
The Case for Profile-Directed Selection of Garbage Collectors

Robert Fitzgerald and David Tarditi
Microsoft Research

Redmond, WA 98052, USA
bobfitz,dtarditi@microsoft.com

ABSTRACT
Many garbage-collected systems use a single garbage col-
lection algorithm across all applications. It has long been
known that this can produce poor performance on applica-
tions for which that collector is not well suited. In some
systems, such as those that execute stand-alone compiled
executables, an appropriate collector for each application
can be selected from a pool of available collectors and tuned
by using profile information. In a study of 20 benchmarks
and several collectors, compiled with the Marmot optimiz-
ing Java-to-native compiler, for every collector there was
at least one benchmark that would have been at least 15%
faster with a more appropriate collector. The collectors are
a copying collector, a generational copying collector, which
is combined with each of 4 different write barriers, and the
null collector, which allocates but never collects. A detailed
analysis of storage management costs shows how they vary
by application and collector.

1. INTRODUCTION
Automatic storage management eliminates a significant

source of software defects by freeing programmers from the
obligation to release dynamically allocated storage explic-
itly. An enormous number of algorithms and variations have
been proposed in the 40-year history of automatic storage
management [21]. Basic algorithms include mark-and-sweep
collection [24], semispace copying collection [11], and gener-
ational collection [22, 25, 32].

Although no one algorithm has proven to be uniformly
better than all the others, most systems use only one. This
“one size fits all” approach is appropriate for systems that
must handle applications whose characteristics are not known
ahead of time. These include environments for Lisp [30],
Smalltalk [14], and Java [23] that outlive individual ap-
plications. It can be difficult or impossible for a running
environment to replace its garbage collector, especially if
performance-critical parts of the implementation such as al-
location sequences and write barrier checks have been inlined

into executable code.
The use of a single algorithm, however, can hurt the per-

formance of applications that are not well matched to that
algorithm. Each algorithm has characteristic strengths and
weaknesses that make it better suited to some applications
and more poorly suited to others [2]. For example, some
applications run faster with generational garbage collection
than with copying garbage collection while others run slower.
The latter can happen when the cost of the write barrier
checks exceeds the reduction in collection time or when gen-
erational collection causes excessive copying [32].

Other systems, such as those that produce stand-alone
executables, can pair each application with an appropriate
collector. These include the increasingly prevalent optimiz-
ing compilers for safe languages such as Java [20, 26, 31].
Such systems might reasonably use profile information from
prior executions of an application to select and tune the
collector for subsequent executions.

Early Lisp machines had a simple all-or-nothing variation
on this theme. Moon [25] reports that users often disabled
the garbage collector and rebooted when the virtual address
space filled. Rebooting was faster than waiting while the
garbage collector thrashed virtual memory. Newer systems
can provide a greater variety of interchangeable garbage col-
lector components.

Moss et al. [19] describe a language-independent garbage
collector toolkit that demonstrated that garbage collector
components could be replaced easily at compile time. The
toolkit includes a generational collector that allows the write
barrier to be replaced. The collector can also be configured
at run-time in a variety of ways, including changing the
number of generations, generation sizes, and the promotion
policy.

There is a rich tradition of tuning the parameters of a
particular garbage collector by using profile information and
feedback. For example, Ungar and Jackson [35] describe an
adaptive policy for deciding when to move objects into the
older generation of a generational copying collector. Bar-
rett and Zorn [3] describe a 2-generation collector with a
threatening boundary between the two generations that al-
lows data to be moved back into the younger generation.
Cheng et al. [6] identify allocation sites that consistently
produce long-lived data and pretenure data from those sites
into the older generation of a 2-generation collector.

This paper investigates the value of pairing applications
with appropriate collectors. 20 Java benchmarks are com-
bined with each of several garbage collectors in an envi-
ronment that builds standalone compiled executables. The

collectors are the “null” collector, which allocates but never
collects, a copying collector, and a generational copying col-
lector. Furthermore, the generational collector is combined
with each of 4 different write barriers. The best collector
for each benchmark is selected. This application-specific
strategy is compared against a fixed strategy of using each
collector across all benchmarks. The costs of each collec-
tor are examined in detail to show how application behavior
affects performance.

The measurement environment consists of largely idle PCs
with fast processors and large memories. For these ma-
chines, elapsed program execution time is an adequate mea-
surement of performance and it can be reasonable to trade
memory for time. Other environments may have different
measures of performance and constraints.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the benchmarks and the Marmot system
used to build them. Section 3 shows that all of the collec-
tors perform well on some of the benchmarks and poorly
on others. Section 4 details the application- and collector-
specific nature of the storage management costs of several
benchmarks. Section 5 compares the costs of zeroing mem-
ory incrementally at allocation time and of getting zero-filled
virtual memory pages on demand from the operating sys-
tem. Section 6 compares the average performance of using
the same collector for all benchmarks with that of pairing
each benchmark with the collector best suited to it. Sec-
tion 7 summarizes our conclusions.

