
Memory Allocation with Lazy Fits

Yoo C. Chung Soo-Mook Moon
School of Electrical Engineering

Seoul National University
Kwanak PO Box 34, Seoul 151-742, Korea

{chungyc,smoon}@altair.snu.ac.kr

ABSTRACT
Dynamic memory allocation is an important part of modern pro-
gramming languages. It is important that it be done fast without
wasting too much memory. Memory allocation using lazy fits is
introduced, where pointer increments, which is very fast, is used as
the primary allocation method and where conventional fits such as
best fit or first fit are used as backup. Some experimental results
showing how lazy fits might perform are shown, and shows that the
approach has the potential to be useful in actual systems.

1. INTRODUCTION
It is a very rare case indeed that modern non-trivial applications
know beforehand the exact way it is going to use memory. Since
allocating memory statically at compile-time is hardly practical,
dynamic memory allocationat run-time is important [6]. And its
use is increasing as applications become more complex and object-
oriented programming, which tends to allocate objects dynamically
at a high rate, becomes more and more widespread.

Therefore it is important that dynamic memory allocation be done
quickly and without wasting too much space. It should be done
quickly because memory is allocated frequently enough such that a
slow memory allocator would become a major bottleneck. It should
also not waste too much space since memory is limited.

In a system where allocated memory is never moved, space is typi-
cally wasted since memory can be allocated and freed in such a way
that a request for memory cannot be satisfied since there may be no
“holes” within the memory, i.e. the unused portions of the mem-
ory, that can accomodate the request even when the total amount
of unused memory is larger than the amount of memory requested.
Memory is said to befragmentedin such a case, and is the sin-
gle most important reason that memory gets wasted in an explicitly
managed heap or a heap managed by a non-moving garbage collec-
tor.

There are several common approaches to implementing memory
allocators for explicitly managed heaps.

There is the segregated storage approach, in which only objects of
the same size class are allocated within a block and uses separate
free lists for each size class. This tends to be very fast, but it also
tends to have a higher amount of fragmentation, especially if empty
blocks are not coalesced.

There is also the approach using fits, such as first fit or best fit,
where a memory hole is found to satisfy a memory allocation re-
quest according to the fitting policy. Memory allocation using first
fit and best fit tend to have relatively low fragmentation, but can be
somewhat slower than segregated storage. This approach typically
uses boundary tags for fast coalescing of free memory holes, which
add an additional overhead to each allocated object.

There are also other approaches such as binary buddies or double
buddies, although they are not commonly used.

In systems where a compacting garbage collector such as a copying
collector or a mark and compact collector is used, used memory
and unused memory are not interleaved, so fragmentation does not
exist. Thus, the obvious and fastest way to allocate memory in
such systems is to simply increment an allocation pointer for each
allocation. Unfortunately, copying or mark-compact collection is
not practical for many systems.

However, when only correctness is considered, there is no real rea-
son why pointer increments cannot be used as the primary alloca-
tion method, and using the more conventional approaches such as
best fit or first fit as backup.

This paper discusses the approach using pointer increments as the
primary allocation method with first fit, best fit, or even worst fit
as the backup allocation method. This approach will be calledlazy
fit, in the sense that finding fitting memory holes are delayed until
really necessary. Experimental results showing that the approach
may actually be worthwhile will also be presented.

This paper is organized as follows. Section 2 discusses memory
allocation using conventional fits. Section 3 discusses memory al-
location using lazy fits, and section 4 presents experimental results.
Section 5 points to related work. Finally, section 6 concludes.

2. ALLOCATION WITH FITS
Before discussing memory allocation using lazy fits, we will dis-
cuss memory allocation using conventional fits such as first fit or
best fit in more detail.

Memory allocation with a fit is done by finding a fitting memory



hole, which is unused, and using it to satisfy the memory allocation
request. There are a variety of ways to find a fit, among them being
first fit, best fit, and worst fit.

