an accurate 
measure of the time needed to mark them. 

1) The GC thread begins
scanning an object in the
remembered set.

3) The GC thread mistakenly
concludes the object contains no
references to young objects. The
object is erroneously removed
from the remembered set.

2) The application thread stores
a reference to a young-
generation object behind the
scanning pointer.

Young Object

 

Figure 9. Removing objects from the remembered set 
creates a subtle synchronization hazard. 

When marking the reference set in parallel, the GC thread 
atomically takes a snapshot of the current reference set to prevent 
the store barrier from modifying the reference set that the GC 
thread is examining. 

Steps 10-17. Once a small reference set has been obtained, it is 
time for the final serial mark. The application stops and pauses the 

 

Figure 8. Concurrent GC algorithm 
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store barriers. This process ensures that there are no unexamined 
store-barrier messages in the system. At this point the application 
thread (logically) moves objects from the crib into the young 
generation, leaving the crib empty, as explained in Subsection 4.1. 

The application can then mark the final reference set, and obtain 
and mark the final root set. At this point, all live objects have 
been marked. The store barrier threads are restarted in 
generational-only mode, and the application restarts while the GC 
thread sweeps the sweep area in parallel. 

Steps 18-21. Dead objects in the sweep area of the young 
generation are collected. When collecting the entire heap, objects 
in the remembered set may be freed, and these entries must be 
removed from the remembered set. This is done with an explicit 
scan of the remembered set following sweeping. Finally, GC is 
complete. The GC thread informs the application that it is 
finished, and stops. 

Step 22. The application, when preparing to allocate more 
memory, notices that GC has finished. At this point it (logically) 
merges the sweep area back into the crib, allowing recently freed 
objects to be reused. The sweep area is left empty for the next GC. 

4.5 Correctness 
GC correctness, defined as never collecting reachable objects, is 
difficult to prove in the presence of concurrent modifications by 
the application. Although this has been done formally for some 
algorithms [14], we must leave this for future work. 

The application complicates GC when it moves a reference from 
one location to another. Moving a reference involves first making 
a copy of it, and, second, overwriting the original copy. Neither 
copying nor overwriting alone is sufficient to undermine the GC 
process. Copying alone is not a problem; the original reference 
still exists to be traced during marking. Overwriting alone is not a 
problem; if the reference is actually gone, it does not need to be 
followed. 

This algorithm assures correctness by monitoring the copied 
references. Other algorithms, as described in the Subsection 2.3 
on related GC algorithms, monitor overwritten references. The 
goal of this algorithm is to assure that a copied reference will be 
traced during marking, no matter where it is copied. There are 
three regions to which a reference may be copied: local and global 
variables, the young generation and the old generation. If the 
reference is copied to local or global variables, it will be caught 
when the roots are obtained the second time in Step 13, and 
marked in Step 15. If the reference is copied to the young 
generation, it will be placed on the reference list by the store 
barrier threads, and marked in either Step 9 or 14. The same is 
true for copies made to the old generation. In addition, the object 
in the old generation is placed in the remembered set, 
guaranteeing that the copied reference will be marked in future 
GC passes as well. 

5. EXPERIMENTAL METHODOLOGY 
Our experiments are based on the Strata VM for Java and the 
SimpleMP simulator [26]. SimpleMP is a version of the 
SimpleScalar [8] execution-driven timing simulator of out-of-
order processors that was extended to simulate multiple 
processors. This was further extended to simulate SMT and RPA. 

5.1 The Strata compiler  
Co-designed VMs use a combination of interpretation and 
dynamic compilation to transparently execute programs encoded 
in the V-ISA on hardware directly supporting the I-ISA. This 
research focuses on the interactions between compiler, run-time 
system, architecture and micro-architecture. Rather than creating a 
complete VM, Strata statically compiles Java bytecodes to 
SimpleScalar PISA assembly code. To aid in development, Strata 
also targets SPARC assembly. This provides a simple and flexible 
system for research, while reducing the effort required for 
building and maintaining the system. Essentially, only the 
execution of the run-time system (including GC), and dynamically 
optimized code is simulated. Other phases of execution, such as 
compilation and interpretation, are not simulated. In a well tuned 
VM, these phases of execution should not dominate execution 
time. We expect future VMs to perform compilation in parallel 
with application execution (using service threads), and possibly to 
preserve compiled code across executions of the same program. 

The Strata compiler is itself written in Java, and forms one of our 
better benchmarks. The Strata compiler performs typical 
optimizations such as global register allocation, constant 
propagation, local common sub-expression elimination and global 
copy propagation. It also performs Java-specific optimizations 
aimed at eliminating null-pointer checks, type checks and array 
bounds checks. 

Strata is still under development, and does not perform some 
common optimizations. In the future we plan to include forms of 
global code motion, such as partial-redundancy elimination (PRE) 
[22], and function inlining. These optimizations will make low-
overhead GC more important, since the application will be 
executing relatively faster. 

