
Diffusion Tree Restructuring
for Indirect Reference Counting

Dr Peter Dickman
Department of Computing Science

University of Glasgow
Glasgow G12 8QQ

Scotland, UK
pd@dcs.gla.ac.uk

ABSTRACT
A new variant algorithm for distributed acyclic garbage detection

is presented for use in hybrid garbage collectors. The existing

fault-tolerance of Piquer's Indirect Reference Counting (IRC) is

qualitatively improved by this new approach. The key insight

that underpins this work is the observation that the parent of a

node in the IRC di�usion tree need not remain constant. The new

variant exploits standard mechanisms for implementing di�usion

trees and remote references, using four simple low-cost techniques

to dynamically restructure the trees to reduce their depth. This

variant reduces third-party dependencies, which make standard

IRC vulnerable to process failure, while retaining tolerance of

message reordering and without incurring substantial overheads.

The paper carefully motivates the algorithm, presents the full

technical basis for its development, provides a clear explanation

of implementation details and includes an initial discussion of

performance issues.

1. INTRODUCTION
In this paper a new variant is introduced which qualitatively
improves the fault-tolerance of Indirect Reference Counting
(IRC), a distributed acyclic GC algorithm designed for use
in hybrid collectors. The paper carefully motivates the algo-
rithm, presents the full technical basis for its development
and provides a detailed explanation of its implementation.

Many proposals for distributed garbage collection algorithms
assume a hybrid collector [14, 16, 17, 20], in which two al-
gorithms are combined: one, used infrequently, collects all
garbage including cycles, but at a considerable cost; the
other, operating continuously, collects the bulk of the acyclic
garbage using a cheap, safe, but incomplete, mechanism.
The new algorithm is intended for use as the base acyclic
collector in such a hybrid. Acyclic GC algorithms can also
be applied in application domains in which cycle construc-
tion does not occur or can be explicitly managed.

Standard na��ve reference counting is of limited value as the
acyclic garbage collection technique for a distributed object
system, su�ering as it does from a variety of pathological
behaviours in the event of message passing failures in the
underlying communications mechanisms (described briey
in x2.1). However, variants of reference counting have been
proposed which o�er improved fault-tolerance.

In 1991, Piquer [15] developed Indirect Reference Counting
(IRC), which uses a di�usion tree to eliminate the need for
remote increment messages, and hence avoids a race condi-
tion which can lead to incorrect behaviour by distributed
reference counters. But Piquer's algorithm, although safe,
introduces long-term third-party dependencies which poten-
tially reduce the completeness of the acyclic garbage collec-
tion in the presence of process failures.

The new algorithm is a variant of Piquer's IRC. The vital
insight that underpins this work is the observation that the
parent of a node in the IRC di�usion tree need not remain
constant. The new algorithm exploits standard techniques
for implementing remote references and di�usion trees, ex-
tending them to allow dynamic restructuring of the IRC dif-
fusion trees to reduce their depth. This IRC variant thereby
reduces the third-party dependencies which make standard
IRC vulnerable to process failure, without a�ecting the ex-
isting tolerance of message reordering.

Moreau [13] has also applied di�usion tree reorganisation
to distributed garbage collection, as described in section 6,
but in an implicitly more eager technique with less fault-
tolerance built on a di�erent underlying communication model.

Section 2 presents background material on: the problems
posed by distributed reference counting; the IRC algorithm;
the low-level implementation of remote references; and the
construction and maintenance of di�usion trees. Techniques
for restructuring di�usion trees are then introduced in sec-
tion 3, with a detailed presentation of the implementation
issues raised. The new algorithm exploits these advances
and section 4 shows how improvements in fault-tolerance
are achieved in the presence of fail-stop nodes. An analysis
of the performance implications follows in section 5, em-
phasising the algorithm's e�ect on the shape of the di�usion
trees. The paper concludes with a summary and suggestions
for future work.



2. BACKGROUND
This section provides several pieces of background detail, to
allow the implementation-level requirements of the new al-
gorithm to be fully understood. Readers with a prior knowl-
edge of distributed systems may wish to skip x2.1, on the
problems of reference counting, and x2.3 on remote refer-
ences. The primary survey of garbage collection algorithms
is by Jones' [8], although the surveys by Louboutin [11] and
Plainfoss�e & Shapiro [18] may also be of interest.

2.1 Reference Counting in Distributed Systems
In standard na��ve distributed reference counting, remote ref-
erences indicate an object in another process, at which a
reference count is maintained. As copies of references are
constructed and discarded in the distributed system, inc
and dec messages are sent to the target object to increment
and decrement the reference count. If two such messages
are delivered out of order, it is possible for a reference count
which should change through the sequence 1 ! 2 ! 1 to
instead be changed 1 ! 0 ! 1. This second alternative
is disastrous, since the referenced object will be reclaimed
when the count becomes zero. The error will be noted when
the delayed inc message arrives, but by then may be unre-
coverable.

These race conditions can be avoided if all messages are
passed using a synchronous procedure call model, with care-
ful sequencing of the actions. The crucial step is to not
return from sending a reference-carrying message until the
corresponding inc message has been processed. However,
this approach may be prohibitively costly, since it does not
allow inc and dec messages to be delayed until other tra�c
is passing between the relevant nodes, and hence may in-
crease the network tra�c by a substantial factor. There is,
in consequence, signi�cant interest in message-based refer-
ence counting, as a means of reducing network load, even
when \normal" communication is RPC based.

Other message based problems arise if inc messages are du-
plicated (the object will never become garbage) or lost (the
object may be incorrectly collected), and dual problems arise
with dec message duplication (incorrect collection of non-
garbage) or loss (incorrect retention of garbage). Since mes-
sage duplication is easier to detect and avoid than message
loss, many reference counting variants have been proposed
which avoid the need for remote increment messages and
assume no message duplication [1, 2, 4, 5, 7, 15, 23]; these
algorithms are safe if messages are lost or re-ordered, but
may not be complete.