2. THE EXPERIMENTAL TESTBED
The experimental testbed used in this paper consists of

a Java compiler, a collection of automatic storage manage-
ment components, a set of benchmark programs, and the
hardware they ran on.

2.1 The Marmot Java-to-Native-Code Optimiz-
ing Compiler

Marmot [12] is a whole-program Java-to-native-machine-
code optimizing compiler developed as a research platform.
It includes standard scalar optimizations, basic object-oriented
optimizations, and advanced optimizations. Standard op-
timizations include constant and copy propagation, com-
mon subexpression elimination, dead-assignment elimina-
tion, loop-invariant code motion, induction variable elimi-
nation, strength reduction, and inlining of small, statically
called functions. Object-oriented optimizations include vir-
tual call rebinding based on class hierarchy analysis, null
check elimination, type test elimination, and removal of un-
invoked methods. Advanced optimizations include stack
allocation of objects [13], elimination of redundant array-
bounds checks, and elimination of redundant synchroniza-
tion operations [27].

Marmot produces compiled Java executables that some-
times rival C++ performance, but are on average 20-30%
slower than corresponding C++ binaries compiled with a
compiler product such as Microsoft Visual C++. The pro-
portion of time that Marmot-compiled executables spend
in storage-management-related operations is reasonably in-
dicative of the costs that might be expected for Java pro-
grams compiled with a product-quality compiler.

2.2 Automatic Storage Management Compo-
nents

The Marmot system includes fast allocation, several au-
tomatic storage management algorithms, and several write
barrier implementations for generational collection.

2.2.1 Allocation
Memory is allocated from a compacted free space using a

short inline instruction sequence [1]. The sequence is inlined
for both structures and arrays because both are allocated
frequently. Figure 1 shows a typical sequence for a 12-byte
structure in a single-threaded program. The allocation and
allocation limit pointers are stored in global variables be-
cause the x86 has so few registers.

Each newly allocated object must also be initialized: a
vtable pointer is stored at offset 0 and the rest of the object
is zeroed. The manner in which memory is zeroed has a sig-
nificant effect on performance and is discussed in Section 5.

2.2.2 Pointer tracking
All objects allocated on the heap are valid Java objects.

Each object has at offset 0 a pointer to a vtable that also
contains a 32-bit tag describing offsets to pointers in the
object. The tag describes whether the object is an array
of pointers, an array of non-pointers, or a structure. There
are three kinds of tags for structures: a sparse tag that
contains up to 7 4-bit offsets, a dense tag that contains a
28-bit bitmap for offsets 1 to 28, and for large structures,
an escape tag that points to an array of offsets. All pointers
are aligned on 4-byte boundaries, so the offsets are in units
of 4-bytes.

2.2.3 Automatic storage management algorithms
Marmot includes several automatic storage management

algorithms. The null garbage collector (nullgc) allocates but
never collects. A program starts with a large empty heap
from which it allocates until the program either exits or fails
of heap exhaustion.

The semispace copying garbage collector (copygc) copies
live data between two semispaces using a Cheney scan [5].
Virtual memory for the unused semispace is invalidated be-
tween garbage collections so that it ties up neither physical
memory nor paging space on disk. There is no large object
space [34].

The 2-generation copying garbage collector divides mem-
ory into a nursery and an older generation composed of two
semispaces. Most objects are allocated in the nursery. When
the nursery fills, live objects are tenured into the older gen-
eration using a Cheney scan. There is no large object space,
but large objects are pretenured into the older generation.
A write barrier partitions the heap so that the nursery can
be collected without collecting the older generation.

2.2.4 Write barrier implementations
Marmot includes both filtering and non-filtering write bar-

riers, all of which record slot pointers rather than object
pointers. Non-filtering write barriers record all pointer stores.
Filtering write barriers check whether a stored pointer is
cross-generational before recording it. Filtering can be worth-
while because cross-generational pointer stores can be rare
and because it can take less time to filter than to record a
pointer store and to scan the recorded information during
collection.

mov eax,allocationPtr ; load allocation pointer into a register
add eax,12 ; add amount of space to be allocated
cmp eax,allocationLimitPtr ; compare against limit pointer
ja needgc ; call gc if necessary
mov allocationPtr,eax ; update the allocation pointer

Figure 1: Allocation sequence for a 12-byte structure

Figure 2 shows the filtering code sequence shared by all
the filtering write barriers. It uses a table of ages indexed
by the higher-order 16 bits of pointer addresses [29]. The
ages are inverted (older generations are assigned lower num-
bers) and 0 is used for non-heap memory such as stacks
and statically-allocated data. Pointer stores into non-heap
memory are not recorded.

An explicit check for pointer stores into non-heap memory
is needed because Marmot allocates objects statically and on
the stack [13] in addition to allocating objects on the heap.
Thus, a pointer store to an object field may store into a
non-heap-allocated object.