The runtime system, which contains the GC algorithm, is written 
in C. Running a Java application involves compiling the 
bytecodes using the Strata compiler, and then linking the resulting 
assembly with the runtime system. 

5.2 Benchmarks 
The four benchmarks shown in Table 1 are simulated. The first is 
the Strata compiler. The other three are taken from the 
SpecJVM98 suite. They are DB, a simple relational database, 
Jack, a parser generator, and Ray, a 3-D rendering tool. 
Applications are simulated from about 10 million instructions 
before the first GC, to completion. 

Table 2. Benchmark characteristics. 

Duration (Millions) Bench-
mark 

Input 
Data Instr. Cyc. GCs 

Strata spec.benchmarks. 
   _209_db.Database 

557 228 6 

Ray 50 500 time-test.model 282 79 3 
DB db2 src3 241 78 1 
Jack 10 692 244 7 

5.3 Processor models 
Ways to exploit TLP include multiple processor cores and 
simultaneous multithreading, which allows instructions from 
multiple threads to flow through the pipeline at the same time. 
Service threads that access much of the same data as the 
application should be executed on the same processor core using 
SMT to prevent data from being bounced between processor 



caches. Threads using different data should be executed on 
different cores to prevent L1 cache pollution. Since GC generally 
has poor locality characteristics, we chose to execute the GC 
algorithm on separate cores. Quantitatively analyzing different 
design points is on-going research. 

The particular design explored in this paper, Figure 10, uses both 
SMT and multiple on-chip cores. On one chip, there is a large 
high-ILP processor supplemented by two service processors. The 
computation of greatest concern, the application program, runs on 
the high-ILP processor. Given many service threads, more 
instruction throughput can be obtained merely by stamping out 
more processors. Hence, the service processors are designed to 
maximize instruction throughput per unit area, rather than single-
thread performance at any cost. Lower priority VM tasks, in this 
case GC, run on these processors concurrently with application 
execution. 

 

Figure 10. System-on-a-chip design. 

Parameters for the processor models are shown in Table 3. The 
ILP processor is an 8-way superscalar, out-of-order processor, 
running only one thread. Each service processor is a six stage 
scalar pipeline capable of running 3 threads in an SMT fashion. 
To keep these processors small and simple, they have small L1 
caches and predict-not-taken branch prediction. All three 
processors connect to an L2 cache with a 12-cycle access time. 
The L2 is perfect; it never misses. 

5.4 Results 
Table 4 shows simulated times for various phases of GC, averaged 
over all GCs in each benchmark. The first three columns of data 
show the pause times for the application thread. Referring back to 
Figure 4, the first pause is for initial collection of the roots, Steps 
1-4. The second pause is for the final root collection and mark 
phase, Steps 11-17. The third pause is for merging the collected 
sweep area back into the crib area of the young generation, Step 

22. These pause times represent one of small remaining sources of 
GC overhead. Times are shown in 1000’s of cycles. For a 1GHz 
clock, this corresponds to microseconds. The second pause, 
involving both a root collection and a small mark, is always the 
longest pause. The largest pause time of 53,000 cycles was 
observed for the Strata benchmark. 

Column 4 shows the cycles (in thousands) required to mark the 
root set (Figure 4, Step 5). Column 5 shows the cycles required to 
mark the remembered set (Step 6). During the first collection the 
old generation and the remembered set are both empty. As shown 
in Table 2 DB only performs one collection, and so spends little 
time on the remembered set. 

Columns 6 through 8 give statistics indicating the performance of 
the iterative reference set marking process, Steps 7 through 9 in 
Figure 4. Column 6 (Live) shows the total time for this loop, 
Column 7 (N) indicates the number of iterations, and Column 8 
(Final) shows the number of objects in the reference set when the 
loop exited. DB spends more time marking the reference set than 
other benchmarks because the reference set grows to over 2000 
entries. For all other observed collections the number of entries 
ranged between 0 and about 1000. Marking was never performed 
in parallel more than once because of the small number of 
additional entries added to the reference set. For Raytrace some 
collections the reference set was empty, which led to an average 
number of iterations less than one. 

Finally, columns 9 through 11 give times in cycles for sweeping, 
tenuring and pruning. Tenuring and pruning take a relatively short 
time. Sweeping is the longest single collection phase as shown in 
Figure 11. 

Table 3. Processor model parameters. 