In addition, all counter based mechanisms with �xed-size
counters have the potential for counter overow. It is safe,
but inaccurate, for the counters to overow to an undecre-
mentable in�nite value, as this leads to incorrect retention
of garbage. It is, however, unsafe for the counters to wrap-
around, as this may lead to incorrect collection of non-
garbage.

Finally, all distributed garbage collection algorithms, not
just reference counters, may have problems in the event
of process(or) failure. If a failed node held remote refer-
ences, the targets of those references cannot be declared to
be garbage unless it is certain that the failed node will never

subsequently recover. Furthermore, if a reference chain passes
through a failed process, communication between the holder
of the reference and its target may be impeded.

2.2 Indirect Reference Counting
Indirect Reference Counting (IRC) was proposed by Piquer
as a solution to the message reordering problem for dis-
tributed acyclic garbage collection using reference counting
[15]. In IRC, the reference count is, in e�ect, distributed
throughout the processes which contain (or have contained)
references to the object. A tree structure links these par-
tial counts, with all leaf nodes currently holding references
to the object and all internal nodes holding portions of the
reference count. Although decrement messages pass along
branches of the tree, increments are purely local; hence there
are no inc/dec message race conditions caused by reorder-
ing in the underlying communications layers.

Piquer implements remote references using two references,
one (called the primary in this paper) indicating the desired
remote object, the other (called the source pointer here) in-
dicating the source from which this reference was obtained.
When a remote reference is copied, the primary reference
is identical to that in the original copy, however the source
pointer indicates the node at which this copy is being gener-
ated, and a reference count local to that node is incremented.
When a remote reference is discarded a dec message is sent
to the indicated source node, rather than the primary node.
The source pointers for remote references to a given object
form a di�usion tree (de�ned in x2.4) rooted at the object.

Figure 1 shows the di�erence between normal reference count-
ing and IRC. In Fig.1(i) we see three objects holding re-
mote references to a fourth (o1 at A). Two of the three have
acquired their references directly from A, while the third
acquired its reference indirectly. Standard na��ve reference
counting is illustrated in Fig.1(ii), while IRC is shown in
Fig.1(iii). Note that in IRC all remote references have an
associated copy count and may have a source pointer which
di�ers from the primary pointer.

2.3 Implementing Remote References
Piquer assumes a classical implementation of remote refer-
ences, with a local proxy [19] in a process encapsulating
each actual remote reference, and standard language-level
references to the local proxies allowing local and remote ref-
erences to appear the same (modulo semantic di�erences
due to the possibility of remote exceptions, di�ering param-
eter passing mechanisms, etc). This technique for reference
implementation is illustrated in �gure 2. The precise lower-
level implementation details of the link between the local
proxy and remote entry are not signi�cant for the purposes
of this paper, so are not discussed here. Figure 2(iii) shows
that a single proxy may be used to represent multiple local
references to the remote object, and that a single remote
entry may be used by multiple proxies1.

1This is the signi�cant di�erence between distributed refer-
ence counting and distributed reference listing [3, 20, 21].
In reference listing, each remote entry is associated with a
particular proxy, so there may be multiple entries per ob-
ject. In reference counting the entry is normally shared by
all proxies.



C D

(iii)

BA
o2

o3

o4

o1

C D

BA
o2

o3

o4

o1
3 2

0 0

1

C D

BA
o2

o3

o4

o1

other objects are only locally referenced
o1 has a remote ref count of 3 o1 has a remote ref count of 2

o4’s ref is a copy, the others are originals
the ref from o2 to o1 has copy count of 1o4 acquired its ref from o2

o2 & o3 acquired refs to o1 directly
Standard Reference Counting Indirect Reference CountingAcquired Remote References(i) (ii)

Figure 1: Reference Counts and IRC

A B

o1 o2

o1 & o4 in A and o3 in C all hold references to o2 in B
(i) Programmer View

remote reference indicates remote object

B

o2

(iii)

C

o3

1 2

Multiple remote references

Note reference count of 2 at entry to o2 in B

A B

o2

(ii) System view
remote reference indicates local proxy
local proxy indicates remote entry

A

o1 o1
o4

Figure 2: Standard Remote Reference Implementation

Piquer proposes that the proxies are extended to incorpo-
rate the source pointers and this is illustrated in �gure 3.
The implementation-level notation used in this paper distin-
guishes between proxies with identical primary and source
pointers (e.g. the proxy in process A in Fig.3(ii)) and those
with di�erent pointers (e.g the proxy in process C of the
same diagram). Furthermore, the proxies must be modi�ed
to contain a count of the number of extant copies which
originated from that proxy.

Standard techniques for distributed reference implementa-
tion can be used to ensure that there is a single entry for a
given object, and that only one proxy for a particular object
exists in a given process. Consistently with this, the origi-
nal description of reference unmarshalling for IRC assumed
that an existing non-garbage proxy will be retained with its
source pointer intact, and that further proxies will not be
constructed if new references to the same object are received.
Instead the existing proxy is used, and a dec message is sent
to the source of the new reference copy.

A key feature of IRC, illustrated in Fig.3(iii), is the poten-
tial introduction of third party dependencies. The source
pointer mechanism requires that proxies with a non-zero
copy count must be retained, even if they are not locally
referenced. The implication is that, should process A fail, it
will not be possible to garbage collect o2 if o3 discards its
reference. However, invocations of o2 from o3 do not travel
via A, so would not be a�ected by problems at A.

2.4 Diffusion Tree Management
Di�usion trees are used in a variety of distributed algorithms
[12, 22] and are constructed on-the-y to capture, for exam-
ple, the routes of dissemination of information as knowledge
di�uses through a multi-process application. The nodes of
a di�usion tree usually form a superset of the nodes in the
system which exhibit a particular property, such as being
involved in a computation (for termination detection [6]),
or containing a reference to a particular object (for garbage
collection [15]). The di�usion tree commonly expands and
contracts as the system progresses: adding nodes as they be-
come involved in the computation or are passed a reference;
removing nodes when they complete processing or discard
the reference. In most uses, the reduction of the tree to
the original root indicates that a (stable) property of inter-
est now holds, e.g., the computation has terminated or the
object is now garbage.