Marmot includes several filtering write barriers, all of which
are called out-of-line from the above filtering code. Record-
ing is often rare enough that the call overhead is minimal.

The sequential store buffer (ssb) appends destination ad-
dresses to a buffer [1, 19, 17]. Buffer overflow triggers a
collection of the nursery. Buffer overflow is detected by an
explicit check, though a guard page could be used instead.

The card table (cards) divides memory into cards that are
a power of 2 in size and alignment [25, 29, 36]. The card
table stores one bit of information per card. Initially un-
marked, a card table entry is marked to indicate that the cor-
responding card may contain a cross-generational pointer.
Each card table entry is put in a separate byte so that it
can be set atomically by a byte store of 1 [4, 17]. There is
no cost difference between storing 0 and 1 on the x86, so 0
represents “unmarked” to avoid the cost of initializing the
table with nonzero entries.

Each marked card is processed during garbage collection
by scanning the pointer-containing fields of each object in
the card. A card offset table contains the location of the
start of the last object in a card [17]; the offset for the pre-
vious card is used to find the start of the first object for the
current card. Once the first object has been found, vtable
fields are used to find pointer locations in the first object
and to calculate the location of the next object. The start-
up cost of card scanning is amortized by scanning ranges of
contiguously-marked cards.

The 2-level card table (cards2) is similar to the word-
marking write barrier of the Lucid Common LISP ephemeral
garbage collector [29]. It has two levels: a coarse grain level
that has 1 bit per 4 KB of virtual memory and a fine grain
level that has 1 bit per pointer (word). Like the ssb, the fine
grain word-marking level precisely identifies potential cross-
generational pointers, avoiding the object scanning and card
offset table required with larger cards. The coarse grain level
allows large unmarked areas to be scanned quickly: 128 KB
per 32-bit test for 0.

Marmot also includes an unfiltered card table (cardsnf)
that is optimized for fast inline recording [28, 29, 36, 19], as
shown in Figure 3. Because there is no filtering to eliminate
stores outside of the older heap generations, the card table
must cover all user-addressable memory. Objects may be

stack allocated and the OS controls the placement of thread
stacks, so in general an object may be placed anywhere in
user-addressible memory. A 31-bit user address space with
512-byte cards and 1 card table byte per card requires a 4
MByte unfiltered card table. The lack of filtering can also
increase card scanning overhead during garbage collection
and the volume of tenured garbage [33].

2.3 Java Benchmarks
Table 1 describes the 20 benchmark programs used in this

study.1 For each benchmark, the table describes the num-
ber of instructions executed, the amount of data heap allo-
cated, and the allocation rate in bytes per instruction. The
benchmarks vary widely both in the number of instructions
executed and in allocation rates, which range from almost
no allocation (impgo and docgo) to 0.26 bytes/instruction
(cn2).

The benchmarks are divided into four groups. The SPEC
JVM98 group includes six Java programs from the SPEC
JVM98 benchmark suite [8]. Dieckmann and Hölzle have
described the allocation behavior of these programs in de-
tail [9]. The MiscJava group includes a variety of other
Java programs, including the Marmot compiler itself.

The IMPACT group includes a set of C programs trans-
lated to Java by the IMPACT/NET project [18]. Several
of these originally came from the SPEC95 suite [7]. The
DOCTOR group includes several programs from the IM-
PACT group that have been modified slightly. The 099.go
program was changed to be more faithful to the original C
version: many static arrays that had been transcribed as
instance variables were redeclared as static variables. The
130.li program had its own garbage collector; it was altered
to use the Java garbage collector instead.

2.4 Hardware Platform
Benchmarks were run on a 300 MHz dual Pentium II (x86

Family 6 Model 5) processor Gateway2000 E-5000 running
Windows NT Version 4.0, Service Pack 3. It had data caches
of 8 KB (L1, split) and 256 KB (L2, combined), and 512
MB of 60 ns physical memory organized into 4 KB virtual
memory pages.

3. EACH COLLECTOR IS SOMETIMES SLOW
Table 2 shows that none of our 3 collectors is always better

than the others. For each collector there are some bench-
marks that perform significantly better with a different col-
lector.

The percentages in parentheses give the increase in overall
program execution time for a given collector relative to the
best collector for that benchmark. Any collector used across

1Another 20–30 benchmarks, many transcribed from C,
were rejected as having too little storage management over-
head to be interesting.

mov destSegment,destAddr ; calculate 64K segment number
shr destSegment,16
mov destAge,ageTable[destSegment] ; get inverted age
mov srcSegment,src ; calculate 64K segment number
shr srcSegment,16
cmp destAge,ageTable[srcSegment] ; compare inverted ages
jb mayRecord ; if dest is older than source

doneRecording:

. . .

mayRecord:
cmp destAge,0 ; check that dest is a heap address
je doneRecording ; if dest is not a heap address
call recordPointerInWriteBarrier ; record pointer store
jmp doneRecording