Parameter High-ILP 
Processor 

Service 
Processor 

Units 

    
Processors 1 2 Proc. 
Threads 1 3 Threads 
Width 8 1 Instr. 
Instr. Win. 128 (in-order) Instr. 
Br. Pred. 8K entry 

gshare 
Not-taken  

Min. 
penalty 

8 4 Cycles 

I-Cache 32KB 
2-way 

1KB 4-way  

D-Cache 64KB 
4-way 

2KB 4-way  

Unified L2 Perfect  

Table 4. GC Performance Characteristics 
(Thousands of cycles) 

P1 P2 P3 Root1 Rem Set Live N Final Sweep Tenure Prune Benchmark 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Strata 33 42 28 2844 5708 1744 1.0 4 13165 926 1812 
Ray 19 33 25 316 4195 1281 0.7 7 11010 372 340 
DB 15 19 6 1970 1 13443 1.0 0 16888 380 306 
Jack 23 29 21 1702 4084 196 1.0 0 11890 534 703 

High-ILP
Processor

8-way
O-O-O

Service
Processors

Scalar In-order

Unified L2



Figure 11 represents similar information graphically for the 
second garbage collection in the Strata benchmark. The total 
duration of the collection is a little less than 20 million cycles, 
shown on the X-axis. The upper time line shows the various GC 
phases, and the lower line shows the application pauses. The 
pauses are so small that the hash marks plot on top of each other. 
The sweep phase is easily the longest phase. This involves 
scanning the heap for dead objects, zeroing freed object, and 
putting them on a free list for reallocation.  

 

Figure 11. Time line for the second GC in the Strata 
benchmark. 

Table 5 describes the time overhead of GC for each benchmark. 
The first column of data shows the percentage of cycles that 
dispatch was stalled due to a lack of profile resources. Simulation 
results not shown indicate that these stalls occur due to limited 
profiling networks, not limited profile buffers. Jack stores 
references much more frequently than the other benchmarks, 
stressing the RPA. The out-of-order execution window covers 
about half of these stall cycles. The second column shows the 
actual slow down compared to an implementation with unlimited 
profile networks and buffers. The third column shows the 
percentage of cycles spent in the three pause times. The final 
column sums the previous two, giving the total time overhead for 
GC. Jack experiences the greatest GC overhead of 1.32%. 
Average overhead is a miniscule 0.55%. Direct comparisons to 
previous collectors are difficult, due to varying languages, 
benchmarks and VM implementations. However, GC overhead, as 
well as the overhead for explicit memory management in C and 
C++ programs, is typically reported as being 20% or more 
[2][24][13][40][39]. 

Table 5. Garbage collection time overhead. 

Bench-
mark 

Profile 
Stalls 

(%) 

Profile 
Overhead 

(%) 

GC 
Pauses 

(%) 

Total GC 
Time 

Overhead 
(%) 

strata 0.46 0.18 0.31 0.49 
ray 0 0 0.34 0.34 
db 0 0 0.05 0.05 
jack 2.06 1.11 0.21 1.32 
Avg. 0.63 0.32 0.23 0.55 

Cache interference is another source of overhead not shown Table 
5. GC can interact with the application through the memory 
hierarchy, slowing the application down by causing extra cache 
misses. Future research will examine these effects. 

Table 6 shows the effectiveness of null-reference check performed 
by RPA. The first column of data shows the cycles per profiled 
store instruction. Store-barrier threads would be completely 
overwhelmed by the Jack benchmark if the RPA did not filter 
stores of null references. The percentage of records eliminated 
through this check, shown in the second column, varies widely 
across the benchmarks. Jack stores a null reference 95% of the 
time. This does not include instructions that store null as an 
immediate value. Jack makes frequent use of the hash table in the 
Java library. Almost all of the null reference stores in Jack occur 
as a result of one store instruction within that library. The final 
column shows the number of cycles per message handled by the 
store barrier threads. The amount of work performed by the store-
barrier threads varies by a factor of two, suggesting that the VM 
adapt the number of threads assigned to this task to the workload. 

Table 6. Store barrier work eliminated by RPA. 

Bench-
mark 

Cycles per 
Profiled 

Store 

Null 
Reference 
Stores (%) 

Cycles per 
Processed 

Store. 
strata 102.3 28.2 142.6 
ray 390.4 0.0 390.5 
db 142.2 0.0 142.2 
jack 16.3 94.9 319.6 

6. CONCLUSIONS AND FUTURE 
RESEARCH 
The Relational Profiling Architecture provides a low-overhead 
flexible mechanism for inter-thread communication. It allowed the 
concurrent GC algorithm to monitor stores with very little 
overhead, provided a more flexible store barrier that could change 
depending on needs of the moment, and filtered out unnecessary 
null-reference stores. This enabled the Strata virtual machine to 
take advantage of low-cost thread-level parallelism, resulting in a 
GC system with pause times of 53 microseconds or less with a 
1GHz clock cycle, and an average time overhead less than 0.6%. 

Further improvements can be made to the GC algorithm. All 
phases of the GC algorithm can be highly parallelized. 
Parallelizing these phases will become necessary as Strata moves 
on to multi-threaded applications in order for the GC algorithm to 
keep up with multiple application threads. 

The RPA is a low-cost general mechanism, enabling such 
improvements for a wide range of GC algorithms, as well as a host 
of other profiling tasks. Future work includes using the RPA to 
collect profile information for such optimizations as function 
inlining, basic-block ordering, and partial-redundancy elimination 
[22]. 
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