The source pointers in IRC form a di�usion tree rooted at
the referenced object. Figure 4 illustrates the tree develop-
ing between the IRC proxies, as references are passed be-
tween processes. The IRC di�usion tree is the focus of this
paper, and at times that tree alone is drawn. This is illus-
trated in �gure 5, in which the circles represent processes,
with one or more objects in each process holding a remote
reference to an object in A. Only the source pointers are
shown, all primary pointers would indicate a shared remote
entry at A.



diffusion tree

invocation route

local reference

notional remote ref
Key

Diffusion tree includes A proxy

Invocations passed directly

A still involved in o3’s ref to o2

After o1 discards ref to o2
or o1 is discarded entirely

A B

o2

o3

11

0

C

Implementation(ii) (iii)

B

o2

A

A

o1

o3

o1 gave o2 ref to o3 at C
o1 at A has ref to o2 at B

Abstract View(i)

A B

o2o1

o3

11

0

C

Third Party Dependency

Figure 3: Remote Reference Implementation for IRC

0

0

0

1 2

C

B

DF

E

o1 o2

o3 o4

o5

o6

(ii) o2 references now passed: to o4 directly from o2; to o6 from o3; and to o5 from o1

0

2

1

A

C

B

DF

E

o1

1

o2

o3 o4

o5

o6

o1 at A holds a reference to o2 at B, o1 has passed a copy of its o1 ref to o3 at C(i)

A

Figure 4: Di�usion Tree Construction : Implementation View

A

B

D

C

M

N

A

B

D

C

M

N

N acquires reference from M

A

B

D

C

M

N

(i)

A

B

D

C

M

N

references to an object at A
Example Diffusion Tree for (ii)M acquires reference from C

N acquires reference from D
(iii) M acquires reference from B

N acquires reference from B
(iv) M acquires reference from B

Figure 5: Di�usion Tree Construction : Abstract View of Tree



In general, a di�usion tree is constructed implicitly as mes-
sages are passed between processes. A process which is not
currently part of the tree may receive a message which re-
quires it to join the tree (because some condition has become
true, such as holding a reference to the di�usion tree root).
If this happens it joins the tree with the source of the re-
ceived message as its parent. When the process no longer
needs to be part of the tree (because it no longer satis�es the
tree membership criterion and has no children), it informs
its parent.

3. DIFFUSION TREE RESTRUCTURING
There is a complication in the di�usion tree construction
which is exploited by the new algorithm. When a process
which is part of the tree sends a message which could induce
tree membership, it may not know whether the intended re-
cipient is already part of the tree. To ensure correct and
timely di�usion tree extension, the sender of a message as-
sumes that the recipient will need to join the tree, and there-
fore the sender further assumes it will become the recipient's
parent in the tree (hence incrementing the local copy count).
If a process which is already part of the tree receives a mes-
sage which implies tree membership, it now has, notionally,
two parents and must rectify this situation. The standard
technique is to disregard the \new" parent, sending a dec

message to the source of the new message which will, in
e�ect, rescind the presumed child status of the recipient.

3.1 The Key Idea
The crucial observation exploited in this paper is that it is
not necessary for a node to retain the original parent in the
di�usion tree, rejecting all suggestions of new parents. Dif-
fusion tree algorithms function correctly provided the tree
structure is maintained, but there is no requirement that the
parent of a given node remains constant. It is, therefore, en-
tirely possible for the recipient of additional willing parents
to choose between them. A better analogy is to think of a
simple employer-employee relationship, rather than parent-
child, with occasional changes of employer when new oppor-
tunities arise but no periods of unemployment.

Many strategies present themselves for determining which
parent to retain, when a new parent o�ers itself to a tree
node. The simplest is the standard \loyal" retention of the
original parent and rejection of all new suitors. The new
algorithm instead uses two techniques to decrease the depth
of the di�usion tree: a depth reducing strategy for parent
selection is described in x3.1.2, and an RPC-time mechanism
which also reduces the tree depth is presented in x3.1.1.

By way of contrast, an incorrect alternative strategy is il-
lustrated in �gure 6; this always accepts the new o�er and
rejects the existing parent. The \ighty" algorithm behaves
incorrectly if the new parent is a descendent of the mes-
sage recipient, since it will disconnect the tree structure and
introduce a loop, as shown in Fig.6(iii). The \ightly" al-
gorithm only behaves correctly when the new parent is in a
di�erent branch of the tree, or is an ancestor, as shown in
Fig.6(ii) and Fig.6(iv) respectively.

A number of criteria can be used to determine preferences
between possible strategies for parent selection. The crucial
criterion is correctness, which immediately eliminates the

\ighty" algorithm from further consideration. Another is
ease of implementation, and there is no doubt that the tra-
ditional \loyal" approach is most straightforward to imple-
ment. Other factors, such as the precise impact on message
tra�c, are discussed further in section 5. The motivation for
the technique presented in this paper is a desire to reduce
third-party dependencies. To fully eliminate third party de-
pendencies requires that all di�usion trees have depth 1, i.e.,
that they consist solely of the root and leaves. The two tech-
niques utilised in this paper work towards this goal, but may
not always achieve it.

3.1.1 Sub-tree re-rooting during RPC
Consider an invocation from an object at process B in Fig. 6(i),
to the object in A which is the tree root. The low-level RPC
implementation at the proxy can detect that the primary
and source pointers di�er and that this proxy is not, there-
fore, directly adjacent to the root in the di�usion tree. The
invocation can carry that datum as a single bit, informing
the low-level RPC implementation at the remote entry in the
target process, A. Before returning from the remote call, the
reference count at the remote entry can be incremented, and
when the call returns to the proxy, the source pointer can
be changed to directly indicate the root process, i.e. it can
match the primary pointer. This requires, of course, that
a dec message be sent to the original target of the source
pointer, the ex-parent of this process in the di�usion tree.