Figure 2: Filtering code for detecting cross-generational pointers

mov cardIndex,destAddr
shr cardIndex,9
mov dword ptr [_unfilteredCardTableBase+cardIndex*1], 1

Figure 3: Recording code sequence of the unfiltered card table

Instrs Alloc Bytes
Name (109) (MBs) Instr Description

The SPECJVM98 group
201 compress 8.674 113.7 0.01 An LZW compression program
202 jess 3.999 265.6 0.07 The Java Expert System Shell
209 db 2.852 85.3 0.03 An in-memory database
213 javac 3.295 187.7 0.06 Java bytecode compiler
222 mpegaudio 11.236 3.2 0.00 MPEG-3 audio decoding algorithm
228 jack 1.564 147.3 0.09 A parser generator

The Misc Java group
cn2 2.102 544.2 0.26 CN2 induction algorithm
javacup 0.387 35.5 0.09 JavaCup generating a Java 1.1 parser
jlex 0.075 1.7 0.02 JLex generating a lexer from sample.lex
jessword 0.998 10.6 0.01 JESS solving a word puzzle
jessmab 0.373 18.4 0.05 JESS solving the monkeys and banana problem
marmot0 27.828 1855.2 0.06 Marmot compiling 213 javac
marmot3 186.711 11867.7 0.07 Marmot compiling itself
parser 1.021 31.5 0.03 Java 1.1 parser generated by JavaCup parsing itself
qsort0 1.785 19.1 0.01 Sorting 1,000,000 objects using quicksort

The IMPACT group
impgo 21.749 0.7 0.00 The SPEC95 099.go benchmark
impijpeg 1.066 41.2 0.04 The SPEC95 132.ijpeg benchmark
impli 85.771 1964.3 0.02 The SPEC95 130.li benchmark using its own heap

The DOCTOR group
docgo 17.247 0.3 0.00 The SPEC95 099.go benchmark
docli 57.009 6445.5 0.11 The SPEC95 130.li benchmark using the Marmot heap

Table 1: The Java benchmark programs.

GC + WB Fastest Slowest benchmarks
nullgc qsort0 javacup cn2 docli impli marmot0 marmot3 (did not finish)
copygc 213 javac marmot3 (51.7%) cn2 (26.6%) docli (6.9%)

gengc + ssb cn2 marmot3 javacup (18.0%) 213 javac (16.9%) 209 db (15.5%) docli (14.7%)
gengc + cards2 201 compress qsort0 (19.7%) 213 javac (17.8%) javacup (17.7%) 209 db (15.9%)
gengc + cards 228 jack 213 javac (20.2%) javacup (18.3%) 209 db (15.8%)
gengc + cardsnf 202 jess docli 213 javac (18.6%) javacup (18.5%) 209 db (15.2%) cn2 (14.5%)

Table 2: The fastest and slowest benchmarks for each garbage collector.

all benchmarks had at least 2 benchmarks that ran more
than 15% slower than was necessary. The generational col-
lectors did poorly on benchmarks that had too little garbage
collection overhead to recover the up front cost of the write
barrier. The semispace collector did poorly on the bench-
marks that rapidly allocate and discard large amounts of
data. The null collector simply failed of heap exhaustion on
some benchmarks.

Table 2 also shows some benchmarks for which each col-
lector is well suited. Among the generational collectors, the
ssb and unfiltered card table each had benchmarks for which
they were clearly fastest. The 1- and 2-level filtered card ta-
bles never did better than tie for fastest. When the nullgc
was not exhausted, it typically tied with the copygc.

The performance of some benchmarks changed little with
changing collectors. For example, the SPECJVM bench-
marks 201 compress and 222 mpegaudio spend their entire
time in numeric computation, and varying the collector has
little effect.

4. STORAGE MANAGEMENT COSTS ARE
APPLICATION AND COLLECTOR SPE-
CIFIC

Figure 4 shows how storage management costs vary by
benchmark and by collector. It decomposes benchmark elapsed
time into:

• non-heap time, spent doing real work including allocating
heap objects,

• filtering time, spent determining whether a pointer crosses
into a younger generation,

• recording time, spent remembering locations containing a
cross–generation pointer,

• scanning time, spent examining remembered locations,
• nursery gc time, spent collecting the younger generation

excluding scanning time, and
• older gc time, spent collecting the older generation with

the generational gc or a semi-space with the copying gc.

Total benchmark elapsed time, write barrier scanning time,
nursery collection time and older generation collection time
are measured directly by subtracting entry times from exit
times. Filtering and recording time are measured indirectly
as the increase in elapsed time when write barrier code is
added to the non-generational collectors.

Figure 4 is scaled to emphasize storage management costs.
Results are grouped by their proportion of storage manage-
ment overhead (note the differing maximum values of the
horizontal axis). For each benchmark, results are scaled so
that the lowest non-heap time observed across all collectors
is 100%. Thus, most non-heap time is elided to the left of
the figure.