Boundary tags are typically used to support fast coalescing of free
memory chunks [3]. In the simple case, right before and after each
memory chunk (both used and free), there is a header and a footer
containing the size of the memory chunk, and which also hold other
information such as whether the chunk is in use. These can be
used to find out whether a memory chunk which is being freed can
be coalesced with its adjacent chunks in constant time, so that the
memory chunk can be entered into the free list after coalescing.
Without boundary tags, one may have to search through the entire
free list to find out whether a memory chunk can be coalesced with
its neighbors. (Address-ordered first fit is an exception to this, since
the free list would have to be searched through in any case to find
out where in the list the memory chunk has to be inserted.)

In the simplest implementation, a single linked list of free mem-
ory chunks, called thefree list, is maintained. When a request for
allocating memory is made, an appropriate free memory chunk is
found from the free list. Exactly how an appropriate free memory
chunk is found depends on the fit policy.

With first fit, the free list is searched sequentially, and the first free
memory chunk found that is able to satisfy the memory allocation
request is used. This can be further divided into several types ac-
cording to the order which the free list is sorted: address-ordered
first fit, last-in-first-out (LIFO) first fit, and first-in-first-out (FIFO)
first fit.

Address-ordered first fit is known as having the least amount of
fragmentation, with LIFO first fit being noticeably worse. There is
evidence that FIFO first fit has as little fragmentation as address-
ordered first fit, though [7].

With best fit, the free memory chunk with the least size that is able
to satisfy a memory allocation request is used. Along with first fit,
this policy is known as having little fragmentation in real programs.

There is alsoworst fit, where the largest free memory chunk is used
to satisfy a memory allocation request. This policy alone is known
as having much worse fragmentation compared to first fit and best
fit, so it is rarely used in actual memory allocators.

The simple approach of using a single free list for keeping track
of the free memory chunks is very slow due to a linear time worst
case, however, especially if best fit or worst fit is done. So in actual
implementations of modern memory allocators, more scalable im-
plementations for allocating memory are used, among them being
segregated free lists, Cartesian trees, splay trees, etc.

Segregated free lists are the most common and simplest approach
used in actual implementations. It divides memory allocation re-
quest sizes into size classes, and maintains separate free lists con-
taining free memory chunks in the size class. This approach, also
called segregated fits, still has a linear time worst case, but this
rarely occurs in practice.

3. LAZY FITS
Memory allocation usinglazy fit is done by using pointer incre-
ments as the primary allocation method, and uses normal fits as the
backup allocation method.

To be more exact, an allocation pointer and a bound pointer are
maintained for a current free space area. When a memory alloca-
tion request is made, the allocation pointer is incremented, and it is
checked against the bound pointer to see if the memory allocation
request can be satisfied. If it is, the memory that was pointed by
the allocation pointer before it was incremented is returned. Other-
wise, conventional allocation methods using fits are used to obtain
an unused memory chunk to be used as the new free space area,
with the remainder of the former free space area returned to the
free list. The new free space area would then be used for allocating
objects with pointer increments.

This is rather similar to the typical allocation algorithm used in sys-
tems with compacting garbage collectors, which also use pointer
increments to allocate memory. The latter does not require a backup
allocation method since there is no fragmentation, however.

The fit method used for the backup allocation method does not have
to be any particular one. It could be first fit, best fit, or even worst
fit. These will be calledlazy first fit, lazy best fit, and lazy worst
fit, respectively. In fact, it does not matter what approach is used
for the backup allocation method, as long as it is able to handle
objects of arbitrary sizes being adjacent to each other. Using first
fit or best fit would have the advantage of probably having less
fragmentation, while using worst fit would probably result in larger
free space areas, which would result in more memory allocations
using pointer increments for faster speed.

Figure 1 shows a simple example on how lazy address-ordered first
fit would work. Figure 1(a) shows the initial state when the lazy
first fit allocator starts allocating in a new free space area. The
allocation and bound pointers point to the start and end of the free
space area, respectively.

Allocation occurs within the given free space area, as in figure 1(b),
incrementing the allocation pointer appropriately to accommodate
each memory allocation request.

This goes on until the free space area is no longer able to satisfy
a memory allocation request, i.e. the space remaining in the free
space area is smaller than what is needed by the caller. So we
discard what remains of the current free space area by putting it
back in the free list (this of course is unnecessary if there is no
space left at all),1 and search the free list for a new free space area
which can be used to allocate memory. The allocation and bound
pointers are set to the start and end of the new free space area,
respectively, and the cycle begins anew.