This technique means that during normal activity the di�u-
sion trees can become shallower. Whenever a non-adjacent
process is the originator of an invocation, the sub-tree based
at that process moves to become directly attached to the
root node | hence the name \sub-tree re-rooting". The
approach does not, however, a�ect the tree structure if in-
vocations are rarely or never made, as may be the case at a
name server for example.

3.1.2 Depth-reducing parent selection
A depth-reducing parent selection strategy can be deployed
in conjunction with, or independently of, sub-tree re-rooting
during RPC. On receipt of a message indicating that a sec-
ond parent exists, the recipient chooses between the can-
didate parents based on their proximity to the tree root.
This requires an estimate of depth in the di�usion tree to
be maintained, and that these depths are passed as part of
the marshalled form of remote references.

The algorithm assumes that each proxy has an estimate of
its depth in the di�usion tree, and that all descendents of it
have a greater depth. On that basis, the algorithm chooses
to change parent only if the new one has a depth indicator
at least two smaller than its own, since it assumes its own
parent has a depth one less and that its descendents all have
greater depth values. Note that the depth indicator need not
be absolutely correct. This is explained further in x3.2.2.

3.2 Implementation Details
The exploited techniques require minor changes to the im-
plementation of the di�usion tree and RPC mechanism. These
changes, and further implementation-level mechanisms which
improve the behaviour of the algorithm, are described in de-
tail in the following sections. The performance implications
of the changes are discussed in section 5.



A

B

C

D

references to an object at A

E

(i)

E

(ii) B receives ref from C
and correctly changes ptr

E

(iii) B receives ref from D
and incorrectly changes ptr

(iv) B receives ref from E
and correctly changes ptr

E
XA

B

C

D

A

B

C

D

A

B

C

D

Example Diffusion Tree for

Figure 6: Di�usion Tree Restructuring

3.2.1 Sub-tree re-rooting during RPC
This technique does not require adjustment of the di�usion
tree itself, but does impact on the RPC mechanism and
a�ects tra�c patterns. An additional bit is required in RPC
request packets to indicate whether the originator of the call
requires re-rooting. Furthermore, on receipt of the reply, the
RPC originator will generate a dec message to its ex-parent,
and this may require additional network tra�c that could
otherwise have occurred far into the future, or perhaps never
in the application's lifetime.

Note that the dec message must be sent by the originator
of the RPC, on receipt of the reply, as only then can it be
guaranteed that the original parent is no longer depended
upon. Thus sub-tree re-rooting is predicated upon the use
of an RPC, rather than message-passing, model for normal
computation. This is in sharp contrast with a related mech-
anism introduced by Moreau, described in x6.

An implementation issue is whether to request re-rooting
only in the �rst RPC call from a proxy with di�ering source
& primary pointers, or in all such calls.

Requesting re-rooting just once requires that a ag is main-
tained in the proxy showing that such a request has been
made. Furthermore, if that re-rooting call fails2 then fur-
ther attempts at re-rooting will be delayed until the failure
is noticed and the ag cleared.

If, instead, all calls carry the re-rooting request, the re-
rooting will occur as soon as any one of the RPCs completes.
However, this does mean that multiple increments will oc-
cur at the remote entry and it will be necessary to send dec

messages for each of the additional spurious increments.

The apparent cost of the spurious increments, if multiple
re-rooting calls are made, can be reduced if an additional
optimisation is used. To substantially reduce this cost a
simpli�ed weighted reference counting technique can be in-
corporated into the proxies, as described in x3.2.4. In the
absence of such an implementation it appears, however, that
the single-call mechanism is preferable.

2If such a failure occurs when the reply is being returned,
the reference count at the remote entry will already have
been incremented. This has the same (safe) consequences
as loss of a dec message.

3.2.2 Depth-reducing parent selection
In order to implement depth-reducing parent selection, depth
indicators are required in the di�usion tree. If the depth
at a particular di�usion tree node is reduced, the descen-
dents of that node have also become closer to the root.
However, updating their depth �elds would incur additional
cost. Although propagation of these updates could be de-
ferred, lazily piggy-backing on other tra�c, this has little
value since it requires that either:

(i) the parent knows its children: this means reference
listing is being used, which introduces considerable ad-
ditional costs and o�ers alternatives to IRC as the base
mechanism; or

(ii) the child has sought contact with its parent: but this
is likely only in the case of a dec message, following
garbage collection or sub-tree re-rooting during RPC,
both of which imply that the depth information is no
longer of interest.

It follows that a depth indicator is required which satis�es
the criteria that descendents have a higher depth than their
ancestors. However, the more accurate the depth indicator
the greater the bene�t of this parent selection algorithm.

As shown in �gure 7, the proposed implementation is to an-
notate proxies with a depth indicator as well as the source
pointer. In proxies which are adjacent to the di�usion tree
root, the source pointer matches the primary pointer and
the depth indicator is zero3. For all other proxies the source
pointer indicates the parent in the di�usion tree and the
depth indicator is non-zero, as shown in process C of Fig.7(i).
Fig.7(ii) illustrates the simplest cases of di�usion tree growth.

The e�ect of the depth-reducing parent selection algorithm
is illustrated in �gure 8. The di�usion tree has been anno-
tated with accurate depth indicators in Fig.8(i) and subse-
quently a message, carrying a reference to the tree root, is
passed from an object in process C to an object in process
B. This causes a restructuring of the tree, as indicated in
Fig.8(ii) and the depth indicator at B will then be changed
to 2. Since depth changes are not propagated through the
sub-tree, the proxy at process D will incorrectly believe it
remains at depth 5 in the tree, and if D received a message
from E, containing a reference to the root object, the tree
would be further restructured as shown in Fig.8(iii).
3Indicated by a black square on the proxy for emphasis.



0

0

0

1

1 1

1

o1 at A holds a reference to o2 at B, o1 has passed a copy of its o2 ref to o3 at C

C

B

DF

E

o1 o2

o3 o4

o5

o6

0

2

1

A

C

B

DF

E

o1

1

o2

o3 o4

o5

o6

A

2

2

(i)
Diffusion tree nodes below top level have depth as well as ptr to source of copy

(ii) o2 references now passed: to o4 directly from o2; to o6 from o3; and to o5 from o1

Figure 7: Remote Reference Implementation for IRC with Di�usion Tree Restructuring

This �nal change, although safe, is somewhat unhelpful and
demonstrates a potential drawback of this strategy. To re-
duce these unhelpful changes a third technique, near-leaf
parent avoidance, is used. This is described in x3.2.3.