Surprisingly, non-heap times sometimes vary significantly
across collectors (202 jess, 209 db, 213 javac, 228 jack).
The SPECJVM benchmark 209 db is often stalled on L2
D-cache misses, resulting in a large CPI (4-5), so the extra
memory traffic generated by any of the write barriers slows
all the generational collectors by 15-20%. The variation in
non-heap times of the other 3 SPECJVM benchmarks and
cn2 results from the way that the different collectors zero
memory, as will be discussed Section 5.

The largest collector-dependent performance changes in
these benchmarks occur when alternating between gener-
ational and non-generational collectors. For some bench-
marks with significant collection costs, a generational collec-
tor reduces collection costs enough to recover the up-front
cost of the write barrier (marmot3 by 51%, cn2 by 26%).
Other benchmarks are faster with the copying collector than
with any generational collector (javacup by 18%, 213 javac
by 17%, 209 db by 15%). The collection costs are so low
that the cost of the write barrier is never recovered.

Among generational collectors, there is sometimes a more
modest performance difference between write barriers. For
example, the ssb was 14% faster than the unfiltered card
table for cn2, but 13% slower for docli. For 15 benchmarks,
however, the overall times for each of the several write bar-
rier schemes fell within 2% of each other. For these bench-
marks, although the time may be distributed significantly
differently among filtering, reporting, scanning, etc., the
choice of write barrier makes little overall difference. This
is consistent with the measurements reported by Hosking et
al. [17].

The qsort0 benchmark is a pathological case for the write
barriers. It has a large, pretenured array of pointers that
point at objects in the nursery. As the array is sorted, each
assignment into the array is recorded in the write barrier. By
contrast, fewer than 1% of pointer stores record in more than
half of the other benchmarks. The large number of records
overruns the ssb, triggering minor collections that tenure
the objects, eliminating the cost of subsequent records but
adding the cost of the scans and minor collections. Lacking
any of these costs, the semispace collector is faster than any
of the generational collectors on qsort0.

Write barrier costs further illustrate the application-dependent
nature of storage management costs. The filtering cost may
be offset by corresponding reductions in recording and scan-
ning cost (cn2) or may not (docli). Sometimes the filtering
cost can exceed the recording cost of the unfiltered card ta-
ble (docli).

The scanning times of the filtered and unfiltered card ta-
bles may be significantly greater than those of the ssb and
2-level card table (cn2, 213 javac, marmot0) or lower (docli
for the ssb). None of the benchmarks show an increase in

100% 110% 120% 130% 140% 150% 160% 170% 180%

copygc + marmot3
ssb + marmot3

cards2 + marmot3
cards + marmot3

cardsnf + marmot3

copygc + cn2
ssb + cn2

cards2 + cn2
cards + cn2

cardsnf + cn2

100% 105% 110% 115% 120% 125% 130% 135% 140%

nullgc + _213_javac
copygc + _213_javac

ssb + _213_javac
cards2 + _213_javac

cards + _213_javac
cardsnf + _213_javac

nullgc + qsort0
copygc + qsort0

ssb + qsort0
cards2 + qsort0

cards + qsort0
cardsnf + qsort0

nullgc + javacup
copygc + javacup

ssb + javacup
cards2 + javacup

cards + javacup
cardsnf + javacup

copygc + docli
ssb + docli

cards2 + docli
cards + docli

cardsnf + docli

100% 102% 104% 106% 108% 110% 112% 114% 116% 118% 120%

nullgc + _228_jack
copygc + _228_jack

ssb + _228_jack
cards2 + _228_jack

cards + _228_jack
cardsnf + _228_jack

nullgc + _209_db
copygc + _209_db

ssb + _209_db
cards2 + _209_db

cards + _209_db
cardsnf + _209_db

nullgc + _202_jess
copygc + _202_jess

ssb + _202_jess
cards2 + _202_jess

cards + _202_jess
cardsnf + _202_jess

copygc + marmot0
ssb + marmot0

cards2 + marmot0
cards + marmot0

cardsnf + marmot0

copygc + impli
ssb + impli

cards2 + impli
cards + impli

cardsnf + impli

Execution Time Relative to Minimum Non-Heap Time (less is better)

non-heap filter record scan wb minor gc major gc

Figure 4: Detailed Costs of Storage Management

untenured garbage due to the conservative scanning forced
by larger cards.

The 2-level card table may be faster than the correspond-
ing single-level card table (cn2, 213 javac) or slower (docli),
depending on whether the reduction in scanning time offsets
the increase in recording time.

5. ZEROING MEMORY INCREMENTALLY
CAN BE FASTERTHAN ZERO-FILL FAULTS

Newly allocated memory in Java must be zeroed [15]. This
is done in two distinct ways by the various collectors. The
generational collectors normally zero the nursery incremen-
tally as objects are allocated. The semispace and null collec-
tors obtain zero-filled memory on demand from the operat-
ing system via zero-fill page faults. The semispace collector
and the older generation of the generational collectors in-
validate the virtual memory for the unused semispace and
revalidate the virtual memory for the current semi-space.