Figure 1(c) shows the state of the heap after the old free space area,
marked as “old”, is put back into the free list, and the allocation
and bound pointers pointing to the boundaries of the new free space
area, marked as “new”, which had just been extracted from the free
list using first fit.

The main advantage of using lazy fits over conventional fits is that
they can be much faster. Iff is the frequency at which memory
allocations are done with only pointer increments,I is the time cost
for doing a pointer incrementing allocation, andF is the time cost

1With non-segregated first fit, we can avoid having to take the free
space area out of the free list in the first place if we put the neces-
sary links at the end of the free space area or even by using pointer
decrementsinstead of increments for allocation, such that we can
avoid overwriting the links necessary to maintain the free list.



Bound pointerAlloc. pointer

free list

(a) Initial state

Bound pointer

free list

Alloc. pointer

(b) Allocating with pointer increments

free list

Alloc. pointer Bound pointer

new old

(c) After new free space area was found by first fit

Figure 1: Lazy first fit example. Shaded areas denotes used
memory.

with finding an accomodating memory hole with a conventional fit,
then the average time costAlazy for doing a memory allocation with
a lazy fit would be roughly:

Alazy = f I +(1− f )(I +F) = I +(1− f )F

An allocation with a conventional fit will also have to split and
return the remainder to the free list, so if the time cost to split and
return the remainder to the free list isS, then the average timeAconv
for doing a memory allocation with a conventional fit would be
roughly:

Aconv= F +S

Assuming that global pointers, such as the allocation and bound
pointers, are stored in memory, register copies and additions con-
sume one cycle, conditional branches consume two cycles, and that
pointer loads and stores consume three cycles, then a pointer incre-
menting allocation would roughly be done as

• load allocation and bound pointers (6 cycles)

• copy allocation pointer to temporary register (1 cycle)

• increment allocation pointer (1 cycle)

• compare alloction pointer with bound pointer (2 cycles)

for a total of 10 cycles, giving roughlyI = 10.

A backup allocation with a segregated fit when allocation with a
pointer increment fails, on the other hand, making the optimistic as-
sumption that a free memory chunk that can accomodate the mem-
ory allocation request is immediately found and that the free list is
maintained as a singly linked list (most actual implementations use
doubly linked lists for fast insertion and deletion), would roughly
be done as

• compute size class with lookup table (7 cycles)

• load free list for the size class (3 cycles)

• load next node on free list (3 cycles)

• move the next node to to beginning of free list (3 cycles)

for a total of 16 cycles, giving roughlyF = 16.

Splitting a memory chunk and returning the remainder to the free
list, also making optimistic assumptions, would be roughly done as

• compute remainder (1 cycle)

• compute size class with lookup table (7 cycles)

• store next node in remainder (3 cycles)

• store into free list (3 cycles)

for a total of 14 cycles, giving roughlyS= 14.

With the estimatesI = 10, F = 16, S= 14 (and keeping in mind
that the values forF andSare optimistic), and assumingf = 0.7,
thenAlazy = 14.8 andAconv = 30.0, suggesting that lazy fits can
be about two times faster than conventional fits, even when some
optimistic assumptions are made for the latter.

Of course, these are only rough estimates and should be taken with
a grain of salt, but they still strongly suggest that lazy fits can be
much faster than conventional fits.

To speed up memory allocation using a lazy fit even more, the al-
location and bound pointers could be held in two reserved global
registers. This allows one to allocate memory without touching any
other part of memory, except for the memory we are allocating, in
the common case. This would be in contrast to many other alloca-
tion algorithms, which usually require at least some manipulation
of a data structure in memory.

Lazy fit also has the potential to be faster than segregated storage
since it has no need to compute size classes. Objects allocated
closely together in time would probably be used together, so there
could also be a beneficial effect on cache performance, since lazy
fit would tend to group together objects that are consecutavely al-
located.2

2As a concrete example,209 db in the SPECjvm98 benchmark
suite ran about ten seconds faster due to improvements in cache
performance when lazy worst fit was used instead of segregated
storage, out of a total of about twenty seconds improvement in a
benchmark that had run about a hundred seconds.