This implementation of depth-reducing parent selection re-
quires that proxies be annotated with a depth indicator,
which as a counter may su�er from overow problems and
must therefore include the possibility of a sticky \in�nite"
value. In addition, the marshalled form of remote references
must include the incremented depth value, making them
larger by a small number of bytes4. Finally, as with sub-tree
re-rooting during RPC, it may be necessary for the low-level
RPC code at the proxy to redirect the source pointer and
therefore generate a dec message for the ex-parent.

3.2.3 Near-Leaf Parent Avoidance
The tree restructuring illustrated in Fig.8(iii) shows two mi-
nor di�culties. One problem is that process D, in the mis-
taken belief that it is at depth 5 in the di�usion tree, has
selected a parent with depth 3 when its own parent is now
at depth 2. Although this could be avoided, by interact-
ing with the current parent, the cost of doing so appears
excessive for the bene�t achieved.

The second, more worrying but easily avoidable, problem is
that the newly selected parent was previously a leaf node,
and the ex-parent remains a non-leaf node in the di�usion
tree. This means that the number of nodes at which failure
would induce problems for the di�usion tree has potentially
increased. B is still depended upon, by its one remaining
child, and E is now depended upon by D.

Near-Leaf Parent Avoidance requires that when a remote
reference is marshalled at a leaf node in the di�usion tree, it
is marked with a single bit. This indicates that the source
was a leaf node prior to the marshalling of the reference. If
the reference recipient �nds this bit is set and has a choice
about its parent in the di�usion tree, i.e. if it is already in
the tree, it will retain its current parent and reject the new
one. This approach will lead to a dec message being sent to
the source of the message and it will again become childless,
i.e. a leaf node in the tree.

4The increase depends on the desired magnitude of the \in-
�nite" depth value, one byte allows di�usion trees of depth
255 without counter overow.

The Near-Leaf Parent Avoidance technique may not be op-
timal, since B's other child might become garbage while E
could subsequently pass references to many other processes.
However, it does ensure that no one application of the depth-
reducing parent selection strategy ever directly increases the
number of non-leaf nodes in the di�usion tree.

3.2.4 Simple Weighted Proxies
There are two situations in which decmessages can be elimi-
nated by a simple application of a technique akin to weighted
reference counting [1, 2, 23]. In weighted reference counting,
each remote reference has an associated weight and when a
proxy is discarded, the reference count at the associated re-
mote entry is reduced by the weight of the reference, rather
than decremented. A similar mechanism can be utilised in
the proxy of the optimised IRC mechanism, with each proxy
having a weight �eld. This has advantages in two situations.

When a message is received which contains a copy of a
known remote reference no new proxy is needed. In the
scheme as presented so far, a dec message will be sent to
either the source of this message or the source as indicated
in the proxy. However, if these two sources are the same,
the weight of the proxy can instead be increased. If the
proxy is subsequently discarded the associated dec message
will carry the weight, and cause the associated counter to
be reduced by two (or more) rather than one.

The same bene�t arises if the sub-tree re-rooting mechanism
attempts to trigger re-rooting on all remote invocations until
the re-rooting is completed. In that approach multiple RPC
replies may indicate that re-rooting has occurred, each of
which implies an increment of the reference counter at the
remote entry. Rather than sending multiple dec messages
on receipt of those additional re-rooting success indicators,
the proxy weight can again be incremented.

Overow of the weight counter would prevent the algorithm
from correctly garbage collecting the target remote object.
However a dec message can be generated that removes al-
most all of the accumulated weight when necessary. Weight-
reducing dec messages allow the counter size to be limited,
permitting a trade o� between additional delayable messages
and proxy memory size. The upper bound on proxy weights
determines the required increase in size of both proxies and
dec messages: a single byte in each would su�ce.



A
C

B

0
1

1 2

22

3

3

4

5 5

6 6

D
E

2 3

A
C

B

0
1

1

references to an object at A

2

22

3

3

4

5 5

6 6

D
E

2 3

A
C

B

0
1

1 2

22

3

3

5 5

6 6

D
E

2 3

2

(iii)

but unwisely; E now non-leaf
and changes ptr correctly
D receives ref from E

D depth 5 (3!) -> 4

(ii)(i)
B receives ref from C
and correctly changes ptr 

B depth 4 -> 2

Example Diffusion Tree for

Figure 8: Di�usion Tree Restructuring by Depth Reduction

This use of weights is simpler than in true weighted refer-
ence counting, which requires additional marshalling code
for copied remote references. However, the inter-linking of
these two algorithms has a historical precedent, as Corpo-
raal's variant of WRC [4] in e�ect uses a di�usion tree to
handle weight underow.

4. FAULT TOLERANCE
The e�ect of these changes to the di�usion tree structure is
to dynamically reduce the depth of the di�usion tree. This
has the potential, but is not guaranteed, to reduce the num-
ber of nodes in the tree which are retained purely to main-
tain tree integrity. The proposed mechanisms do not alter
the number of nodes which hold a locally accessible reference
to the object at which the di�usion tree is rooted.

One bene�t arises when a node which was required purely
to maintain tree integrity becomes a leaf of the tree, due
to the last of its children transferring their source pointer
to a node with a smaller label. Leaf nodes which do not
locally reference a proxy can discard the proxy, removing
themselves from the associated di�usion tree and freeing a
small amount of memory. The more important bene�t is
that reducing the number of nodes which hold proxies purely
to maintain the di�usion tree improves fault tolerance.

The new variant maintains the robustness of IRC in the face
of message loss and re-ordering. Although some additional
dec messages may be generated in the new variant, the use
of weighted proxies and piggy-backing of dec messages helps
to limit increased vulnerability due to message loss.