Figure 5 compares the costs of incrementally zeroing mem-
ory and of zero-fill page faults. For each of the three SPECJVM
benchmarks for which zeroing is a significant cost, it shows
heap times (the sum of filter, record, and collect times) and
non-heap times for each of seven collectors. The collectors
include the semispace collector (copygc), the null collector
(nullgc), generational collectors (cardsnf, cards2, cards, and
ssb), and a hybrid collector (ssb os zero). The hybrid col-
lector is a generational collector (ssb) modified to invalidate
and revalidate the nursery during minor collections, so it
gets zero-filled memory from the operating system instead
of zeroing it during allocation. The generational collectors
that incrementally zero memory have uniformly lower non-
heap costs. The hybrid generational collector has higher
non-heap costs that are comparable to those seen in the
semispace and null collectors as well as the heap costs of
the generational collectors, demonstrating that incremen-
tally zeroing memory can be faster than getting zero-filled
VM pages.

There are several reasons why zeroing memory incremen-
tally during allocation can be faster than getting zero-filled
pages from the operating system. The latter has the obvious
costs of invalidating and revalidating virtual memory and of
handling zero-fill page faults, but potentially reduces the
demand for physical memory by releasing physical memory
pages until they are needed. The former can also have better
D-cache locality than the latter. Incremental zeroing often
moves memory through the D-cache only once because the
newly allocated memory is used shortly after it has been al-
located. Zero-fill page faults can move memory through the
D-cache twice: once when the page is zeroed and flushed to
physical memory2 and again when the memory is used after
it has been allocated.

Note that benchmark–collector pairs sometimes have ap-
proximately the same elapsed times for different reasons.
The non-hybrid SPECJVM benchmarks 202 jess and 228 jack
have comparable elapsed times although the generational
collectors have about 10% heap overhead while the null and
semispace heaps have no heap overhead but pay about 10%
in increased memory zeroing costs.

2Dougan et al. [10] recommend that at least some operating
system page zeroing go around the D-cache to avoid cache
pollution. Uncached stores may have their own costs.

6. PROFILE-SELECTED COLLECTORS IM-
PROVE AVERAGE SPEED

Figure 6 shows that the average speed of using a “profile
selected” collector for each benchmark is better than that of
using any of several fixed collectors across all benchmarks.
The former strategy uses a garbage collector that was se-
lected as being most appropriate for each benchmark, e.g.
that gave the shortest elapsed time on some prior training
run. Benchmarks whose behavior varies based on input may
in general require some sort of averaged selection, although
that was not necessary in this collection of 20 benchmarks.
The fixed collectors include the 2-generation collector with
unfiltered and filtered card tables of 128, 256 and 512 byte
cards, with the 2-level card table and with sequential store
buffers of 64 KB, 1 MB and 16 MB.

The average speed of the benchmark suite for each collec-
tor is calculated as the harmonic mean of rates [16]. First,
for each benchmark, the average elapsed time using that col-
lector is normalized to the lowest average elapsed time using
any collector. Each benchmark–collector pair was run re-
peatedly until the standard deviation of the average elapsed
time was nominal. Second, the normalized elapsed times
across all the benchmarks using that collector are averaged
and inverted. The error bars show the standard deviation
of the average. They become larger (worse) when a collec-
tor performs relatively worse for some benchmarks than for
others.

A new “profile selected” binary was rebuilt and remea-
sured once a suitable collector had been chosen for each
benchmark. That composite collector differs from 100% in
Figure 6 because of measurement noise. In general, it could
also differ because of input-dependent variations in behav-
ior.

Figure 6 also shows that the choice of write barrier makes
little difference in average speed. Moderate card sizes (around
512 bytes) have good average speed among the 1-level card
tables. The averages of larger and smaller card sizes are
disproportionately influenced by a few extreme outliers. If
those few outliers are discarded, the resulting average speed
is even more insensitive to the choice of card size. This
is consistent with the measurements reported by Hosking et
al. [17], even though their interpreted Smalltalk environment
is quite different from a compiled Java environment.

Because it pays neither for a write barrier nor for garbage
collection, the nullgc can be surprisingly competitive on
benchmarks that do not fail of heap exhaustion. To get the
same benefits, the copygc is configured to collect as rarely
as possible, i.e. as a null garbage collector with a parachute.
Doubling the interval between collections roughly halves the
number of collections and thus halves the total collection
cost. These benchmarks also run faster if they disregard ex-
plicit requests to collect, e.g. calls to java.lang.System.gc().