That lazy fits can be faster than conventional fits or segregated stor-
age does not necessarily mean that it would be better, however. It
should also not suffer from too much fragmentation, lest the heap
becomes so large such that pages must be swapped out by the vir-
tual memory system.

One might suspect that fragmentation should not be much worse
than conventional fits, since the same reasons that reduce fragmen-
tation for conventional first fit and best fit would also apply (al-
though perhaps to a lesser degree) to lazy fits, such as immediate
coalescing of free memory [2].

However, without a good theory on predicting how much fragmen-
tation a memory allocation algorithm might produce, the only prac-
tical way to estimate the fragmentation would be through experi-
ments.

4. EXPERIMENTAL RESULTS
High fragmentation requires higher heap sizes to accomodate mem-
ory allocation requests. Also, when using lazy fit, the frequency of
using the underlying fitting algorithm affects the performance of
the memory allocator.

To estimate how lazy fits would perform in practice, traces of mem-
ory requests were generated for a set of programs, which were then
used to measure the fragmentation and how frequent the underly-
ing fitting algorithm were used for various memory allocation al-
gorithms.

The algorithms tested were first fit, lazy first fit without free space
area coalescing during deallocation, lazy first fit with free space
area coalescing during deallocation, lazy first fit with free space
area coalescing during deallocation which releases the free space
area back into the free list, and these same variations on worst
fit. The first fit algorithms use segregated free lists segregated by a
power of two distribution, with objects maintained in FIFO order.
For brevity, each allocation algorithm is denoted by the abbrevia-
tions in table 1 in the tables.

Since one can expect different behavior for these algorithms for
systems with explicit memory management and systems which use
garbage collection, these two cases were tested separately for the
same set of traces. Garbage collection was simulated by simply
deferring deallocation of objects until a memory allocation request
fails.

The following programs were used to test the algorithms, most of
which were also used in Zorn [8] and Johnstone et al. [2]:

ESP Espresso, an optimizer for programmable logic arrays. The
file provided by Benjamin Zorn,largest.espresso, was
used as input.

GHS Ghostscript, an interpreter for Postscript written by Peter
Deutsch, and modified by Benjamin Zorn to remove hand-
optimized memory allocation. The largest file provided by
Benjamin Zorn,manual.ps, a manual for the Self system,
was used as input.

PRL An interpreter for Perl (version 4.0), modified by Benjamin
Zorn to remove hand-optimized memory allocation. A script
namedadj.perl was executed withwords-large.awk as
input.

Abbrev. Description
F Conventional first fit.
LF Lazy first fit without coalescing of deallocated

objects with current free space area.
LFB Lazy first fit with coalescing of deallocated ob-

jects with current free space area.
LFL Lazy first fit with coalescing of deallocated ob-

jects with current free space area, with the area
released back to the free list. The current free
space area is not released back to the free list
if it was not coalesced with the deallocated ob-
ject.

W Conventional worst fit.
LW Lazy worst fit without coalescing of deallo-

cated objects with the current free space area.
LWB Lazy worst fit with coalescing of deallocated

objects with current free space area.
LWL Lazy worst fit with coalescing of deallocated

objects with current free space area, with the
area released back to the free list. The current
free space area is not released back to the free
list if it was not coalesced with the deallocated
object.

Table 1: Abbreviations for various allocation algorithms.

P2C A Pascal to C translator written by Dave Gillespie. The file
mf.p from the TEX release was used as input.

In this section, fragmentation is defined as the ratio of the maxi-
mum amount of allocated objects when the size of heap is at max-
imum against the maximum heap size, which is then subtracted
from unity.

4.1 Explicitly Managed Case
Table 2 shows the fragmentation for various allocation algorithms,
and table 3 shows how often the fitting mechanism had to be used
to satisy an allocation request. One can expect that with smaller
fragmentation, one would require less memory, while with smaller
fit frequencies, memory allocation would be faster.

ESP GHS PRL P2C
Algor. (%) (%) (%) (%)
F 0.12 3.59 0.51 2.05
LF 15.01 52.02 5.52 3.77
LFB 13.29 75.29 5.37 4.20
LFL 1.54 3.54 5.34 3.77
W 19.01 86.87 13.49 19.54
LW 59.52 90.12 23.51 25.46
LWB 14.62 88.49 9.64 20.96
LWL 1.54 88.59 9.60 20.73

Table 2: Fragmentation in explicit case.