4.1 Avoiding Third-Party Node Failure
Although a failed node does not interfere with the use of the
primary references, provided the failed node is not the host
of the root object, it does a�ect garbage collection. A fail-
stopped node cannot receive or generate decmessages, hence
any object whose di�usion tree includes the failed node will
never be deemed to be garbage. Even if the node subse-
quently restarts with its data structures intact, if any dec

messages have been missed garbage may be incorrectly re-
tained | and recall that re-transmission of dec messages
is dangerous, as a duplicated message will cause incorrect
behaviour, notably the collection of non-garbage.

Both original IRC and the new variant fail safe in the event
of node failures, but may not maintain accuracy or time-
liness. The scope for improvement of the IRC algorithm
lies in the number of nodes which are incorporated into the
di�usion tree purely to maintain its structure, due to third
party dependencies. Failure of any one of those nodes may
defeat the IRC algorithm, yet they are not required for nor-
mal computation. If it is assumed that node failures are
independent, the probability of unnecessary failure of the
IRC di�usion tree is proportional to the number of these
additional nodes. Hence, reducing the number of nodes in a
given di�usion tree reduces the probability that node failure
will make it impossible to garbage collect the root object
for that tree. So the new variant o�ers an increased level
of fault tolerance. In many cases, sub-tree re-rooting during
RPC will eliminate the unnecessary failures, and in other
cases the depth-reducing parent selection, supplemented by
near-leaf parent avoidance, will reduce the risk of such prob-
lems.

5. BASIC PERFORMANCE ANALYSIS
All four techniques introduced in this paper have minor
space implications, and small impacts on the processing time
for individual RPCs. The mechanisms also modify the traf-
�c patterns, which has a secondary impact on CPU time.
Furthermore, in order to determine the value of the new
algorithm, its e�ect on the di�usion tree shape must be
considered, since that directly correlates to the improved
fault-tolerance.

5.1 Message Count, Space and Time
Messages: At �rst sight, all parent selection strategies send
the same number of dec messages. Any di�erence in net-
work message counts will therefore be due to di�erent piggy-
backing behaviour, in carrying the dec messages as part
of other tra�c. In particular, if remote references are fre-
quently carried in RPC calls, an immediate dec can be re-
turned as part of the reply. This optimisation will be lost
if the new variant chooses to abandon the old, rather than
new, parent. In fact, the new parent selection strategy can
induce additional messages: changing parent may change
the ex-parent into a garbage leaf node leading to the gener-
ation of a dec message which would otherwise have occurred
far in the future, or possibly never in the application's life-
time (if the object never becomes garbage).



Furthermore, sub-tree re-rooting during RPC will lead to
an additional dec message for each re-rooted proxy. The
proxy must send a dec message to its ex-parent, and if it
subsequently becomes garbage it sends a second decmessage
to the root.

It follows that more messages are almost always required for
the new algorithm, with the measurable change being highly
application dependent. Simple weighted proxies do allow a
small reduction in the number of messages, but this e�ect
could be gained independently of the other mechanisms pro-
posed in this paper, so cannot be legitimately viewed as a
compensating bene�t.

Space: Sub-tree re-rooting adds a single bit to RPC calls,
near-leaf parent avoidance adds a single bit to the mar-
shalled form of remote references, depth-reducing parent
selection requires that proxies and marshalled remote refer-
ences contain an additional depth �eld, and simple weighted
proxies add a weight �eld to both proxies and dec messages.
All four techniques therefore increase the space required in
the system, but the changes are small.

Savings also accrue, due to the partial elimination of source
pointer chains through nodes which do not locally reference
the object at the root of a di�usion tree. The precise trade-
o� in space costs depends on the implementation of remote
references and the application behaviour, but is unlikely to
be especially favourable to the new algorithm as proxies are
small, so the savings made are not large. However, the over-
all space cost is unlikely to be signi�cant unless most objects
are both small and remotely referenced, which is not nor-
mally the case in distributed applications.

Time: The new variants slightly increase the cost of mar-
shalling and unmarshalling of remote references, however
this change is likely to be undetectable compared with the
primary costs of RPC: object graph traversal for argument
marshalling and the network transmission delays.

A secondary cause of additional time costs is extra context
switches. Sending a dec to a prospective new parent has
some possibility of interacting with the current task at that
processor: since that node has just communicated the refer-
ence, its current task may be the desired recipient of the dec
message. In contrast, sending a dec to the old parent node is
more likely to cause a context switch, since there is no reason
to suspect the required process is the running task. Whether
this change will be detectable in normal operation is hard
to judge but it seems unlikely, and the costs, if detectable,
will again be highly application speci�c and dependent on
the extent to which piggy-backing of dec messages occurs.

Summary: It follows that the IRC variant proposed in this
paper has marginally higher costs than classical IRC. This
cost should, however, be o�set against the improved fault
tolerance achieved by reshaping the di�usion tree.

5.2 Tree Shape
The new algorithm will never actively increase the number
of non-leaf nodes in the di�usion tree, and it endeavours to
reduce the number of such nodes by sub-tree re-rooting and
depth reduction.

Sub-tree re-rooting during RPC is guaranteed to improve
the di�usion tree shape, attening it and hence reducing
the number of third party dependencies which can arise.
Depth-reducing parent selection will normally, but is not
guaranteed to, also improve the shape of the tree; near-leaf
parent avoidance ensuring that individual decisions do not
worsen the situation.

It follows that both the depth of the di�usion tree and the
number of non-leaf nodes are normally reduced by the new
algorithm. The e�ect of this is to reduce the number of
nodes included purely to maintain di�usion tree integrity,
in many cases reducing this total to zero and hence quali-
tatively improving the fault-tolerance of the acyclic garbage
collector.

6. MOREAU’S ALGORITHM
Luc Moreau has developed an acyclic distributed garbage
collection algorithm which also uses di�usion tree reorgani-
sation [13].