7. SUMMARY
Automatic storage management costs can vary consider-

ably by application and collector. For some systems such as
those that execute stand-alone compiled executables, profile
information can be used to pair an application with a suit-
able garbage collector chosen from a pool of collectors. This
can significantly improve the performance of applications
that would otherwise have been paired with an unsuitable
collector. For 20 benchmarks and 3 garbage collectors, it

100% 105% 110% 115% 120% 125% 130% 135% 140%

nullgc + _228_jack
copygc + _228_jack

ssb_os_zero + _228_jack
ssb + _228_jack

cards2 + _228_jack
cards + _228_jack

cardsnf + _228_jack

nullgc + _213_javac
copygc + _213_javac

ssb_os_zero + _213_javac
ssb + _213_javac

cards2 + _213_javac
cards + _213_javac

cardsnf + _213_javac

nullgc + _202_jess
copygc + _202_jess

ssb_os_zero + _202_jess
ssb + _202_jess

cards2 + _202_jess
cards + _202_jess

cardsnf + _202_jess

Execution Time Relative to Minimum Non-Heap Time (less is better)

non-heap heap

Figure 5: The cost of zeroing memory

99.465%

92.857%

94.606%
95.133%

91.871%

93.298%
93.716%

94.008%
93.605%

94.194%

93.363%

94.879%

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

profile
selected

128 B
cardsnf

256 B
cardsnf

512 B
cardsnf

128 B cards 256 B cards 512 B cards 2 level cards 16 MB ssb 1 MB ssb 64 KB ssb copygc

A
ve

ra
ge

 S
pe

ed
 R

el
at

iv
e

to
 B

es
t O

bs
er

ve
d

 (
m

or
e

is
 b

et
te

r)

Figure 6: The average speed of the benchmark suite using profile-directed collector selection compared to
using any of several fixed collectors.

improved the overall performance of individual applications
by more than 15%.

No single collector performed uniformly better than all the
others. The most significant choice affecting performance
was whether to use a generational collector. Generational
collectors did well on benchmarks that had high collection
costs, improving performance by about 50% for the marmot3
benchmark and about 25% on the cn2 benchmark. They
did poorly on benchmarks that had low collection costs and
high write barrier costs. For those benchmarks, the cost
of the write barrier was higher than the reduction in collec-
tion costs. The 209 db, 213 javac and javacup benchmarks
were 15-20% faster with a non-generational semispace col-
lector.

The choice of write barrier sometimes made a significant
difference for individual benchmarks (up to 14% for cn2 and
13% for docli), even though the average performance across
all benchmarks of the different write barriers fell within 2%

of each other.
No write barrier performed uniformly better than the oth-

ers. For some benchmarks, filtering before recording im-
proved performance. For others, it was faster to record ev-
erything. Write barrier scan times were lower with a card
table for some benchmarks and lower with a sequential store
buffer for others. The 2-level card table typically decreased
the cost of scanning but increased the cost of recording,
making some benchmarks faster and others slower.

In all, storage management costs were highly application
dependent. This creates an opportunity to improve the per-
formance of some applications significantly by pairing each
application with an appropriate collector.

8. REFERENCES
[1] Andrew W. Appel. Simple generational garbage

collection and fast allocation. Software—Practice and
Experience, 19(2):171–183, February 1989.

[2] Andrew W. Appel. Book review: “Garbage Collection:
Algorithms for Automatic Storage Management”, by
Richard Jones and Rafael Lins. Journal of Functional
Programming, 7(12):219–225, 1997.

[3] David A. Barrett and Benjamin G. Zorn. Garbage
collection using a dynamic threatening boundary. In
Proceedings of the ACM SIGPLAN’95 Conference on
Programming Language Design and Implementation,
pages 301–314, La Jolla, California, June 1995.
SIGPLAN Notices 30(6).

[4] Craig Chambers. The design and implementation of
the Self compiler, an optimizing compiler for
object-oriented programming languages. Ph.D.
dissertation, Stanford University, March 1992.

[5] C. J. Cheney. A nonrecursive list compacting
algorithm. Communications of the ACM,
13(11):677–678, 1970.

[6] Perry Cheng, Robert Harper, and Peter Lee.
Generational stack collection and profile-driven
pretenuring. In Proceedings of the ACM SIGPLAN’98
Conference on Programming Language Design and
Implementation, pages 162–173, Montreal, Canada,
June 1998. ACM Press.

[7] Standard Performance Evaluation Corporation. SPEC
CPU 95 benchmarks. Online version at
http://www.spec.org/osg/cpu95, 1995.

[8] Standard Performance Evaluation Corporation. SPEC
JVM98 benchmarks. Online version at
http://www.spec.org/osg/jvm98, 1998.

[9] Sylvia Dieckmann and Urs Hölzle. A study of the
allocation behavior of the SPECjvm98 Java
benchmarks. In R. Guerraoui, editor, Proceedings
ECOOP’99, LCNS 1628, pages 92–115, Lisbon,
Portugal, June 1999. Springer-Verlag.

[10] Cort Dougan, Paul Mackerras, and Victor Yodaiken.
Optimizing the idle task and other MMU tricks. In
Proceedings of the 3rd Symposium on Operating
System Design and Implementation, Feb 22–25, 1999,
New Orleans, Louisiana, pages 229–237, February
1999.