In general, the fragmentation is only slightly larger for the lazy ver-
sion compared to the conventional version, except for a few cases
such as Ghostscript for first fit and Espresso for worst fit, where
the fragmentation is much larger when deallocated objects are not
coalesced with the current free space area.



The abnormal increase in fragmentation for these cases begin to
disappear when we start coalescing deallocated objects with the
current free space area. However, simply coalescing the deallo-
cated object with the current free space area for lazy first fit does not
decrease the fragmentation for Ghostscript, and in fact increases it
even further.

This abnormal increase in fragmentation can be eliminated by re-
leasing the free space area back into the free list after coalescing
it with the deallocated object. This results in fragmentation very
similar to that of the conventional version of the allocation algo-
rithm, although this does result in higher fit frequencies, as can be
seen from table 3, which would result in slower memory allocation
speeds.

ESP GHS PRL P2C
Algor. (%) (%) (%) (%)
LF 21.49 51.07 95.72 46.09
LFB 5.85 29.05 93.61 31.73
LFL 30.81 47.91 95.38 53.19
LW 0.84 1.84 10.04 20.99
LWB 0.17 1.12 5.30 20.01
LWL 11.13 8.33 12.87 30.71

Table 3: Fit frequencies in explicit case.

For the most part, the fitting algorithm is used reasonably infre-
quently such that one can expect a lazy fit to perform better than the
corresponding conventional fit in an actual implementation. This is
especially true for lazy worst fit.

However, the fitting algorithm is used too frequently in the case of
Perl, such that lazy first fit would probably be slower than conven-
tional first fit, since in addition to executing the fitting algorithm,
there is also the overhead of initially attempting to allocate memory
with pointer increments.

This problem is probably due to the fact that memory allocation
and deallocation requests are interleaved in such a way as to make
lazy first fit suffer. Table 6 in section 4.2, in which deallocation
is deferred, suggests that this is indeed the case since the fitting
algorithm is used much more infrequently when deallocations are
deferred.

Overall, lazy worst fit should be much faster since most of the allo-
cations can be done with pointer increments. However, since it has
much worse fragmentation than compared to lazy first fit, which
means it needs more memory, which method is better would de-
pend on the situation.

4.2 Garbage Collected Case
Garbage collection was simulated for the traces by processing only
allocation requests, and deferring the processing of all of the deallo-
cation requests to when an allocation request would fail. The heap
was expanded by the minimum amount only when it was absolutely
necessary, since other heuristics would confuse fragmentation ef-
fects and effects from the heuristics themselves on the size of the
heap. Table 4 shows the fragmentation for the various allocation
algorithms.

The fragmentation with lazy fits is similar to that of conventional
fits, except in the case of Ghostscript using lazy first fit. The in-

ESP GHS PRL P2C
Algor. (%) (%) (%) (%)
F 0.01 3.76 0.00 2.53
LF 0.03 27.16 2.48 3.15
W 0.23 80.75 5.62 18.73
LW 0.18 81.99 5.45 15.75

Table 4: Fragmentation in garbage collected case.

creased fragmentation in Ghostscript is probably due to sharing the
same parts of the heap among very large objects and small objects.
Table 5, which shows the fragmentation when only objects smaller
than four kilobytes are allocated, seems to confirm this suspicion
for lazy first fit, since the fragmentation is very similar between the
lazy and conventional versions.

ESP GHS PRL P2C
Algor. (%) (%) (%) (%)
F 0.06 4.48 0.00 2.53
LF 0.06 4.42 2.98 3.15
W 0.36 52.48 6.10 18.73
LW 0.24 56.23 5.94 15.75

Table 5: Fragmentation when allocating only small objects in
garbage collected case.

Table 6 shows how often the fitting mechanism had to be used
to satisy an allocation request. These values are reasonably small
enough such that one could expect that lazy fits would at least be as
fast as conventional fits. In fact, the values are small enough for the
case of lazy worst fit such that it can be expected to perform better
than conventional worst fit.

ESP GHS PRL P2C
Algor. (%) (%) (%) (%)
LF 3.82 58.05 61.30 38.06
LW 1.31 2.91 14.36 39.91

Table 6: Fit frequencies in garbage collected case.