In Moreau's approach the di�usion tree is only a transient
construct: proxies only hold a reference to the primary ob-
ject and do not also contain a source pointer. However, the
proxies do contain a reference count indicating the number
of copies that have not yet been re-rooted. Rather than
maintaining the di�usion tree, Moreau introduces inc-dec

messages, which are sent by recipients of a new copied ref-
erence to the target of the reference. The inc-dec message
causes the remote entry reference count to be incremented,
and is then forwarded to the source of the copied reference
to cause the copy count at the source to be decremented.

Thus, if an object at A is referenced from B, and a copy of
the reference is passed to C, which does not initially hold
such a reference, the sequence of events is as follows:

� B increments local copy count

� B sends reference copy to C

� C sends inc-dec message to A

� A increments reference count in local entry

� A sends second-stage of inc-dec message to B

� B decrements local copy count

In contrast, when a duplicate copied reference is received a
dec message is sent directly to the source of the reference,
as in standard IRC.

There are a number of fundamental di�erences between Moreau's
algorithm and the optimised IRC presented here, in terms
of their behaviour and implementation:

The relative laziness of the two algorithms depends more
on the underlying implementation than on any implicit or
explicit feature of their core design. Moreau's inc-dec mes-
sages could be sent immediately, or lazily piggy-backed on
other tra�c with the implicit di�usion tree temporarily rep-
resented by the queued messages. Similarly, in the algo-
rithm presented in this paper, sub-tree re-rooting can await
normal application invocations, or a daemon could generate
dummy calls to eagerly resolve proxies with di�ering source
and primary pointers.



The precise messaging costs of the two approaches depend
crucially on the degree of laziness and hence are di�cult
to quantify in general. Moreau's inc-dec message roughly
corresponds to the re-rooting request & reply bits and the
subsequent dec message sent to an ex-parent following suc-
cessful sub-tree re-rooting during RPC. Moreau's approach
therefore introduces or a�ects two messages, rather than
three in similarly eager or lazy implementations of the op-
timised IRC. However the size of the piggy-backed data is
negligible in two of the optimised IRC interactions.

The lack of source pointers reduces the size of both mar-
shalled references and proxies, in Moreau's algorithm, com-
pared with the technique suggested here. In contrast, how-
ever, his inc-dec messages are somewhat larger than the
normal dec messages used in both proposals.

Moreau's technique reintroduces a form of increment mes-
sage, but avoids one of the major race conditions between
increment and decrement messages by chaining the sending
of the second-stage dec message after the processing of the
increment triggered by the �rst-stage inc-dec message. A
second potential cause for concern, loss of the second-stage
of the inc-dec message, is also handled safely, since the
local copy count at the source of the copied reference will
remain incremented. This means the proxy at that site will
be retained in perpetuity, so the algorithm fails safe.

The most important di�erence relates to fault-tolerance and
the underlying model of communication:

The use of a form of increment message leaves Moreau's
algorithm vulnerable to message reordering and loss. If,
for example, a dec message from C overtakes the �rst-stage
inc-dec message, the target object may be wrongly garbage
collected. A similar problem arises if the inc-dec message
is lost during the �rst stage of its travels and a dec message
is subsequently generated. Moreau therefore has to assume
that individual message channels are FIFO and that �rst-
stage inc-dec messages are not lost. This assumption is em-
bodied in his requirement that \reliable message-passing and
FIFO handling is provided by the transport layer". This is a
signi�cant restriction, limiting the applicability of Moreau's
algorithm. With reliable FIFO channels most (but not all)
of the problems of na��ve reference counting are eliminated.

Such assumptions are not required by the variant IRC
algorithm presented in this paper.

7. FUTURE WORK
This paper has presented, in detail, the key idea and imple-
mentation details that enable optimisation of Indirect Refer-
ence Counting. Several distinct developments are possible,
building on this work.

7.1 Mobile Objects
Some care must be taken when modifying the IRC di�usion
trees if objects are mobile, however the technique proposed
is safe in this context. Paper length restrictions preclude
detailed explanation, but the key issue is the value used for
the di�usion tree depth indicator when a proxy is created
for an outgoing migrating object. A negative value, based
on the number of migration steps taken by the object, gives
the desired behaviour, but may eventually stick at the limit
of the counter.

7.2 Other Applications
The potential bene�ts of di�usion tree restructuring can also
arise with other di�usion tree based algorithms, such as Di-
jkstra Scholten termination detection [6]. The costs and
bene�ts will again always be highly application dependent.

7.3 Performance Evaluation & Proof
Minor algorithmic changes, such as proposed here, bene�t
from very careful evaluation in a controlled context using
�ne-grained measurements and a range of distributed ap-
plications. Since the costs are due to changing the pattern
of context switches, introducing single bits into RPC calls,
and other such minor modi�cations it is di�cult to accu-
rately characterise them amongst the noise of distributed
computing. If a Distributed GC Algorithm Testbed were
constructed [9], evaluating this variant IRC algorithm might
provide an interesting sensitivity experiment. In the absence
of such an environment for DGC evaluation it remains to
implement the algorithm in a variety of systems, and to for-
mally prove its properties, e.g. that integrity of the di�usion
tree is maintained.

7.4 Further Integration and Hybridisation
A fusing of Weighted Reference Counting and Indirect Ref-
erence Counting would appear to be very promising, given
the clear bene�ts indicated by the use of simple weighted
proxies, and Corporaal's use of di�usion trees to manage
weight underow.

Constructing a hybrid collector, combining this acyclic dis-
tributed collector with a high quality local GC algorithm
and a full distributed cycle-collector would provide further
evidence of the applicability of the techniques.

Finally, it would be interesting to apply this variant in a
reference listing system, hybridising with a cycle collecting
distributed garbage collector, such as the timestamp propa-
gator of Le Fessant, Piumarta and Shapiro [10]. Such a hy-
brid would illustrate the applicability of these techniques to
reference listing, and generalising to such an environment (as
also proposed by Moreau for his algorithm) could o�er fur-
ther insights into the implementation of these mechanisms.