[11] R. R. Fenichel and J. C. Yochelson. A LISP
garbage-collector for virtual memory computer
systems. Communications of the ACM,
12(11):611–612, 1969.

[12] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf,
Bjarne Steensgaard, and David Tarditi. Marmot: An
optimizing compiler for Java. Software—Practice and
Experience, 30(3):199–232, March 2000.

[13] David Gay and Bjarne Steensgaard. Fast escape
analysis and stack allocation for object-based
programs. In 9th International Conference on
Compiler Construction, volume 1781 of Lecture Notes
in Computer Science, pages 82–93. Springer-Verlag,
2000.

[14] Adele Goldberg and David Robson. Smalltalk-80: the
language. Addison-Wesley, Reading, MA, USA, 1989.

[15] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. The Java Series.
Addison-Wesley, Reading, MA, USA, June 1996.

[16] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, San Mateo, California, second

edition, 1996.
[17] Antony L. Hosking, J. Eliot B. Moss, and Darko

Stefanovic̀. A comparative performance evaluation of
write barrier implementations. In Proceedings of the
ACM ’92 Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA),
pages 92–109, Vancouver, British Columbia, October
1992. ACM Press.

[18] C.-H. A. Hsieh, J. C. Gyllenhaal, and W. W. Hwu.
Java bytecode to native code translation: the Caffeine
prototype and preliminary results. In IEEE, editor,
Proceedings of the 29th annual IEEE/ACM
International Symposium on Microarchitecture,
December 2–4, 1996, Paris, France, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA,
1996. IEEE Computer Society Press.

[19] Richard L. Hudson, J. Eliot B. Moss, Amer Diwan,
and Christopher F. Weight. A language-independent
garbage collector toolkit. COINS Technical Report
91-47, University of Massachusetts, Amherst, June
1991.

[20] Instantiations, Inc. Jove: Super optimizing
deployment environment for Java.
http://www.instantiations.com/javaspeed/jovereport.htm,
July 1999.

[21] Richard Jones and Rafael Lins. Garbage Collection:
algorithms for automatic dynamic memory
management. John Wiley and Sons, 1996.

[22] Henry Lieberman and Carl Hewitt. A real–time
garbage–collector based on the lifetimes of objects.
Communications of the ACM, 23(6):419–429, 1983.

[23] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. The Java Series.
Addison-Wesley, Reading, MA, USA, 1997.

[24] J. McCarthy. Recursive functions of symbolic
expressions and their computation by machine.
Communications of the ACM, 3(1):184–195, 1960.

[25] David A. Moon. Garbage collection in a large Lisp
system. In Guy L. Steele, editor, Proceedings of the
1984 ACM Symposium on Lisp and Functional
Programming, pages 235–246, Austin, Texas, August
1984. ACM Press.

[26] NaturalBridge. Bullettrain compiler.
http://www.naturalbridge.com/, 1999.

[27] Erik Ruf. Removing synchronization operations from
Java. In Proceedings of the ACM SIGPLAN ’00
Conference on Programming Language Design and
Implementation, pages 208–218, Vancouver, Canada,
June 2000. ACM Press.

[28] Robert Shaw. Empirical analysis of a LISP system.
Ph.D. dissertation, Stanford University, Cambridge,
MA, 1988. Also Computer Systems Laboratory
Technical Report CSL-TR-88-351.

[29] Patrick G. Sobalvarro. A lifetime-based garbage
collector for LISP systems on general-purpose
computers. B.S. thesis, Dept. of EECS, Massachusetts
Institute of Technology, Cambridge, MA, 1988. Also
Technical Report AITR-1417, MIT, AI Lab, Feb 1988.

[30] Guy L. Steele, Jr. Common LISP: the language.
Digital Press, 1990.

[31] TowerJ Technology Corporation. TowerJ 3 – a new
generation native Java compiler and runtime

environment. http://www.towerj.com/, 1999.
[32] David Ungar. Generation scavenging: a

non–disruptive high performance storage reclamation
algorithm. SIGPLAN Notices (Proc. ACM
SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments), 19(5):157–167, 1984.

[33] David Ungar and Frank Jackson. An adaptive
tenuring policy for generation scavengers. ACM
Transactions on Programming Languages and
Systems, 14(1):1–27, January 1992.

[34] David M. Ungar and Frank Jackson. Tenuring policies
for generation-based storage reclamation. In
Proceedings of the ACM ’88 Conference on
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 1–17, September
1988.

[35] David M. Ungar and Frank Jackson. Outwitting gc
devils: A hybrid incremental garbage collector. In
OOPSLA ’91 Workshop on Garbage Collection in
Object-Oriented Systems, October 1991. Available for
anonymous FTP from cs.utexas.edu in
/pub/garbage/GC91.

[36] Paul R. Wilson and Thomas G. Moher. A
card-marking scheme for controlling intergenerational
references in generation-based gc on stock hardware.
SIGPLAN Notices 24(5), pages 87–92, May 1989.