Since actual heap expansion heuristics usually result in larger heap
sizes in order to reduce the garbage collection frequency, this means
that the free space area, from which objects are allocated with
pointer increments, would usually be larger in practice. This in
turn implies that the fitting algorithms would be used even more in-
frequently than in table 6. Since lazy fit would perform better with
lower frequencies, this implies that lazy fit can be a good choice as
the memory allocation algorithm in systems with garbage collec-
tion.

5. RELATED WORK
Pointer increments are usually used in systems with a compacting
garbage collector. This of course cannot be used without modi-
fications when allocated memory cannot be moved, such as in a
system where memory is managed manually or a system with a
non-moving collector. There are implementations that use pointer
increments for allocating objects that are used in a stack-like man-
ner for such systems, such as theobstack system used in the GNU
C Compiler. Lazy fit extends this to objects that do not have stack-
like semantics.



Memory allocation using segregated storage is usually very fast,
but it tends to have higher fragmentation than memory allocation
using conventional fits [2].

Doug Lea’s memory allocator implementation uses something sim-
ilar to pointer incrementing allocation in order to improve cache
performance, but this is not used as the primary allocation method
and is not even implemented with pointer increments [5].

LaTTe [4], a Java virtual machine for the UltraSPARC, uses lazy
worst fit for allocating memory, where the heap is managed with a
partially conservative mark and sweep garbage collector.

The SmallEiffel compiler, which uses a non-moving garbage col-
lector, uses pointer increments to allocate memory, but this is done
as an extension of segregated storage such that separate alloca-
tion pointers are maintained for each type (storage is segregated
by types instead of size classes), so objects of different types effec-
tively use separate memory allocators [1].

6. CONCLUSIONS
This paper has introduced the use of lazy fits for memory alloca-
tion, where pointer increments are used as the primary allocation
method and conventional fits are used for backup, and has shown
the behavior of a memory allocator using lazy fits.

Implemented properly, using lazy fits for memory allocation has
the potential to be faster than using conventional fits, and may even
be faster than using segregated storage, while avoiding too large
an increase in fragmentation. This potential is even stronger for
systems where garbage collection is used.

7. ACKNOWLEDGEMENTS
This work was supported in part by KOSEF grant 98-0101-04-01-3
and by IBM T. J. Watson Research Center.

8. REFERENCES
[1] D. Colnet, P. Coucaud, and O. Zendra. Compiler support to

customize the mark and sweep algorithm. InProceedings of
the International Symposium on Memory Management (ISMM
’98), pages 154–165, Vancouver, British Coumbia, Canada,
Oct. 1998. ACM Press.

[2] M. S. Johnstone and P. R. Wilson. The memory fragmentation
problem: Solved? InProceedings of the International
Symposium on Memory Management (ISMM ’98), pages
26–36, Vancouver, British Coumbia, Canada, Oct. 1998. ACM
Press.

[3] D. E. Knuth.Fundamental Algorithms, volume 1 ofThe Art of
Computer Programming, chapter 2, pages 438–442.
Addison-Wesley, third edition, 1997.

[4] LaTTe: A fast and efficient Java VM just-in-time compiler.
http://latte.snu.ac.kr/.

[5] D. Lea. A memory allocator. Available at
http://g.oswego.edu/dl/html/malloc.html.

[6] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles.
Dynamic storage allocation: A survey and critical review. In
Proceedings of the 1995 International Workshop on Memory
Management, volume 986 ofLecture Notes in Computer
Science, Kinross, United Kingdom, Sept. 1995.
Springer-Verlag.

[7] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles.
Memory allocation policies reconsidered. Technical report,
University of Texas at Austin, 1995.

[8] B. G. Zorn. The measured cost of conservative garbage
collection.Software Practice and Experience, 23(7):733–756,
July 1993.

http://latte.snu.ac.kr/
http://g.oswego.edu/dl/html/malloc.html

	Introduction
	Allocation with Fits
	Lazy Fits
	Experimental Results
	Explicitly Managed Case
	Garbage Collected Case

	Related Work
	Conclusions
	Acknowledgements
	REFERENCES 