7.5 Sub-tree re-rooting for parameters
In this paper sub-tree re-rooting is only applied when an in-
vocation is made through a proxy. An anonymous reviewer
noted that the optimisation can also be applied whenever
a marshalled reference is sent as an RPC argument to its
primary target node. This does indeed potentially allow ad-
ditional re-rooting and reduction in the di�usion tree depth.

Such references already bene�t from special handling in the
lower levels of the RPC, since they can be unmarshalled
as local references in the recipient of the call. Applying
an equivalent of the re-rooting optimisation simply requires
that a further bit be set in the message for each such ref-
erence, and a vector of bits corresponding to these \same
target" reference arguments be carried by the reply. Note,
however, that during the unmarshalling of the reply it will
be necessary for the RPC layer to know which \same target"
reference arguments were passed in the call. Further work is
required to determine whether the increased complexity and
costs in the RPC layer are justi�ed by the bene�ts gained.



8. SUMMARY
In this paper a new variant of Indirect Reference Counting
(IRC) has been proposed, which uses a dynamic restructur-
ing of the reference di�usion trees to reduce their depth,
with the goal of reducing the tree sizes. Decreasing the
di�usion tree depth may reduce the probability of IRC fail-
ing safe due to node failures, and hence reduces the fre-
quency with which alternative, more expensive, algorithms
are required to garbage collect objects. Four mechanisms
are used to achieve the low-cost tree reshaping and the same
techniques can be applied to other di�usion tree based al-
gorithms with the same potential bene�t of reduced tree
depth and increased fault tolerance. The algorithm behaves
safely if messages are lost or reordered, or processes fail.
It correctly collects all acyclic garbage provided the only
complication is message reordering, and reduces the likeli-
hood of the GC failing safe (compared with standard IRC)
if third-party nodes fail.

9. ACKNOWLEDGEMENTS
Thanks are due to Huw Evans, Rolf Neugebauer and the
anonymous reviewers for their helpful comments on drafts
of this paper, and to members of the Long-Lived Systems
Group at Glasgow for feedback at an early stage in the work
on the IRC variant. Special thanks also to Jenn Logan for
her encouragement throughout the development of the ideas
and the writing of this paper.

10. REFERENCES
[1] David I. Bevan: Distributed Garbage Collection using

Reference Counting

in the proceedings of PARLE'87, available as LNCS
volume 259, Springer Verlag; 1987

[2] David I. Bevan:
An E�cient Reference Counting solution to the

Distributed Garbage Collection problem

Parallel Computing, volume 9 #2; 1989

[3] Andrew Birrell, David Evers, Greg Nelson, Susan
Owicki & Edward Wobber:
Distributed Garbage Collection for Network Objects

Digital SRC Technical Report 116; 1993.

[4] H. Corporaal, T. Veldman & A.J. van de Goor:
An E�cient, Reference Weight-based Garbage

Collection Method for Distributed Systems

in the proceedings of PARBASE-90, IEEE; 1990

[5] Peter Dickman:
Distributed Object Management in a Non-Small Graph

of Autonomous Networks with few failures

Ph.D. dissertation, Cambridge; 1992

[6] E.W. Dijkstra & C.S. Scholten:
Termination Detection for Di�using Computations

Information Processing Letters volume 11, #1; 1980

[7] Ben Goldberg: Generational Reference Counting:

A Reduced-Communication Distributed Storage

Reclamation Scheme

in the proceedings of PLDI'89, available as ACM
SIGPLAN Notices volume 24 #7; 1989

[8] Richard Jones, with Rafael Lins: Garbage Collection

Wiley 1996, ISBN 0-471-94148-4

[9] Richard Jones: Proposal for a Distributed Garbage

Collector evaluation testbed

Private Communication, November 1999.

[10] Fabrice Le Fessant, Ian Piumarta & Marc Shapiro:
An implementation for complete asynchronous

distributed garbage collection

in the proceedings of PLDI'98, available as ACM
SIGPLAN Notices, volume 33 #6; 1998

[11] Sylvain Louboutin: A Reactive Approach to

Comprehensive Global Garbage Detection

Ph.D. dissertation, Trinity College Dublin; 1997

[12] Nancy A. Lynch: Distributed Algorithms

Morgan Kaufmann 1996, ISBN 1-55860-348-4

[13] Luc Moreau: A Distributed Garbage Collector with

Di�usion Tree Reorganisation and Mobile Objects

in the proceedings of ICFP'98, available as ACM
SIGPLAN Notices, volume 34 #1; 1999

[14] Luc Moreau:
Hierarchical Distributed Reference Counting

in the proceedings of ISMM'98, available as ACM
SIGPLAN Notices, volume 34 #3; 1999

[15] Jos�e M. Piquer: Indirect Reference Counting:

A distributed garbage collection algorithm

in the proceedings of PARLE'91, available as LNCS
volume 505, Springer Verlag; 1991

[16] Jos�e M. Piquer: Indirect Mark and Sweep:

A Distributed GC

in the proceedings of IWMM'95, available as LNCS
volume 986, Springer Verlag; 1995

[17] Jos�e M. Piquer: Indirect Distributed Garbage

Collection: Handling Object Migration

ACM Transactions on Programming Languages &
Systems, volume 18 #5; 1996

[18] David Plainfoss�e & Marc Shapiro: A Survey of

Distributed Garbage Collection Techniques

in the proceedings of IWMM'95, available as LNCS
volume 986, Springer Verlag; 1995

[19] Marc Shapiro: Structure and encapsulation in

distributed systems: the Proxy Principle

in the proceedings of ICDCS'86, IEEE; 1986

[20] Marc Shapiro, Peter Dickman & David Plainfoss�e:
Distributed References and Acyclic Garbage Collection

in the proceedings of PODC'92, ACM; 1992

[21] Sun MicroSystems: Java Remote Method Invocation

Speci�cation; 1996

[22] Gerard Tel: Introduction to Distributed Algorithms

Cambridge 1994, ISBN 0-521-47069-2

[23] Paul Watson & Ian Watson:
An E�cient Garbage Collection Scheme for Parallel

Computer Architectures

in the proceedings of PARLE'87, available as LNCS
volume 259, Springer Verlag; 1987


